config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/wlan/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xfs/@/dev/usb/wlan/if_rum.c

/*	$FreeBSD: release/9.1.0/sys/dev/usb/wlan/if_rum.c 236897 2012-06-11 17:23:24Z hselasky $	*/

/*-
 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/usb/wlan/if_rum.c 236897 2012-06-11 17:23:24Z hselasky $");

/*-
 * Ralink Technology RT2501USB/RT2601USB chipset driver
 * http://www.ralinktech.com.tw/
 */

#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#endif

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"

#define	USB_DEBUG_VAR rum_debug
#include <dev/usb/usb_debug.h>

#include <dev/usb/wlan/if_rumreg.h>
#include <dev/usb/wlan/if_rumvar.h>
#include <dev/usb/wlan/if_rumfw.h>

#ifdef USB_DEBUG
static int rum_debug = 0;

SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
    "Debug level");
#endif

#define N(a)	((int)(sizeof (a) / sizeof ((a)[0])))

static const STRUCT_USB_HOST_ID rum_devs[] = {
#define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
    RUM_DEV(ABOCOM, HWU54DM),
    RUM_DEV(ABOCOM, RT2573_2),
    RUM_DEV(ABOCOM, RT2573_3),
    RUM_DEV(ABOCOM, RT2573_4),
    RUM_DEV(ABOCOM, WUG2700),
    RUM_DEV(AMIT, CGWLUSB2GO),
    RUM_DEV(ASUS, RT2573_1),
    RUM_DEV(ASUS, RT2573_2),
    RUM_DEV(BELKIN, F5D7050A),
    RUM_DEV(BELKIN, F5D9050V3),
    RUM_DEV(CISCOLINKSYS, WUSB54GC),
    RUM_DEV(CISCOLINKSYS, WUSB54GR),
    RUM_DEV(CONCEPTRONIC2, C54RU2),
    RUM_DEV(COREGA, CGWLUSB2GL),
    RUM_DEV(COREGA, CGWLUSB2GPX),
    RUM_DEV(DICKSMITH, CWD854F),
    RUM_DEV(DICKSMITH, RT2573),
    RUM_DEV(EDIMAX, EW7318USG),
    RUM_DEV(DLINK2, DWLG122C1),
    RUM_DEV(DLINK2, WUA1340),
    RUM_DEV(DLINK2, DWA111),
    RUM_DEV(DLINK2, DWA110),
    RUM_DEV(GIGABYTE, GNWB01GS),
    RUM_DEV(GIGABYTE, GNWI05GS),
    RUM_DEV(GIGASET, RT2573),
    RUM_DEV(GOODWAY, RT2573),
    RUM_DEV(GUILLEMOT, HWGUSB254LB),
    RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
    RUM_DEV(HUAWEI3COM, WUB320G),
    RUM_DEV(MELCO, G54HP),
    RUM_DEV(MELCO, SG54HP),
    RUM_DEV(MELCO, WLIUCG),
    RUM_DEV(MELCO, WLRUCG),
    RUM_DEV(MELCO, WLRUCGAOSS),
    RUM_DEV(MSI, RT2573_1),
    RUM_DEV(MSI, RT2573_2),
    RUM_DEV(MSI, RT2573_3),
    RUM_DEV(MSI, RT2573_4),
    RUM_DEV(NOVATECH, RT2573),
    RUM_DEV(PLANEX2, GWUS54HP),
    RUM_DEV(PLANEX2, GWUS54MINI2),
    RUM_DEV(PLANEX2, GWUSMM),
    RUM_DEV(QCOM, RT2573),
    RUM_DEV(QCOM, RT2573_2),
    RUM_DEV(QCOM, RT2573_3),
    RUM_DEV(RALINK, RT2573),
    RUM_DEV(RALINK, RT2573_2),
    RUM_DEV(RALINK, RT2671),
    RUM_DEV(SITECOMEU, WL113R2),
    RUM_DEV(SITECOMEU, WL172),
    RUM_DEV(SPARKLAN, RT2573),
    RUM_DEV(SURECOM, RT2573),
#undef RUM_DEV
};

static device_probe_t rum_match;
static device_attach_t rum_attach;
static device_detach_t rum_detach;

static usb_callback_t rum_bulk_read_callback;
static usb_callback_t rum_bulk_write_callback;

static usb_error_t	rum_do_request(struct rum_softc *sc,
			    struct usb_device_request *req, void *data);
static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
			    int, const uint8_t [IEEE80211_ADDR_LEN],
			    const uint8_t [IEEE80211_ADDR_LEN]);
static void		rum_vap_delete(struct ieee80211vap *);
static void		rum_tx_free(struct rum_tx_data *, int);
static void		rum_setup_tx_list(struct rum_softc *);
static void		rum_unsetup_tx_list(struct rum_softc *);
static int		rum_newstate(struct ieee80211vap *,
			    enum ieee80211_state, int);
static void		rum_setup_tx_desc(struct rum_softc *,
			    struct rum_tx_desc *, uint32_t, uint16_t, int,
			    int);
static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
			    struct ieee80211_node *);
static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
			    struct ieee80211_node *, 
			    const struct ieee80211_bpf_params *);
static int		rum_tx_data(struct rum_softc *, struct mbuf *,
			    struct ieee80211_node *);
static void		rum_start(struct ifnet *);
static int		rum_ioctl(struct ifnet *, u_long, caddr_t);
static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
			    int);
static uint32_t		rum_read(struct rum_softc *, uint16_t);
static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
			    int);
static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
			    size_t);
static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
static void		rum_select_antenna(struct rum_softc *);
static void		rum_enable_mrr(struct rum_softc *);
static void		rum_set_txpreamble(struct rum_softc *);
static void		rum_set_basicrates(struct rum_softc *);
static void		rum_select_band(struct rum_softc *,
			    struct ieee80211_channel *);
static void		rum_set_chan(struct rum_softc *,
			    struct ieee80211_channel *);
static void		rum_enable_tsf_sync(struct rum_softc *);
static void		rum_enable_tsf(struct rum_softc *);
static void		rum_update_slot(struct ifnet *);
static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
static void		rum_update_mcast(struct ifnet *);
static void		rum_update_promisc(struct ifnet *);
static void		rum_setpromisc(struct rum_softc *);
static const char	*rum_get_rf(int);
static void		rum_read_eeprom(struct rum_softc *);
static int		rum_bbp_init(struct rum_softc *);
static void		rum_init_locked(struct rum_softc *);
static void		rum_init(void *);
static void		rum_stop(struct rum_softc *);
static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
			    size_t);
static void		rum_prepare_beacon(struct rum_softc *,
			    struct ieee80211vap *);
static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
			    const struct ieee80211_bpf_params *);
static void		rum_scan_start(struct ieee80211com *);
static void		rum_scan_end(struct ieee80211com *);
static void		rum_set_channel(struct ieee80211com *);
static int		rum_get_rssi(struct rum_softc *, uint8_t);
static void		rum_ratectl_start(struct rum_softc *,
			    struct ieee80211_node *);
static void		rum_ratectl_timeout(void *);
static void		rum_ratectl_task(void *, int);
static int		rum_pause(struct rum_softc *, int);

