Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xl/@/net/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xl/@/net/bpf_filter.c |
/*- * Copyright (c) 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from the Stanford/CMU enet packet filter, * (net/enet.c) distributed as part of 4.3BSD, and code contributed * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence * Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)bpf_filter.c 8.1 (Berkeley) 6/10/93 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/net/bpf_filter.c 224044 2011-07-14 21:06:22Z mp $"); #include <sys/param.h> #if !defined(_KERNEL) || defined(sun) #include <netinet/in.h> #endif #ifndef __i386__ #define BPF_ALIGN #endif #ifndef BPF_ALIGN #define EXTRACT_SHORT(p) ((u_int16_t)ntohs(*(u_int16_t *)p)) #define EXTRACT_LONG(p) (ntohl(*(u_int32_t *)p)) #else #define EXTRACT_SHORT(p)\ ((u_int16_t)\ ((u_int16_t)*((u_char *)p+0)<<8|\ (u_int16_t)*((u_char *)p+1)<<0)) #define EXTRACT_LONG(p)\ ((u_int32_t)*((u_char *)p+0)<<24|\ (u_int32_t)*((u_char *)p+1)<<16|\ (u_int32_t)*((u_char *)p+2)<<8|\ (u_int32_t)*((u_char *)p+3)<<0) #endif #ifdef _KERNEL #include <sys/mbuf.h> #else #include <stdlib.h> #endif #include <net/bpf.h> #ifdef _KERNEL #define MINDEX(m, k) \ { \ register int len = m->m_len; \ \ while (k >= len) { \ k -= len; \ m = m->m_next; \ if (m == 0) \ return (0); \ len = m->m_len; \ } \ } static u_int16_t m_xhalf(struct mbuf *m, bpf_u_int32 k, int *err); static u_int32_t m_xword(struct mbuf *m, bpf_u_int32 k, int *err); static u_int32_t m_xword(struct mbuf *m, bpf_u_int32 k, int *err) { size_t len; u_char *cp, *np; struct mbuf *m0; len = m->m_len; while (k >= len) { k -= len; m = m->m_next; if (m == 0) goto bad; len = m->m_len; } cp = mtod(m, u_char *) + k; if (len - k >= 4) { *err = 0; return (EXTRACT_LONG(cp)); } m0 = m->m_next; if (m0 == 0 || m0->m_len + len - k < 4) goto bad; *err = 0; np = mtod(m0, u_char *); switch (len - k) { case 1: return (((u_int32_t)cp[0] << 24) | ((u_int32_t)np[0] << 16) | ((u_int32_t)np[1] << 8) | (u_int32_t)np[2]); case 2: return (((u_int32_t)cp[0] << 24) | ((u_int32_t)cp[1] << 16) | ((u_int32_t)np[0] << 8) | (u_int32_t)np[1]); default: return (((u_int32_t)cp[0] << 24) | ((u_int32_t)cp[1] << 16) | ((u_int32_t)cp[2] << 8) | (u_int32_t)np[0]); } bad: *err = 1; return (0); } static u_int16_t m_xhalf(struct mbuf *m, bpf_u_int32 k, int *err) { size_t len; u_char *cp; struct mbuf *m0; len = m->m_len; while (k >= len) { k -= len; m = m->m_next; if (m == 0) goto bad; len = m->m_len; } cp = mtod(m, u_char *) + k; if (len - k >= 2) { *err = 0; return (EXTRACT_SHORT(cp)); } m0 = m->m_next; if (m0 == 0) goto bad; *err = 0; return ((cp[0] << 8) | mtod(m0, u_char *)[0]); bad: *err = 1; return (0); } #endif /* * Execute the filter program starting at pc on the packet p * wirelen is the length of the original packet * buflen is the amount of data present */ u_int bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen) { u_int32_t A = 0, X = 0; bpf_u_int32 k; u_int32_t mem[BPF_MEMWORDS]; bzero(mem, sizeof(mem)); if (pc == NULL) /* * No filter means accept all. */ return ((u_int)-1); --pc; while (1) { ++pc; switch (pc->code) { default: #ifdef _KERNEL return (0); #else abort(); #endif case BPF_RET|BPF_K: return ((u_int)pc->k); case BPF_RET|BPF_A: return ((u_int)A); case BPF_LD|BPF_W|BPF_ABS: k = pc->k; if (k > buflen || sizeof(int32_t) > buflen - k) { #ifdef _KERNEL int merr; if (buflen != 0) return (0); A = m_xword((struct mbuf *)p, k, &merr); if (merr != 0) return (0); continue; #else return (0); #endif } #ifdef BPF_ALIGN if (((intptr_t)(p + k) & 3) != 0) A = EXTRACT_LONG(&p[k]); else #endif A = ntohl(*(int32_t *)(p + k)); continue; case BPF_LD|BPF_H|BPF_ABS: k = pc->k; if (k > buflen || sizeof(int16_t) > buflen - k) { #ifdef _KERNEL int merr; if (buflen != 0) return (0); A = m_xhalf((struct mbuf *)p, k, &merr); continue; #else return (0); #endif } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_ABS: k = pc->k; if (k >= buflen) { #ifdef _KERNEL struct mbuf *m; if (buflen != 0) return (0); m = (struct mbuf *)p; MINDEX(m, k); A = mtod(m, u_char *)[k]; continue; #else return (0); #endif } A = p[k]; continue; case BPF_LD|BPF_W|BPF_LEN: A = wirelen; continue; case BPF_LDX|BPF_W|BPF_LEN: X = wirelen; continue; case BPF_LD|BPF_W|BPF_IND: k = X + pc->k; if (pc->k > buflen || X > buflen - pc->k || sizeof(int32_t) > buflen - k) { #ifdef _KERNEL int merr; if (buflen != 0) return (0); A = m_xword((struct mbuf *)p, k, &merr); if (merr != 0) return (0); continue; #else return (0); #endif } #ifdef BPF_ALIGN if (((intptr_t)(p + k) & 3) != 0) A = EXTRACT_LONG(&p[k]); else #endif A = ntohl(*(int32_t *)(p + k)); continue; case BPF_LD|BPF_H|BPF_IND: k = X + pc->k; if (X > buflen || pc->k > buflen - X || sizeof(int16_t) > buflen - k) { #ifdef _KERNEL int merr; if (buflen != 0) return (0); A = m_xhalf((struct mbuf *)p, k, &merr); if (merr != 0) return (0); continue; #else return (0); #endif } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_IND: k = X + pc->k; if (pc->k >= buflen || X >= buflen - pc->k) { #ifdef _KERNEL struct mbuf *m; if (buflen != 0) return (0); m = (struct mbuf *)p; MINDEX(m, k); A = mtod(m, u_char *)[k]; continue; #else return (0); #endif } A = p[k]; continue; case BPF_LDX|BPF_MSH|BPF_B: k = pc->k; if (k >= buflen) { #ifdef _KERNEL register struct mbuf *m; if (buflen != 0) return (0); m = (struct mbuf *)p; MINDEX(m, k); X = (mtod(m, u_char *)[k] & 0xf) << 2; continue; #else return (0); #endif } X = (p[pc->k] & 0xf) << 2; continue; case BPF_LD|BPF_IMM: A = pc->k; continue; case BPF_LDX|BPF_IMM: X = pc->k; continue; case BPF_LD|BPF_MEM: A = mem[pc->k]; continue; case BPF_LDX|BPF_MEM: X = mem[pc->k]; continue; case BPF_ST: mem[pc->k] = A; continue; case BPF_STX: mem[pc->k] = X; continue; case BPF_JMP|BPF_JA: pc += pc->k; continue; case BPF_JMP|BPF_JGT|BPF_K: pc += (A > pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_K: pc += (A >= pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_K: pc += (A == pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_K: pc += (A & pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGT|BPF_X: pc += (A > X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_X: pc += (A >= X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_X: pc += (A == X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_X: pc += (A & X) ? pc->jt : pc->jf; continue; case BPF_ALU|BPF_ADD|BPF_X: A += X; continue; case BPF_ALU|BPF_SUB|BPF_X: A -= X; continue; case BPF_ALU|BPF_MUL|BPF_X: A *= X; continue; case BPF_ALU|BPF_DIV|BPF_X: if (X == 0) return (0); A /= X; continue; case BPF_ALU|BPF_AND|BPF_X: A &= X; continue; case BPF_ALU|BPF_OR|BPF_X: A |= X; continue; case BPF_ALU|BPF_LSH|BPF_X: A <<= X; continue; case BPF_ALU|BPF_RSH|BPF_X: A >>= X; continue; case BPF_ALU|BPF_ADD|BPF_K: A += pc->k; continue; case BPF_ALU|BPF_SUB|BPF_K: A -= pc->k; continue; case BPF_ALU|BPF_MUL|BPF_K: A *= pc->k; continue; case BPF_ALU|BPF_DIV|BPF_K: A /= pc->k; continue; case BPF_ALU|BPF_AND|BPF_K: A &= pc->k; continue; case BPF_ALU|BPF_OR|BPF_K: A |= pc->k; continue; case BPF_ALU|BPF_LSH|BPF_K: A <<= pc->k; continue; case BPF_ALU|BPF_RSH|BPF_K: A >>= pc->k; continue; case BPF_ALU|BPF_NEG: A = -A; continue; case BPF_MISC|BPF_TAX: X = A; continue; case BPF_MISC|BPF_TXA: A = X; continue; } } } #ifdef _KERNEL static const u_short bpf_code_map[] = { 0x10ff, /* 0x00-0x0f: 1111111100001000 */ 0x3070, /* 0x10-0x1f: 0000111000001100 */ 0x3131, /* 0x20-0x2f: 1000110010001100 */ 0x3031, /* 0x30-0x3f: 1000110000001100 */ 0x3131, /* 0x40-0x4f: 1000110010001100 */ 0x1011, /* 0x50-0x5f: 1000100000001000 */ 0x1013, /* 0x60-0x6f: 1100100000001000 */ 0x1010, /* 0x70-0x7f: 0000100000001000 */ 0x0093, /* 0x80-0x8f: 1100100100000000 */ 0x0000, /* 0x90-0x9f: 0000000000000000 */ 0x0000, /* 0xa0-0xaf: 0000000000000000 */ 0x0002, /* 0xb0-0xbf: 0100000000000000 */ 0x0000, /* 0xc0-0xcf: 0000000000000000 */ 0x0000, /* 0xd0-0xdf: 0000000000000000 */ 0x0000, /* 0xe0-0xef: 0000000000000000 */ 0x0000 /* 0xf0-0xff: 0000000000000000 */ }; #define BPF_VALIDATE_CODE(c) \ ((c) <= 0xff && (bpf_code_map[(c) >> 4] & (1 << ((c) & 0xf))) != 0) /* * Return true if the 'fcode' is a valid filter program. * The constraints are that each jump be forward and to a valid * code. The code must terminate with either an accept or reject. * * The kernel needs to be able to verify an application's filter code. * Otherwise, a bogus program could easily crash the system. */ int bpf_validate(const struct bpf_insn *f, int len) { register int i; register const struct bpf_insn *p; /* Do not accept negative length filter. */ if (len < 0) return (0); /* An empty filter means accept all. */ if (len == 0) return (1); for (i = 0; i < len; ++i) { p = &f[i]; /* * Check that the code is valid. */ if (!BPF_VALIDATE_CODE(p->code)) return (0); /* * Check that that jumps are forward, and within * the code block. */ if (BPF_CLASS(p->code) == BPF_JMP) { register u_int offset; if (p->code == (BPF_JMP|BPF_JA)) offset = p->k; else offset = p->jt > p->jf ? p->jt : p->jf; if (offset >= (u_int)(len - i) - 1) return (0); continue; } /* * Check that memory operations use valid addresses. */ if (p->code == BPF_ST || p->code == BPF_STX || p->code == (BPF_LD|BPF_MEM) || p->code == (BPF_LDX|BPF_MEM)) { if (p->k >= BPF_MEMWORDS) return (0); continue; } /* * Check for constant division by 0. */ if (p->code == (BPF_ALU|BPF_DIV|BPF_K) && p->k == 0) return (0); } return (BPF_CLASS(f[len - 1].code) == BPF_RET); } #endif