Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/xl/@/ofed/drivers/net/mlx4/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/xl/@/ofed/drivers/net/mlx4/alloc.c |
/* * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/errno.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/bitmap.h> #include <linux/dma-mapping.h> #include <linux/vmalloc.h> #include "mlx4.h" u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap) { u32 obj; spin_lock(&bitmap->lock); obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last); if (obj >= bitmap->max) { bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; obj = find_first_zero_bit(bitmap->table, bitmap->max); } if (obj < bitmap->max) { set_bit(obj, bitmap->table); bitmap->last = (obj + 1); if (bitmap->last == bitmap->max) bitmap->last = 0; obj |= bitmap->top; } else obj = -1; if (obj != -1) --bitmap->avail; spin_unlock(&bitmap->lock); return obj; } void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj) { mlx4_bitmap_free_range(bitmap, obj, 1); } static unsigned long find_aligned_range(unsigned long *bitmap, u32 start, u32 nbits, int len, int align) { unsigned long end, i; again: start = ALIGN(start, align); while ((start < nbits) && test_bit(start, bitmap)) start += align; if (start >= nbits) return -1; end = start+len; if (end > nbits) return -1; for (i = start + 1; i < end; i++) { if (test_bit(i, bitmap)) { start = i + 1; goto again; } } return start; } u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align) { u32 obj, i; if (likely(cnt == 1 && align == 1)) return mlx4_bitmap_alloc(bitmap); spin_lock(&bitmap->lock); obj = find_aligned_range(bitmap->table, bitmap->last, bitmap->max, cnt, align); if (obj >= bitmap->max) { bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; obj = find_aligned_range(bitmap->table, 0, bitmap->max, cnt, align); } if (obj < bitmap->max) { for (i = 0; i < cnt; i++) set_bit(obj + i, bitmap->table); if (obj == bitmap->last) { bitmap->last = (obj + cnt); if (bitmap->last >= bitmap->max) bitmap->last = 0; } obj |= bitmap->top; } else obj = -1; if (obj != -1) bitmap->avail -= cnt; spin_unlock(&bitmap->lock); return obj; } u32 mlx4_bitmap_avail(struct mlx4_bitmap *bitmap) { return bitmap->avail; } void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt) { u32 i; obj &= bitmap->max + bitmap->reserved_top - 1; spin_lock(&bitmap->lock); for (i = 0; i < cnt; i++) clear_bit(obj + i, bitmap->table); bitmap->last = min(bitmap->last, obj); bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; bitmap->avail += cnt; spin_unlock(&bitmap->lock); } int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask, u32 reserved_bot, u32 reserved_top) { int i; /* num must be a power of 2 */ if (num != roundup_pow_of_two(num)) return -EINVAL; bitmap->last = 0; bitmap->top = 0; bitmap->max = num - reserved_top; bitmap->mask = mask; bitmap->reserved_top = reserved_top; bitmap->avail = num - reserved_top - reserved_bot; spin_lock_init(&bitmap->lock); bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) * sizeof (long), GFP_KERNEL); if (!bitmap->table) return -ENOMEM; for (i = 0; i < reserved_bot; ++i) set_bit(i, bitmap->table); return 0; } void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap) { kfree(bitmap->table); } /* * Handling for queue buffers -- we allocate a bunch of memory and * register it in a memory region at HCA virtual address 0. If the * requested size is > max_direct, we split the allocation into * multiple pages, so we don't require too much contiguous memory. */ int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct, struct mlx4_buf *buf) { dma_addr_t t; buf->direct.buf = NULL; if (size <= max_direct) { buf->nbufs = 1; buf->npages = 1; buf->page_shift = get_order(size) + PAGE_SHIFT; buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev, size, &t, GFP_KERNEL); if (!buf->direct.buf) return -ENOMEM; buf->direct.map = t; while (t & ((1 << buf->page_shift) - 1)) { --buf->page_shift; buf->npages *= 2; } memset(buf->direct.buf, 0, size); } else { int i; buf->direct.buf = NULL; buf->direct.map = 0; buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE; buf->npages = buf->nbufs; buf->page_shift = PAGE_SHIFT; buf->page_list = kzalloc(buf->nbufs * sizeof *buf->page_list, GFP_KERNEL); if (!buf->page_list) return -ENOMEM; for (i = 0; i < buf->nbufs; ++i) { buf->page_list[i].buf = dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE, &t, GFP_KERNEL); if (!buf->page_list[i].buf) goto err_free; buf->page_list[i].map = t; memset(buf->page_list[i].buf, 0, PAGE_SIZE); } if (BITS_PER_LONG == 64) { struct page **pages; pages = kmalloc(sizeof *pages * buf->nbufs, GFP_KERNEL); if (!pages) goto err_free; for (i = 0; i < buf->nbufs; ++i) pages[i] = virt_to_page(buf->page_list[i].buf); buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL); kfree(pages); if (!buf->direct.buf) goto err_free; } } return 0; err_free: mlx4_buf_free(dev, size, buf); return -ENOMEM; } EXPORT_SYMBOL_GPL(mlx4_buf_alloc); void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf) { int i; if (buf->nbufs == 1) dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf, buf->direct.map); else { if (BITS_PER_LONG == 64 && buf->direct.buf) vunmap(buf->direct.buf); for (i = 0; i < buf->nbufs; ++i) if (buf->page_list[i].buf) dma_free_coherent(&dev->pdev->dev, PAGE_SIZE, buf->page_list[i].buf, buf->page_list[i].map); kfree(buf->page_list); } buf->direct.buf = NULL; } EXPORT_SYMBOL_GPL(mlx4_buf_free); static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device) { struct mlx4_db_pgdir *pgdir; pgdir = kzalloc(sizeof *pgdir, GFP_KERNEL); if (!pgdir) return NULL; bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2); pgdir->bits[0] = pgdir->order0; pgdir->bits[1] = pgdir->order1; pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE, &pgdir->db_dma, GFP_KERNEL); if (!pgdir->db_page) { kfree(pgdir); return NULL; } return pgdir; } static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir, struct mlx4_db *db, int order) { int o; int i; for (o = order; o <= 1; ++o) { i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o); if (i < MLX4_DB_PER_PAGE >> o) goto found; } return -ENOMEM; found: clear_bit(i, pgdir->bits[o]); i <<= o; if (o > order) set_bit(i ^ 1, pgdir->bits[order]); db->u.pgdir = pgdir; db->index = i; db->db = pgdir->db_page + db->index; db->dma = pgdir->db_dma + db->index * 4; db->order = order; return 0; } int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order) { struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_db_pgdir *pgdir; int ret = 0; mutex_lock(&priv->pgdir_mutex); list_for_each_entry(pgdir, &priv->pgdir_list, list) if (!mlx4_alloc_db_from_pgdir(pgdir, db, order)) goto out; pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev)); if (!pgdir) { ret = -ENOMEM; goto out; } list_add(&pgdir->list, &priv->pgdir_list); /* This should never fail -- we just allocated an empty page: */ WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order)); out: mutex_unlock(&priv->pgdir_mutex); return ret; } EXPORT_SYMBOL_GPL(mlx4_db_alloc); void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db) { struct mlx4_priv *priv = mlx4_priv(dev); int o; int i; mutex_lock(&priv->pgdir_mutex); o = db->order; i = db->index; if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) { clear_bit(i ^ 1, db->u.pgdir->order0); ++o; } i >>= o; set_bit(i, db->u.pgdir->bits[o]); if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) { dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE, db->u.pgdir->db_page, db->u.pgdir->db_dma); list_del(&db->u.pgdir->list); kfree(db->u.pgdir); } mutex_unlock(&priv->pgdir_mutex); } EXPORT_SYMBOL_GPL(mlx4_db_free); int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres, int size, int max_direct) { int err; err = mlx4_db_alloc(dev, &wqres->db, 1); if (err) return err; *wqres->db.db = 0; err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf); if (err) goto err_db; err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift, &wqres->mtt); if (err) goto err_buf; err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf); if (err) goto err_mtt; return 0; err_mtt: mlx4_mtt_cleanup(dev, &wqres->mtt); err_buf: mlx4_buf_free(dev, size, &wqres->buf); err_db: mlx4_db_free(dev, &wqres->db); return err; } EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res); void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres, int size) { mlx4_mtt_cleanup(dev, &wqres->mtt); mlx4_buf_free(dev, size, &wqres->buf); mlx4_db_free(dev, &wqres->db); } EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);