static const struct {
	uint32_t	reg;
	uint32_t	val;
} rum_def_mac[] = {
	{ RT2573_TXRX_CSR0,  0x025fb032 },
	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
	{ RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
	{ RT2573_TXRX_CSR3,  0x00858687 },
	{ RT2573_TXRX_CSR7,  0x2e31353b },
	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
	{ RT2573_TXRX_CSR15, 0x0000000f },
	{ RT2573_MAC_CSR6,   0x00000fff },
	{ RT2573_MAC_CSR8,   0x016c030a },
	{ RT2573_MAC_CSR10,  0x00000718 },
	{ RT2573_MAC_CSR12,  0x00000004 },
	{ RT2573_MAC_CSR13,  0x00007f00 },
	{ RT2573_SEC_CSR0,   0x00000000 },
	{ RT2573_SEC_CSR1,   0x00000000 },
	{ RT2573_SEC_CSR5,   0x00000000 },
	{ RT2573_PHY_CSR1,   0x000023b0 },
	{ RT2573_PHY_CSR5,   0x00040a06 },
	{ RT2573_PHY_CSR6,   0x00080606 },
	{ RT2573_PHY_CSR7,   0x00000408 },
	{ RT2573_AIFSN_CSR,  0x00002273 },
	{ RT2573_CWMIN_CSR,  0x00002344 },
	{ RT2573_CWMAX_CSR,  0x000034aa }
};

static const struct {
	uint8_t	reg;
	uint8_t	val;
} rum_def_bbp[] = {
	{   3, 0x80 },
	{  15, 0x30 },
	{  17, 0x20 },
	{  21, 0xc8 },
	{  22, 0x38 },
	{  23, 0x06 },
	{  24, 0xfe },
	{  25, 0x0a },
	{  26, 0x0d },
	{  32, 0x0b },
	{  34, 0x12 },
	{  37, 0x07 },
	{  39, 0xf8 },
	{  41, 0x60 },
	{  53, 0x10 },
	{  54, 0x18 },
	{  60, 0x10 },
	{  61, 0x04 },
	{  62, 0x04 },
	{  75, 0xfe },
	{  86, 0xfe },
	{  88, 0xfe },
	{  90, 0x0f },
	{  99, 0x00 },
	{ 102, 0x16 },
	{ 107, 0x04 }
};

static const struct rfprog {
	uint8_t		chan;
	uint32_t	r1, r2, r3, r4;
}  rum_rf5226[] = {
	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },

	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },

	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },

	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },

	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
}, rum_rf5225[] = {
	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },

	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },

	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },

	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },

	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
};

static const struct usb_config rum_config[RUM_N_TRANSFER] = {
	[RUM_BULK_WR] = {
		.type = UE_BULK,
		.endpoint = UE_ADDR_ANY,
		.direction = UE_DIR_OUT,
		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
		.callback = rum_bulk_write_callback,
		.timeout = 5000,	/* ms */
	},
	[RUM_BULK_RD] = {
		.type = UE_BULK,
		.endpoint = UE_ADDR_ANY,
		.direction = UE_DIR_IN,
		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
		.callback = rum_bulk_read_callback,
	},
};

static int
rum_match(device_t self)
{
	struct usb_attach_arg *uaa = device_get_ivars(self);

	if (uaa->usb_mode != USB_MODE_HOST)
		return (ENXIO);
	if (uaa->info.bConfigIndex != 0)
		return (ENXIO);
	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
		return (ENXIO);

	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
}

static int
rum_attach(device_t self)
{
	struct usb_attach_arg *uaa = device_get_ivars(self);
	struct rum_softc *sc = device_get_softc(self);
	struct ieee80211com *ic;
	struct ifnet *ifp;
	uint8_t iface_index, bands;
	uint32_t tmp;
	int error, ntries;

	device_set_usb_desc(self);
	sc->sc_udev = uaa->device;
	sc->sc_dev = self;

	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
	    MTX_NETWORK_LOCK, MTX_DEF);

	iface_index = RT2573_IFACE_INDEX;
	error = usbd_transfer_setup(uaa->device, &iface_index,
	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
	if (error) {
		device_printf(self, "could not allocate USB transfers, "
		    "err=%s\n", usbd_errstr(error));
		goto detach;
	}

	RUM_LOCK(sc);
	/* retrieve RT2573 rev. no */
	for (ntries = 0; ntries < 100; ntries++) {
		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
			break;
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
		RUM_UNLOCK(sc);
		goto detach;
	}

	/* retrieve MAC address and various other things from EEPROM */
	rum_read_eeprom(sc);

	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
	    tmp, rum_get_rf(sc->rf_rev));

	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
	RUM_UNLOCK(sc);

	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
	if (ifp == NULL) {
		device_printf(sc->sc_dev, "can not if_alloc()\n");
		goto detach;
	}
	ic = ifp->if_l2com;

	ifp->if_softc = sc;
	if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_init = rum_init;
	ifp->if_ioctl = rum_ioctl;
	ifp->if_start = rum_start;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
	IFQ_SET_READY(&ifp->if_snd);

	ic->ic_ifp = ifp;
	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */

	/* set device capabilities */
	ic->ic_caps =
	      IEEE80211_C_STA		/* station mode supported */
	    | IEEE80211_C_IBSS		/* IBSS mode supported */
	    | IEEE80211_C_MONITOR	/* monitor mode supported */
	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
	    | IEEE80211_C_TXPMGT	/* tx power management */
	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
	    | IEEE80211_C_SHSLOT	/* short slot time supported */
	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
	    | IEEE80211_C_WPA		/* 802.11i */
	    ;

	bands = 0;
	setbit(&bands, IEEE80211_MODE_11B);
	setbit(&bands, IEEE80211_MODE_11G);
	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
		setbit(&bands, IEEE80211_MODE_11A);
	ieee80211_init_channels(ic, NULL, &bands);

	ieee80211_ifattach(ic, sc->sc_bssid);
	ic->ic_update_promisc = rum_update_promisc;
	ic->ic_raw_xmit = rum_raw_xmit;
	ic->ic_scan_start = rum_scan_start;
	ic->ic_scan_end = rum_scan_end;
	ic->ic_set_channel = rum_set_channel;

	ic->ic_vap_create = rum_vap_create;
	ic->ic_vap_delete = rum_vap_delete;
	ic->ic_update_mcast = rum_update_mcast;

	ieee80211_radiotap_attach(ic,
	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
		RT2573_TX_RADIOTAP_PRESENT,
	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
		RT2573_RX_RADIOTAP_PRESENT);

	if (bootverbose)
		ieee80211_announce(ic);

	return (0);

detach:
	rum_detach(self);
	return (ENXIO);			/* failure */
}

static int
rum_detach(device_t self)
{
	struct rum_softc *sc = device_get_softc(self);
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic;

	/* stop all USB transfers */
	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);

