Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/zlib/@/dev/sound/usb/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/zlib/@/dev/sound/usb/uaudio.c |
/* $NetBSD: uaudio.c,v 1.91 2004/11/05 17:46:14 kent Exp $ */ /* $FreeBSD: release/9.1.0/sys/dev/sound/usb/uaudio.c 235000 2012-05-04 15:05:30Z hselasky $ */ /*- * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sound/usb/uaudio.c 235000 2012-05-04 15:05:30Z hselasky $"); /* * USB audio specs: http://www.usb.org/developers/devclass_docs/audio10.pdf * http://www.usb.org/developers/devclass_docs/frmts10.pdf * http://www.usb.org/developers/devclass_docs/termt10.pdf */ /* * Also merged: * $NetBSD: uaudio.c,v 1.94 2005/01/15 15:19:53 kent Exp $ * $NetBSD: uaudio.c,v 1.95 2005/01/16 06:02:19 dsainty Exp $ * $NetBSD: uaudio.c,v 1.96 2005/01/16 12:46:00 kent Exp $ * $NetBSD: uaudio.c,v 1.97 2005/02/24 08:19:38 martin Exp $ */ #include <sys/stdint.h> #include <sys/stddef.h> #include <sys/param.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <sys/unistd.h> #include <sys/callout.h> #include <sys/malloc.h> #include <sys/priv.h> #include "usbdevs.h" #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #define USB_DEBUG_VAR uaudio_debug #include <dev/usb/usb_debug.h> #include <dev/usb/quirk/usb_quirk.h> #include <sys/reboot.h> /* for bootverbose */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include <dev/sound/pcm/sound.h> #include <dev/sound/usb/uaudioreg.h> #include <dev/sound/usb/uaudio.h> #include <dev/sound/chip.h> #include "feeder_if.h" static int uaudio_default_rate = 0; /* use rate list */ static int uaudio_default_bits = 32; static int uaudio_default_channels = 0; /* use default */ #ifdef USB_DEBUG static int uaudio_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, uaudio, CTLFLAG_RW, 0, "USB uaudio"); SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, debug, CTLFLAG_RW, &uaudio_debug, 0, "uaudio debug level"); TUNABLE_INT("hw.usb.uaudio.default_rate", &uaudio_default_rate); SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_rate, CTLFLAG_RW, &uaudio_default_rate, 0, "uaudio default sample rate"); TUNABLE_INT("hw.usb.uaudio.default_bits", &uaudio_default_bits); SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_bits, CTLFLAG_RW, &uaudio_default_bits, 0, "uaudio default sample bits"); TUNABLE_INT("hw.usb.uaudio.default_channels", &uaudio_default_channels); SYSCTL_INT(_hw_usb_uaudio, OID_AUTO, default_channels, CTLFLAG_RW, &uaudio_default_channels, 0, "uaudio default sample channels"); #endif #define UAUDIO_NFRAMES 64 /* must be factor of 8 due HS-USB */ #define UAUDIO_NCHANBUFS 2 /* number of outstanding request */ #define UAUDIO_RECURSE_LIMIT 24 /* rounds */ #define MAKE_WORD(h,l) (((h) << 8) | (l)) #define BIT_TEST(bm,bno) (((bm)[(bno) / 8] >> (7 - ((bno) % 8))) & 1) #define UAUDIO_MAX_CHAN(x) (x) struct uaudio_mixer_node { int32_t minval; int32_t maxval; #define MIX_MAX_CHAN 8 int32_t wValue[MIX_MAX_CHAN]; /* using nchan */ uint32_t mul; uint32_t ctl; uint16_t wData[MIX_MAX_CHAN]; /* using nchan */ uint16_t wIndex; uint8_t update[(MIX_MAX_CHAN + 7) / 8]; uint8_t nchan; uint8_t type; #define MIX_ON_OFF 1 #define MIX_SIGNED_16 2 #define MIX_UNSIGNED_16 3 #define MIX_SIGNED_8 4 #define MIX_SELECTOR 5 #define MIX_UNKNOWN 6 #define MIX_SIZE(n) ((((n) == MIX_SIGNED_16) || \ ((n) == MIX_UNSIGNED_16)) ? 