	/* free TX list, if any */
	RUM_LOCK(sc);
	rum_unsetup_tx_list(sc);
	RUM_UNLOCK(sc);

	if (ifp) {
		ic = ifp->if_l2com;
		ieee80211_ifdetach(ic);
		if_free(ifp);
	}
	mtx_destroy(&sc->sc_mtx);

	return (0);
}

static usb_error_t
rum_do_request(struct rum_softc *sc,
    struct usb_device_request *req, void *data)
{
	usb_error_t err;
	int ntries = 10;

	while (ntries--) {
		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
		    req, data, 0, NULL, 250 /* ms */);
		if (err == 0)
			break;

		DPRINTFN(1, "Control request failed, %s (retrying)\n",
		    usbd_errstr(err));
		if (rum_pause(sc, hz / 100))
			break;
	}
	return (err);
}

static struct ieee80211vap *
rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
    enum ieee80211_opmode opmode, int flags,
    const uint8_t bssid[IEEE80211_ADDR_LEN],
    const uint8_t mac[IEEE80211_ADDR_LEN])
{
	struct rum_softc *sc = ic->ic_ifp->if_softc;
	struct rum_vap *rvp;
	struct ieee80211vap *vap;

	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
		return NULL;
	rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap),
	    M_80211_VAP, M_NOWAIT | M_ZERO);
	if (rvp == NULL)
		return NULL;
	vap = &rvp->vap;
	/* enable s/w bmiss handling for sta mode */
	ieee80211_vap_setup(ic, vap, name, unit, opmode,
	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);

	/* override state transition machine */
	rvp->newstate = vap->iv_newstate;
	vap->iv_newstate = rum_newstate;

	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
	ieee80211_ratectl_init(vap);
	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
	/* complete setup */
	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
	ic->ic_opmode = opmode;
	return vap;
}

static void
rum_vap_delete(struct ieee80211vap *vap)
{
	struct rum_vap *rvp = RUM_VAP(vap);
	struct ieee80211com *ic = vap->iv_ic;

	usb_callout_drain(&rvp->ratectl_ch);
	ieee80211_draintask(ic, &rvp->ratectl_task);
	ieee80211_ratectl_deinit(vap);
	ieee80211_vap_detach(vap);
	free(rvp, M_80211_VAP);
}

static void
rum_tx_free(struct rum_tx_data *data, int txerr)
{
	struct rum_softc *sc = data->sc;

	if (data->m != NULL) {
		if (data->m->m_flags & M_TXCB)
			ieee80211_process_callback(data->ni, data->m,
			    txerr ? ETIMEDOUT : 0);
		m_freem(data->m);
		data->m = NULL;

		ieee80211_free_node(data->ni);
		data->ni = NULL;
	}
	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
	sc->tx_nfree++;
}

static void
rum_setup_tx_list(struct rum_softc *sc)
{
	struct rum_tx_data *data;
	int i;

	sc->tx_nfree = 0;
	STAILQ_INIT(&sc->tx_q);
	STAILQ_INIT(&sc->tx_free);

	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
		data = &sc->tx_data[i];

		data->sc = sc;
		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
		sc->tx_nfree++;
	}
}

static void
rum_unsetup_tx_list(struct rum_softc *sc)
{
	struct rum_tx_data *data;
	int i;

	/* make sure any subsequent use of the queues will fail */
	sc->tx_nfree = 0;
	STAILQ_INIT(&sc->tx_q);
	STAILQ_INIT(&sc->tx_free);

	/* free up all node references and mbufs */
	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
		data = &sc->tx_data[i];

		if (data->m != NULL) {
			m_freem(data->m);
			data->m = NULL;
		}
		if (data->ni != NULL) {
			ieee80211_free_node(data->ni);
			data->ni = NULL;
		}
	}
}

static int
rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
	struct rum_vap *rvp = RUM_VAP(vap);
	struct ieee80211com *ic = vap->iv_ic;
	struct rum_softc *sc = ic->ic_ifp->if_softc;
	const struct ieee80211_txparam *tp;
	enum ieee80211_state ostate;
	struct ieee80211_node *ni;
	uint32_t tmp;

	ostate = vap->iv_state;
	DPRINTF("%s -> %s\n",
		ieee80211_state_name[ostate],
		ieee80211_state_name[nstate]);

	IEEE80211_UNLOCK(ic);
	RUM_LOCK(sc);
	usb_callout_stop(&rvp->ratectl_ch);

	switch (nstate) {
	case IEEE80211_S_INIT:
		if (ostate == IEEE80211_S_RUN) {
			/* abort TSF synchronization */
			tmp = rum_read(sc, RT2573_TXRX_CSR9);
			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
		}
		break;

	case IEEE80211_S_RUN:
		ni = ieee80211_ref_node(vap->iv_bss);

		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
				RUM_UNLOCK(sc);
				IEEE80211_LOCK(ic);
				ieee80211_free_node(ni);
				return (-1);
			}
			rum_update_slot(ic->ic_ifp);
			rum_enable_mrr(sc);
			rum_set_txpreamble(sc);
			rum_set_basicrates(sc);
			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
			rum_set_bssid(sc, sc->sc_bssid);
		}

		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
		    vap->iv_opmode == IEEE80211_M_IBSS)
			rum_prepare_beacon(sc, vap);

		if (vap->iv_opmode != IEEE80211_M_MONITOR)
			rum_enable_tsf_sync(sc);
		else
			rum_enable_tsf(sc);

		/* enable automatic rate adaptation */
		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
			rum_ratectl_start(sc, ni);
		ieee80211_free_node(ni);
		break;
	default:
		break;
	}
	RUM_UNLOCK(sc);
	IEEE80211_LOCK(ic);
	return (rvp->newstate(vap, nstate, arg));
}

static void
rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
	struct rum_softc *sc = usbd_xfer_softc(xfer);
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211vap *vap;
	struct rum_tx_data *data;
	struct mbuf *m;
	struct usb_page_cache *pc;
	unsigned int len;
	int actlen, sumlen;

	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);

	switch (USB_GET_STATE(xfer)) {
	case USB_ST_TRANSFERRED:
		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);

		/* free resources */
		data = usbd_xfer_get_priv(xfer);
		rum_tx_free(data, 0);
		usbd_xfer_set_priv(xfer, NULL);

		ifp->if_opackets++;
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

		/* FALLTHROUGH */
	case USB_ST_SETUP:
tr_setup:
		data = STAILQ_FIRST(&sc->tx_q);
		if (data) {
			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
			m = data->m;

			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
				DPRINTFN(0, "data overflow, %u bytes\n",
				    m->m_pkthdr.len);
				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
			}
			pc = usbd_xfer_get_frame(xfer, 0);
			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
			    m->m_pkthdr.len);

			vap = data->ni->ni_vap;
			if (ieee80211_radiotap_active_vap(vap)) {
				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;

				tap->wt_flags = 0;
				tap->wt_rate = data->rate;
				tap->wt_antenna = sc->tx_ant;

				ieee80211_radiotap_tx(vap, m);
			}

			/* align end on a 4-bytes boundary */
			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
			if ((len % 64) == 0)
				len += 4;

			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
			    m->m_pkthdr.len, len);

			usbd_xfer_set_frame_len(xfer, 0, len);
			usbd_xfer_set_priv(xfer, data);

			usbd_transfer_submit(xfer);
		}
		RUM_UNLOCK(sc);
		rum_start(ifp);
		RUM_LOCK(sc);
		break;

	default:			/* Error */
		DPRINTFN(11, "transfer error, %s\n",
		    usbd_errstr(error));

		ifp->if_oerrors++;
		data = usbd_xfer_get_priv(xfer);
		if (data != NULL) {
			rum_tx_free(data, error);
			usbd_xfer_set_priv(xfer, NULL);
		}

		if (error != USB_ERR_CANCELLED) {
			if (error == USB_ERR_TIMEOUT)
				device_printf(sc->sc_dev, "device timeout\n");

			/*
			 * Try to clear stall first, also if other
			 * errors occur, hence clearing stall
			 * introduces a 50 ms delay:
			 */
			usbd_xfer_set_stall(xfer);
			goto tr_setup;
		}
		break;
	}
}

static void
rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
	struct rum_softc *sc = usbd_xfer_softc(xfer);
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211_node *ni;
	struct mbuf *m = NULL;
	struct usb_page_cache *pc;
	uint32_t flags;
	uint8_t rssi = 0;
	int len;

	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);

	switch (USB_GET_STATE(xfer)) {
	case USB_ST_TRANSFERRED:

		DPRINTFN(15, "rx done, actlen=%d\n", len);

		if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
			DPRINTF("%s: xfer too short %d\n",
			    device_get_nameunit(sc->sc_dev), len);
			ifp->if_ierrors++;
			goto tr_setup;
		}

		len -= RT2573_RX_DESC_SIZE;
		pc = usbd_xfer_get_frame(xfer, 0);
		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);

		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
		flags = le32toh(sc->sc_rx_desc.flags);
		if (flags & RT2573_RX_CRC_ERROR) {
			/*
		         * This should not happen since we did not
		         * request to receive those frames when we
		         * filled RUM_TXRX_CSR2:
		         */
			DPRINTFN(5, "PHY or CRC error\n");
			ifp->if_ierrors++;
			goto tr_setup;
		}

		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
		if (m == NULL) {
			DPRINTF("could not allocate mbuf\n");
			ifp->if_ierrors++;
			goto tr_setup;
		}
		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
		    mtod(m, uint8_t *), len);

		/* finalize mbuf */
		m->m_pkthdr.rcvif = ifp;
		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;

		if (ieee80211_radiotap_active(ic)) {
			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;

			/* XXX read tsf */
			tap->wr_flags = 0;
			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
			    (flags & RT2573_RX_OFDM) ?
			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
			tap->wr_antnoise = RT2573_NOISE_FLOOR;
			tap->wr_antenna = sc->rx_ant;
		}
		/* FALLTHROUGH */
	case USB_ST_SETUP:
tr_setup:
		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
		usbd_transfer_submit(xfer);

		/*
		 * At the end of a USB callback it is always safe to unlock
		 * the private mutex of a device! That is why we do the
		 * "ieee80211_input" here, and not some lines up!
		 */
		RUM_UNLOCK(sc);
		if (m) {
			ni = ieee80211_find_rxnode(ic,
			    mtod(m, struct ieee80211_frame_min *));
			if (ni != NULL) {
				(void) ieee80211_input(ni, m, rssi,
				    RT2573_NOISE_FLOOR);
				ieee80211_free_node(ni);
			} else
				(void) ieee80211_input_all(ic, m, rssi,
				    RT2573_NOISE_FLOOR);
		}
		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
		    !IFQ_IS_EMPTY(&ifp->if_snd))
			rum_start(ifp);
		RUM_LOCK(sc);
		return;

	default:			/* Error */
		if (error != USB_ERR_CANCELLED) {
			/* try to clear stall first */
			usbd_xfer_set_stall(xfer);
			goto tr_setup;
		}
		return;
	}
}

static uint8_t
rum_plcp_signal(int rate)
{
	switch (rate) {
	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
	case 12:	return 0xb;
	case 18:	return 0xf;
	case 24:	return 0xa;
	case 36:	return 0xe;
	case 48:	return 0x9;
	case 72:	return 0xd;
	case 96:	return 0x8;
	case 108:	return 0xc;

	/* CCK rates (NB: not IEEE std, device-specific) */
	case 2:		return 0x0;
	case 4:		return 0x1;
	case 11:	return 0x2;
	case 22:	return 0x3;
	}
	return 0xff;		/* XXX unsupported/unknown rate */
}

static void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
    uint32_t flags, uint16_t xflags, int len, int rate)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint16_t plcp_length;
	int remainder;

	desc->flags = htole32(flags);
	desc->flags |= htole32(RT2573_TX_VALID);
	desc->flags |= htole32(len << 16);

	desc->xflags = htole16(xflags);

	desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) | 
	    RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));

	/* setup PLCP fields */
	desc->plcp_signal  = rum_plcp_signal(rate);
	desc->plcp_service = 4;

	len += IEEE80211_CRC_LEN;
	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
		desc->flags |= htole32(RT2573_TX_OFDM);

		plcp_length = len & 0xfff;
		desc->plcp_length_hi = plcp_length >> 6;
		desc->plcp_length_lo = plcp_length & 0x3f;
	} else {
		plcp_length = (16 * len + rate - 1) / rate;
		if (rate == 22) {
			remainder = (16 * len) % 22;
			if (remainder != 0 && remainder < 7)
				desc->plcp_service |= RT2573_PLCP_LENGEXT;
		}
		desc->plcp_length_hi = plcp_length >> 8;
		desc->plcp_length_lo = plcp_length & 0xff;

		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
			desc->plcp_signal |= 0x08;
	}
}

static int
rum_sendprot(struct rum_softc *sc,
    const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
	struct ieee80211com *ic = ni->ni_ic;
	const struct ieee80211_frame *wh;
	struct rum_tx_data *data;
	struct mbuf *mprot;
	int protrate, ackrate, pktlen, flags, isshort;
	uint16_t dur;

	RUM_LOCK_ASSERT(sc, MA_OWNED);
	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
	    ("protection %d", prot));

	wh = mtod(m, const struct ieee80211_frame *);
	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;

	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);

	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
	flags = RT2573_TX_MORE_FRAG;
	if (prot == IEEE80211_PROT_RTSCTS) {
		/* NB: CTS is the same size as an ACK */
		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
		flags |= RT2573_TX_NEED_ACK;
		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
	} else {
		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
	}
	if (mprot == NULL) {
		/* XXX stat + msg */
		return (ENOBUFS);
	}
	data = STAILQ_FIRST(&sc->tx_free);
	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
	sc->tx_nfree--;

	data->m = mprot;
	data->ni = ieee80211_ref_node(ni);
	data->rate = protrate;
	rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);

	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);

	return 0;
}

static int
rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
	struct ieee80211vap *vap = ni->ni_vap;
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct rum_tx_data *data;
	struct ieee80211_frame *wh;
	const struct ieee80211_txparam *tp;
	struct ieee80211_key *k;
	uint32_t flags = 0;
	uint16_t dur;

	RUM_LOCK_ASSERT(sc, MA_OWNED);

	data = STAILQ_FIRST(&sc->tx_free);
	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
	sc->tx_nfree--;

	wh = mtod(m0, struct ieee80211_frame *);
	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
		k = ieee80211_crypto_encap(ni, m0);
		if (k == NULL) {
			m_freem(m0);
			return ENOBUFS;
		}
		wh = mtod(m0, struct ieee80211_frame *);
	}

	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];

	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
		flags |= RT2573_TX_NEED_ACK;

		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
		*(uint16_t *)wh->i_dur = htole16(dur);

		/* tell hardware to add timestamp for probe responses */
		if ((wh->i_fc[0] &
		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
			flags |= RT2573_TX_TIMESTAMP;
	}

	data->m = m0;
	data->ni = ni;
	data->rate = tp->mgmtrate;

	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);

	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);

	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);

	return (0);
}

static int
rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
    const struct ieee80211_bpf_params *params)
{
	struct ieee80211com *ic = ni->ni_ic;
	struct rum_tx_data *data;
	uint32_t flags;
	int rate, error;

	RUM_LOCK_ASSERT(sc, MA_OWNED);
	KASSERT(params != NULL, ("no raw xmit params"));

	rate = params->ibp_rate0;
	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
		m_freem(m0);
		return EINVAL;
	}
	flags = 0;
	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
		flags |= RT2573_TX_NEED_ACK;
	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
		error = rum_sendprot(sc, m0, ni,
		    params->ibp_flags & IEEE80211_BPF_RTS ?
			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
		    rate);
		if (error || sc->tx_nfree == 0) {
			m_freem(m0);
			return ENOBUFS;
		}
		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
	}

	data = STAILQ_FIRST(&sc->tx_free);
	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
	sc->tx_nfree--;

	data->m = m0;
	data->ni = ni;
	data->rate = rate;

	/* XXX need to setup descriptor ourself */
	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);

	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
	    m0->m_pkthdr.len, rate);

	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);

	return 0;
}

static int
rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
	struct ieee80211vap *vap = ni->ni_vap;
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct rum_tx_data *data;
	struct ieee80211_frame *wh;
	const struct ieee80211_txparam *tp;
	struct ieee80211_key *k;
	uint32_t flags = 0;
	uint16_t dur;
	int error, rate;

	RUM_LOCK_ASSERT(sc, MA_OWNED);

	wh = mtod(m0, struct ieee80211_frame *);

	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
		rate = tp->mcastrate;
	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
		rate = tp->ucastrate;
	else
		rate = ni->ni_txrate;

	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
		k = ieee80211_crypto_encap(ni, m0);
		if (k == NULL) {
			m_freem(m0);
			return ENOBUFS;
		}

		/* packet header may have moved, reset our local pointer */
		wh = mtod(m0, struct ieee80211_frame *);
	}

	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
		int prot = IEEE80211_PROT_NONE;
		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
			prot = IEEE80211_PROT_RTSCTS;
		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
			prot = ic->ic_protmode;
		if (prot != IEEE80211_PROT_NONE) {
			error = rum_sendprot(sc, m0, ni, prot, rate);
			if (error || sc->tx_nfree == 0) {
				m_freem(m0);
				return ENOBUFS;
			}
			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
		}
	}

	data = STAILQ_FIRST(&sc->tx_free);
	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
	sc->tx_nfree--;

	data->m = m0;
	data->ni = ni;
	data->rate = rate;

	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
		flags |= RT2573_TX_NEED_ACK;
		flags |= RT2573_TX_MORE_FRAG;

		dur = ieee80211_ack_duration(ic->ic_rt, rate, 
		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
		*(uint16_t *)wh->i_dur = htole16(dur);
	}

	rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);

	DPRINTFN(10, "sending frame len=%d rate=%d\n",
	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);

	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);

	return 0;
}

static void
rum_start(struct ifnet *ifp)
{
	struct rum_softc *sc = ifp->if_softc;
	struct ieee80211_node *ni;
	struct mbuf *m;

	RUM_LOCK(sc);
	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
		RUM_UNLOCK(sc);
		return;
	}
	for (;;) {
		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
		if (m == NULL)
			break;
		if (sc->tx_nfree < RUM_TX_MINFREE) {
			IFQ_DRV_PREPEND(&ifp->if_snd, m);
			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
			break;
		}
		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
		if (rum_tx_data(sc, m, ni) != 0) {
			ieee80211_free_node(ni);
			ifp->if_oerrors++;
			break;
		}
	}
	RUM_UNLOCK(sc);
}

static int
rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
	struct rum_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ifreq *ifr = (struct ifreq *) data;
	int error = 0, startall = 0;

	switch (cmd) {
	case SIOCSIFFLAGS:
		RUM_LOCK(sc);
		if (ifp->if_flags & IFF_UP) {
			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
				rum_init_locked(sc);
				startall = 1;
			} else
				rum_setpromisc(sc);
		} else {
			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
				rum_stop(sc);
		}
		RUM_UNLOCK(sc);
		if (startall)
			ieee80211_start_all(ic);
		break;
	case SIOCGIFMEDIA:
		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
		break;
	case SIOCGIFADDR:
		error = ether_ioctl(ifp, cmd, data);
		break;
	default:
		error = EINVAL;
		break;
	}
	return error;
}

static void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
	struct usb_device_request req;
	usb_error_t error;

	req.bmRequestType = UT_READ_VENDOR_DEVICE;
	req.bRequest = RT2573_READ_EEPROM;
	USETW(req.wValue, 0);
	USETW(req.wIndex, addr);
	USETW(req.wLength, len);

	error = rum_do_request(sc, &req, buf);
	if (error != 0) {
		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
		    usbd_errstr(error));
	}
}

static uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
	uint32_t val;

	rum_read_multi(sc, reg, &val, sizeof val);

	return le32toh(val);
}

static void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
	struct usb_device_request req;
	usb_error_t error;

	req.bmRequestType = UT_READ_VENDOR_DEVICE;
	req.bRequest = RT2573_READ_MULTI_MAC;
	USETW(req.wValue, 0);
	USETW(req.wIndex, reg);
	USETW(req.wLength, len);

	error = rum_do_request(sc, &req, buf);
	if (error != 0) {
		device_printf(sc->sc_dev,
		    "could not multi read MAC register: %s\n",
		    usbd_errstr(error));
	}
}

static usb_error_t
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
	uint32_t tmp = htole32(val);

	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
}

static usb_error_t
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
	struct usb_device_request req;
	usb_error_t error;
	size_t offset;

	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
	req.bRequest = RT2573_WRITE_MULTI_MAC;
	USETW(req.wValue, 0);

	/* write at most 64 bytes at a time */
	for (offset = 0; offset < len; offset += 64) {
		USETW(req.wIndex, reg + offset);
		USETW(req.wLength, MIN(len - offset, 64));

		error = rum_do_request(sc, &req, (char *)buf + offset);
		if (error != 0) {
			device_printf(sc->sc_dev,
			    "could not multi write MAC register: %s\n",
			    usbd_errstr(error));
			return (error);
		}
	}

	return (USB_ERR_NORMAL_COMPLETION);
}

static void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
	uint32_t tmp;
	int ntries;

	DPRINTFN(2, "reg=0x%08x\n", reg);

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
			break;
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not write to BBP\n");
		return;
	}

	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
	rum_write(sc, RT2573_PHY_CSR3, tmp);
}

static uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
	uint32_t val;
	int ntries;

	DPRINTFN(2, "reg=0x%08x\n", reg);

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
			break;
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not read BBP\n");
		return 0;
	}

	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
	rum_write(sc, RT2573_PHY_CSR3, val);

	for (ntries = 0; ntries < 100; ntries++) {
		val = rum_read(sc, RT2573_PHY_CSR3);
		if (!(val & RT2573_BBP_BUSY))
			return val & 0xff;
		if (rum_pause(sc, hz / 100))
			break;
	}

	device_printf(sc->sc_dev, "could not read BBP\n");
	return 0;
}

static void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
	uint32_t tmp;
	int ntries;

	for (ntries = 0; ntries < 100; ntries++) {
		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
			break;
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "could not write to RF\n");
		return;
	}

	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
	    (reg & 3);
	rum_write(sc, RT2573_PHY_CSR4, tmp);

	/* remember last written value in sc */
	sc->rf_regs[reg] = val;

	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
}

static void
rum_select_antenna(struct rum_softc *sc)
{
	uint8_t bbp4, bbp77;
	uint32_t tmp;

	bbp4  = rum_bbp_read(sc, 4);
	bbp77 = rum_bbp_read(sc, 77);

	/* TBD */

	/* make sure Rx is disabled before switching antenna */
	tmp = rum_read(sc, RT2573_TXRX_CSR0);
	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);

	rum_bbp_write(sc,  4, bbp4);
	rum_bbp_write(sc, 77, bbp77);

	rum_write(sc, RT2573_TXRX_CSR0, tmp);
}

/*
 * Enable multi-rate retries for frames sent at OFDM rates.
 * In 802.11b/g mode, allow fallback to CCK rates.
 */
static void
rum_enable_mrr(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;

	tmp = rum_read(sc, RT2573_TXRX_CSR4);

	tmp &= ~RT2573_MRR_CCK_FALLBACK;
	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
		tmp |= RT2573_MRR_CCK_FALLBACK;
	tmp |= RT2573_MRR_ENABLED;

	rum_write(sc, RT2573_TXRX_CSR4, tmp);
}

static void
rum_set_txpreamble(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;

	tmp = rum_read(sc, RT2573_TXRX_CSR4);

	tmp &= ~RT2573_SHORT_PREAMBLE;
	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
		tmp |= RT2573_SHORT_PREAMBLE;

	rum_write(sc, RT2573_TXRX_CSR4, tmp);
}

static void
rum_set_basicrates(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;

	/* update basic rate set */
	if (ic->ic_curmode == IEEE80211_MODE_11B) {
		/* 11b basic rates: 1, 2Mbps */
		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
		/* 11a basic rates: 6, 12, 24Mbps */
		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
	} else {
		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
	}
}

/*
 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
 * driver.
 */
static void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
	uint32_t tmp;

	/* update all BBP registers that depend on the band */
	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
	if (IEEE80211_IS_CHAN_5GHZ(c)) {
		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
	}
	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
	}

	sc->bbp17 = bbp17;
	rum_bbp_write(sc,  17, bbp17);
	rum_bbp_write(sc,  96, bbp96);
	rum_bbp_write(sc, 104, bbp104);

	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
		rum_bbp_write(sc, 75, 0x80);
		rum_bbp_write(sc, 86, 0x80);
		rum_bbp_write(sc, 88, 0x80);
	}

	rum_bbp_write(sc, 35, bbp35);
	rum_bbp_write(sc, 97, bbp97);
	rum_bbp_write(sc, 98, bbp98);

	tmp = rum_read(sc, RT2573_PHY_CSR0);
	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
	if (IEEE80211_IS_CHAN_2GHZ(c))
		tmp |= RT2573_PA_PE_2GHZ;
	else
		tmp |= RT2573_PA_PE_5GHZ;
	rum_write(sc, RT2573_PHY_CSR0, tmp);
}

static void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	const struct rfprog *rfprog;
	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
	int8_t power;
	int i, chan;

	chan = ieee80211_chan2ieee(ic, c);
	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
		return;

	/* select the appropriate RF settings based on what EEPROM says */
	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;

	/* find the settings for this channel (we know it exists) */
	for (i = 0; rfprog[i].chan != chan; i++);

	power = sc->txpow[i];
	if (power < 0) {
		bbp94 += power;
		power = 0;
	} else if (power > 31) {
		bbp94 += power - 31;
		power = 31;
	}

	/*
	 * If we are switching from the 2GHz band to the 5GHz band or
	 * vice-versa, BBP registers need to be reprogrammed.
	 */
	if (c->ic_flags != ic->ic_curchan->ic_flags) {
		rum_select_band(sc, c);
		rum_select_antenna(sc);
	}
	ic->ic_curchan = c;

	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);

	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);

	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);

	rum_pause(sc, hz / 100);

	/* enable smart mode for MIMO-capable RFs */
	bbp3 = rum_bbp_read(sc, 3);

	bbp3 &= ~RT2573_SMART_MODE;
	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
		bbp3 |= RT2573_SMART_MODE;

	rum_bbp_write(sc, 3, bbp3);

	if (bbp94 != RT2573_BBPR94_DEFAULT)
		rum_bbp_write(sc, 94, bbp94);

	/* give the chip some extra time to do the switchover */
	rum_pause(sc, hz / 100);
}

/*
 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
 * and HostAP operating modes.
 */
static void
rum_enable_tsf_sync(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
	uint32_t tmp;

	if (vap->iv_opmode != IEEE80211_M_STA) {
		/*
		 * Change default 16ms TBTT adjustment to 8ms.
		 * Must be done before enabling beacon generation.
		 */
		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
	}

	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;

	/* set beacon interval (in 1/16ms unit) */
	tmp |= vap->iv_bss->ni_intval * 16;

	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
	if (vap->iv_opmode == IEEE80211_M_STA)
		tmp |= RT2573_TSF_MODE(1);
	else
		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;

	rum_write(sc, RT2573_TXRX_CSR9, tmp);
}

static void
rum_enable_tsf(struct rum_softc *sc)
{
	rum_write(sc, RT2573_TXRX_CSR9, 
	    (rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
	    RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
}

static void
rum_update_slot(struct ifnet *ifp)
{
	struct rum_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = ifp->if_l2com;
	uint8_t slottime;
	uint32_t tmp;

	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;

	tmp = rum_read(sc, RT2573_MAC_CSR9);
	tmp = (tmp & ~0xff) | slottime;
	rum_write(sc, RT2573_MAC_CSR9, tmp);

	DPRINTF("setting slot time to %uus\n", slottime);
}

static void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
	uint32_t tmp;

	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
	rum_write(sc, RT2573_MAC_CSR4, tmp);

	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
	rum_write(sc, RT2573_MAC_CSR5, tmp);
}

static void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
	uint32_t tmp;

	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
	rum_write(sc, RT2573_MAC_CSR2, tmp);

	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
	rum_write(sc, RT2573_MAC_CSR3, tmp);
}

static void
rum_setpromisc(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	uint32_t tmp;

	tmp = rum_read(sc, RT2573_TXRX_CSR0);

	tmp &= ~RT2573_DROP_NOT_TO_ME;
	if (!(ifp->if_flags & IFF_PROMISC))
		tmp |= RT2573_DROP_NOT_TO_ME;

	rum_write(sc, RT2573_TXRX_CSR0, tmp);

	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
	    "entering" : "leaving");
}

static void
rum_update_promisc(struct ifnet *ifp)
{
	struct rum_softc *sc = ifp->if_softc;

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
		return;

	RUM_LOCK(sc);
	rum_setpromisc(sc);
	RUM_UNLOCK(sc);
}

static void
rum_update_mcast(struct ifnet *ifp)
{
	static int warning_printed;

	if (warning_printed == 0) {
		if_printf(ifp, "need to implement %s\n", __func__);
		warning_printed = 1;
	}
}

static const char *
rum_get_rf(int rev)
{
	switch (rev) {
	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
	case RT2573_RF_2528:	return "RT2528";
	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
	case RT2573_RF_5226:	return "RT5226";
	default:		return "unknown";
	}
}

static void
rum_read_eeprom(struct rum_softc *sc)
{
	uint16_t val;
#ifdef RUM_DEBUG
	int i;
#endif

	/* read MAC address */
	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6);

	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
	val = le16toh(val);
	sc->rf_rev =   (val >> 11) & 0x1f;
	sc->hw_radio = (val >> 10) & 0x1;
	sc->rx_ant =   (val >> 4)  & 0x3;
	sc->tx_ant =   (val >> 2)  & 0x3;
	sc->nb_ant =   val & 0x3;

	DPRINTF("RF revision=%d\n", sc->rf_rev);

	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
	val = le16toh(val);
	sc->ext_5ghz_lna = (val >> 6) & 0x1;
	sc->ext_2ghz_lna = (val >> 4) & 0x1;

	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);

	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
	val = le16toh(val);
	if ((val & 0xff) != 0xff)
		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */

	/* Only [-10, 10] is valid */
	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
		sc->rssi_2ghz_corr = 0;

	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
	val = le16toh(val);
	if ((val & 0xff) != 0xff)
		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */

	/* Only [-10, 10] is valid */
	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
		sc->rssi_5ghz_corr = 0;

	if (sc->ext_2ghz_lna)
		sc->rssi_2ghz_corr -= 14;
	if (sc->ext_5ghz_lna)
		sc->rssi_5ghz_corr -= 14;

	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);

	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
	val = le16toh(val);
	if ((val & 0xff) != 0xff)
		sc->rffreq = val & 0xff;

	DPRINTF("RF freq=%d\n", sc->rffreq);

	/* read Tx power for all a/b/g channels */
	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
	/* XXX default Tx power for 802.11a channels */
	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
#ifdef RUM_DEBUG
	for (i = 0; i < 14; i++)
		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
#endif

	/* read default values for BBP registers */
	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
#ifdef RUM_DEBUG
	for (i = 0; i < 14; i++) {
		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
			continue;
		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
		    sc->bbp_prom[i].val);
	}
#endif
}

static int
rum_bbp_init(struct rum_softc *sc)
{
	int i, ntries;

	/* wait for BBP to be ready */
	for (ntries = 0; ntries < 100; ntries++) {
		const uint8_t val = rum_bbp_read(sc, 0);
		if (val != 0 && val != 0xff)
			break;
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
		return EIO;
	}

	/* initialize BBP registers to default values */
	for (i = 0; i < N(rum_def_bbp); i++)
		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);

	/* write vendor-specific BBP values (from EEPROM) */
	for (i = 0; i < 16; i++) {
		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
			continue;
		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
	}

	return 0;
}

static void
rum_init_locked(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	uint32_t tmp;
	usb_error_t error;
	int i, ntries;

	RUM_LOCK_ASSERT(sc, MA_OWNED);

	rum_stop(sc);

	/* initialize MAC registers to default values */
	for (i = 0; i < N(rum_def_mac); i++)
		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);

	/* set host ready */
	rum_write(sc, RT2573_MAC_CSR1, 3);
	rum_write(sc, RT2573_MAC_CSR1, 0);

	/* wait for BBP/RF to wakeup */
	for (ntries = 0; ntries < 100; ntries++) {
		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
			break;
		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
		if (rum_pause(sc, hz / 100))
			break;
	}
	if (ntries == 100) {
		device_printf(sc->sc_dev,
		    "timeout waiting for BBP/RF to wakeup\n");
		goto fail;
	}

	if ((error = rum_bbp_init(sc)) != 0)
		goto fail;

	/* select default channel */
	rum_select_band(sc, ic->ic_curchan);
	rum_select_antenna(sc);
	rum_set_chan(sc, ic->ic_curchan);

	/* clear STA registers */
	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);

	rum_set_macaddr(sc, IF_LLADDR(ifp));

	/* initialize ASIC */
	rum_write(sc, RT2573_MAC_CSR1, 4);

	/*
	 * Allocate Tx and Rx xfer queues.
	 */
	rum_setup_tx_list(sc);

	/* update Rx filter */
	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;

	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
		       RT2573_DROP_ACKCTS;
		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
			tmp |= RT2573_DROP_TODS;
		if (!(ifp->if_flags & IFF_PROMISC))
			tmp |= RT2573_DROP_NOT_TO_ME;
	}
	rum_write(sc, RT2573_TXRX_CSR0, tmp);

	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	ifp->if_drv_flags |= IFF_DRV_RUNNING;
	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
	return;

fail:	rum_stop(sc);
#undef N
}

static void
rum_init(void *priv)
{
	struct rum_softc *sc = priv;
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;

	RUM_LOCK(sc);
	rum_init_locked(sc);
	RUM_UNLOCK(sc);

	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
		ieee80211_start_all(ic);		/* start all vap's */
}

static void
rum_stop(struct rum_softc *sc)
{
	struct ifnet *ifp = sc->sc_ifp;
	uint32_t tmp;

	RUM_LOCK_ASSERT(sc, MA_OWNED);

	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);

	RUM_UNLOCK(sc);

	/*
	 * Drain the USB transfers, if not already drained:
	 */
	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);

	RUM_LOCK(sc);

	rum_unsetup_tx_list(sc);

	/* disable Rx */
	tmp = rum_read(sc, RT2573_TXRX_CSR0);
	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);

	/* reset ASIC */
	rum_write(sc, RT2573_MAC_CSR1, 3);
	rum_write(sc, RT2573_MAC_CSR1, 0);
}

static void
rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
{
	struct usb_device_request req;
	uint16_t reg = RT2573_MCU_CODE_BASE;
	usb_error_t err;

	/* copy firmware image into NIC */
	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
		err = rum_write(sc, reg, UGETDW(ucode));
		if (err) {
			/* firmware already loaded ? */
			device_printf(sc->sc_dev, "Firmware load "
			    "failure! (ignored)\n");
			break;
		}
	}

	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
	req.bRequest = RT2573_MCU_CNTL;
	USETW(req.wValue, RT2573_MCU_RUN);
	USETW(req.wIndex, 0);
	USETW(req.wLength, 0);

	err = rum_do_request(sc, &req, NULL);
	if (err != 0) {
		device_printf(sc->sc_dev, "could not run firmware: %s\n",
		    usbd_errstr(err));
	}

	/* give the chip some time to boot */
	rum_pause(sc, hz / 8);
}

static void
rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
{
	struct ieee80211com *ic = vap->iv_ic;
	const struct ieee80211_txparam *tp;
	struct rum_tx_desc desc;
	struct mbuf *m0;

	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
		return;
	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
		return;

	m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
	if (m0 == NULL)
		return;

	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
	    m0->m_pkthdr.len, tp->mgmtrate);

	/* copy the first 24 bytes of Tx descriptor into NIC memory */
	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);

	/* copy beacon header and payload into NIC memory */
	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
	    m0->m_pkthdr.len);

	m_freem(m0);
}

static int
rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
    const struct ieee80211_bpf_params *params)
{
	struct ifnet *ifp = ni->ni_ic->ic_ifp;
	struct rum_softc *sc = ifp->if_softc;

	RUM_LOCK(sc);
	/* prevent management frames from being sent if we're not ready */
	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
		RUM_UNLOCK(sc);
		m_freem(m);
		ieee80211_free_node(ni);
		return ENETDOWN;
	}
	if (sc->tx_nfree < RUM_TX_MINFREE) {
		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
		RUM_UNLOCK(sc);
		m_freem(m);
		ieee80211_free_node(ni);
		return EIO;
	}

	ifp->if_opackets++;

	if (params == NULL) {
		/*
		 * Legacy path; interpret frame contents to decide
		 * precisely how to send the frame.
		 */
		if (rum_tx_mgt(sc, m, ni) != 0)
			goto bad;
	} else {
		/*
		 * Caller supplied explicit parameters to use in
		 * sending the frame.
		 */
		if (rum_tx_raw(sc, m, ni, params) != 0)
			goto bad;
	}
	RUM_UNLOCK(sc);

	return 0;
bad:
	ifp->if_oerrors++;
	RUM_UNLOCK(sc);
	ieee80211_free_node(ni);
	return EIO;
}

static void
rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
	struct ieee80211vap *vap = ni->ni_vap;
	struct rum_vap *rvp = RUM_VAP(vap);

	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);

	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
}

static void
rum_ratectl_timeout(void *arg)
{
	struct rum_vap *rvp = arg;
	struct ieee80211vap *vap = &rvp->vap;
	struct ieee80211com *ic = vap->iv_ic;

	ieee80211_runtask(ic, &rvp->ratectl_task);
}

static void
rum_ratectl_task(void *arg, int pending)
{
	struct rum_vap *rvp = arg;
	struct ieee80211vap *vap = &rvp->vap;
	struct ieee80211com *ic = vap->iv_ic;
	struct ifnet *ifp = ic->ic_ifp;
	struct rum_softc *sc = ifp->if_softc;
	struct ieee80211_node *ni;
	int ok, fail;
	int sum, retrycnt;

	RUM_LOCK(sc);
	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));

	ok = (le32toh(sc->sta[4]) >> 16) +	/* TX ok w/o retry */
	    (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ retry */
	fail = (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
	sum = ok+fail;
	retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail;

	ni = ieee80211_ref_node(vap->iv_bss);
	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
	(void) ieee80211_ratectl_rate(ni, NULL, 0);
	ieee80211_free_node(ni);

	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */

	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
	RUM_UNLOCK(sc);
}

static void
rum_scan_start(struct ieee80211com *ic)
{
	struct ifnet *ifp = ic->ic_ifp;
	struct rum_softc *sc = ifp->if_softc;
	uint32_t tmp;

	RUM_LOCK(sc);
	/* abort TSF synchronization */
	tmp = rum_read(sc, RT2573_TXRX_CSR9);
	rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
	rum_set_bssid(sc, ifp->if_broadcastaddr);
	RUM_UNLOCK(sc);

}

static void
rum_scan_end(struct ieee80211com *ic)
{
	struct rum_softc *sc = ic->ic_ifp->if_softc;

	RUM_LOCK(sc);
	rum_enable_tsf_sync(sc);
	rum_set_bssid(sc, sc->sc_bssid);
	RUM_UNLOCK(sc);

}

static void
rum_set_channel(struct ieee80211com *ic)
{
	struct rum_softc *sc = ic->ic_ifp->if_softc;

	RUM_LOCK(sc);
	rum_set_chan(sc, ic->ic_curchan);
	RUM_UNLOCK(sc);
}

static int
rum_get_rssi(struct rum_softc *sc, uint8_t raw)
{
	struct ifnet *ifp = sc->sc_ifp;
	struct ieee80211com *ic = ifp->if_l2com;
	int lna, agc, rssi;

	lna = (raw >> 5) & 0x3;
	agc = raw & 0x1f;

	if (lna == 0) {
		/*
		 * No RSSI mapping
		 *
		 * NB: Since RSSI is relative to noise floor, -1 is
		 *     adequate for caller to know error happened.
		 */
		return -1;
	}

	rssi = (2 * agc) - RT2573_NOISE_FLOOR;

	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
		rssi += sc->rssi_2ghz_corr;

		if (lna == 1)
			rssi -= 64;
		else if (lna == 2)
			rssi -= 74;
		else if (lna == 3)
			rssi -= 90;
	} else {
		rssi += sc->rssi_5ghz_corr;

		if (!sc->ext_5ghz_lna && lna != 1)
			rssi += 4;

		if (lna == 1)
			rssi -= 64;
		else if (lna == 2)
			rssi -= 86;
		else if (lna == 3)
			rssi -= 100;
	}
	return rssi;
}

static int
rum_pause(struct rum_softc *sc, int timeout)
{

	usb_pause_mtx(&sc->sc_mtx, timeout);
	return (0);
}

static device_method_t rum_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		rum_match),
	DEVMETHOD(device_attach,	rum_attach),
	DEVMETHOD(device_detach,	rum_detach),

	{ 0, 0 }
};

static driver_t rum_driver = {
	.name = "rum",
	.methods = rum_methods,
	.size = sizeof(struct rum_softc),
};

static devclass_t rum_devclass;

DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
MODULE_DEPEND(rum, wlan, 1, 1, 1);
MODULE_DEPEND(rum, usb, 1, 1, 1);
MODULE_VERSION(rum, 1);

Man Man