2 : 1) #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) #define MAX_SELECTOR_INPUT_PIN 256 uint8_t slctrtype[MAX_SELECTOR_INPUT_PIN]; uint8_t class; struct uaudio_mixer_node *next; }; struct uaudio_chan { struct pcmchan_caps pcm_cap; /* capabilities */ struct snd_dbuf *pcm_buf; const struct usb_config *usb_cfg; struct mtx *pcm_mtx; /* lock protecting this structure */ struct uaudio_softc *priv_sc; struct pcm_channel *pcm_ch; struct usb_xfer *xfer[UAUDIO_NCHANBUFS]; const struct usb_audio_streaming_interface_descriptor *p_asid; const struct usb_audio_streaming_type1_descriptor *p_asf1d; const struct usb_audio_streaming_endpoint_descriptor *p_sed; const usb_endpoint_descriptor_audio_t *p_ed1; const usb_endpoint_descriptor_audio_t *p_ed2; const struct uaudio_format *p_fmt; uint8_t *buf; /* pointer to buffer */ uint8_t *start; /* upper layer buffer start */ uint8_t *end; /* upper layer buffer end */ uint8_t *cur; /* current position in upper layer * buffer */ uint32_t intr_size; /* in bytes */ uint32_t intr_frames; /* in units */ uint32_t sample_rate; uint32_t frames_per_second; uint32_t sample_rem; uint32_t sample_curr; uint32_t format; uint32_t pcm_format[2]; uint16_t bytes_per_frame[2]; uint16_t sample_size; uint8_t valid; uint8_t iface_index; uint8_t iface_alt_index; }; #define UMIDI_CABLES_MAX 16 /* units */ #define UMIDI_TX_FRAMES 256 /* units */ #define UMIDI_TX_BUFFER (UMIDI_TX_FRAMES * 4) /* bytes */ enum { UMIDI_TX_TRANSFER, UMIDI_RX_TRANSFER, UMIDI_N_TRANSFER, }; struct umidi_sub_chan { struct usb_fifo_sc fifo; uint8_t *temp_cmd; uint8_t temp_0[4]; uint8_t temp_1[4]; uint8_t state; #define UMIDI_ST_UNKNOWN 0 /* scan for command */ #define UMIDI_ST_1PARAM 1 #define UMIDI_ST_2PARAM_1 2 #define UMIDI_ST_2PARAM_2 3 #define UMIDI_ST_SYSEX_0 4 #define UMIDI_ST_SYSEX_1 5 #define UMIDI_ST_SYSEX_2 6 uint8_t read_open:1; uint8_t write_open:1; uint8_t unused:6; }; struct umidi_chan { struct umidi_sub_chan sub[UMIDI_CABLES_MAX]; struct mtx mtx; struct usb_xfer *xfer[UMIDI_N_TRANSFER]; uint8_t iface_index; uint8_t iface_alt_index; uint8_t read_open_refcount; uint8_t write_open_refcount; uint8_t curr_cable; uint8_t max_cable; uint8_t valid; uint8_t single_command; }; struct uaudio_softc { struct sbuf sc_sndstat; struct sndcard_func sc_sndcard_func; struct uaudio_chan sc_rec_chan; struct uaudio_chan sc_play_chan; struct umidi_chan sc_midi_chan; struct usb_device *sc_udev; struct usb_xfer *sc_mixer_xfer[1]; struct uaudio_mixer_node *sc_mixer_root; struct uaudio_mixer_node *sc_mixer_curr; uint32_t sc_mix_info; uint32_t sc_recsrc_info; uint16_t sc_audio_rev; uint16_t sc_mixer_count; uint8_t sc_sndstat_valid; uint8_t sc_mixer_iface_index; uint8_t sc_mixer_iface_no; uint8_t sc_mixer_chan; uint8_t sc_pcm_registered:1; uint8_t sc_mixer_init:1; uint8_t sc_uq_audio_swap_lr:1; uint8_t sc_uq_au_inp_async:1; uint8_t sc_uq_au_no_xu:1; uint8_t sc_uq_bad_adc:1; uint8_t sc_uq_au_vendor_class:1; }; struct uaudio_search_result { uint8_t bit_input[(256 + 7) / 8]; uint8_t bit_output[(256 + 7) / 8]; uint8_t bit_visited[(256 + 7) / 8]; uint8_t recurse_level; uint8_t id_max; }; struct uaudio_terminal_node { union { const struct usb_descriptor *desc; const struct usb_audio_input_terminal *it; const struct usb_audio_output_terminal *ot; const struct usb_audio_mixer_unit_0 *mu; const struct usb_audio_selector_unit *su; const struct usb_audio_feature_unit *fu; const struct usb_audio_processing_unit_0 *pu; const struct usb_audio_extension_unit_0 *eu; } u; struct uaudio_search_result usr; struct uaudio_terminal_node *root; }; struct uaudio_format { uint16_t wFormat; uint8_t bPrecision; uint32_t freebsd_fmt; const char *description; }; static const struct uaudio_format uaudio_formats[] = { {UA_FMT_PCM8, 8, AFMT_U8, "8-bit U-LE PCM"}, {UA_FMT_PCM8, 16, AFMT_U16_LE, "16-bit U-LE PCM"}, {UA_FMT_PCM8, 24, AFMT_U24_LE, "24-bit U-LE PCM"}, {UA_FMT_PCM8, 32, AFMT_U32_LE, "32-bit U-LE PCM"}, {UA_FMT_PCM, 8, AFMT_S8, "8-bit S-LE PCM"}, {UA_FMT_PCM, 16, AFMT_S16_LE, "16-bit S-LE PCM"}, {UA_FMT_PCM, 24, AFMT_S24_LE, "24-bit S-LE PCM"}, {UA_FMT_PCM, 32, AFMT_S32_LE, "32-bit S-LE PCM"}, {UA_FMT_ALAW, 8, AFMT_A_LAW, "8-bit A-Law"}, {UA_FMT_MULAW, 8, AFMT_MU_LAW, "8-bit mu-Law"}, {0, 0, 0, NULL} }; #define UAC_OUTPUT 0 #define UAC_INPUT 1 #define UAC_EQUAL 2 #define UAC_RECORD 3 #define UAC_NCLASSES 4 #ifdef USB_DEBUG static const char *uac_names[] = { "outputs", "inputs", "equalization", "record" }; #endif /* prototypes */ static device_probe_t uaudio_probe; static device_attach_t uaudio_attach; static device_detach_t uaudio_detach; static usb_callback_t uaudio_chan_play_callback; static usb_callback_t uaudio_chan_record_callback; static usb_callback_t uaudio_mixer_write_cfg_callback; static usb_callback_t umidi_bulk_read_callback; static usb_callback_t umidi_bulk_write_callback; static void uaudio_chan_fill_info_sub(struct uaudio_softc *, struct usb_device *, uint32_t, uint8_t, uint8_t); static void uaudio_chan_fill_info(struct uaudio_softc *, struct usb_device *); static void uaudio_mixer_add_ctl_sub(struct uaudio_softc *, struct uaudio_mixer_node *); static void uaudio_mixer_add_ctl(struct uaudio_softc *, struct uaudio_mixer_node *); static void uaudio_mixer_add_input(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_output(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_mixer(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_selector(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static uint32_t uaudio_mixer_feature_get_bmaControls( const struct usb_audio_feature_unit *, uint8_t); static void uaudio_mixer_add_feature(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_processing_updown(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_processing(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static void uaudio_mixer_add_extension(struct uaudio_softc *, const struct uaudio_terminal_node *, int); static struct usb_audio_cluster uaudio_mixer_get_cluster(uint8_t, const struct uaudio_terminal_node *); static uint16_t uaudio_mixer_determine_class(const struct uaudio_terminal_node *, struct uaudio_mixer_node *); static uint16_t uaudio_mixer_feature_name(const struct uaudio_terminal_node *, struct uaudio_mixer_node *); static const struct uaudio_terminal_node *uaudio_mixer_get_input( const struct uaudio_terminal_node *, uint8_t); static const struct uaudio_terminal_node *uaudio_mixer_get_output( const struct uaudio_terminal_node *, uint8_t); static void uaudio_mixer_find_inputs_sub(struct uaudio_terminal_node *, const uint8_t *, uint8_t, struct uaudio_search_result *); static void uaudio_mixer_find_outputs_sub(struct uaudio_terminal_node *, uint8_t, uint8_t, struct uaudio_search_result *); static void uaudio_mixer_fill_info(struct uaudio_softc *, struct usb_device *, void *); static uint16_t uaudio_mixer_get(struct usb_device *, uint8_t, struct uaudio_mixer_node *); static void uaudio_mixer_ctl_set(struct uaudio_softc *, struct uaudio_mixer_node *, uint8_t, int32_t val); static usb_error_t uaudio_set_speed(struct usb_device *, uint8_t, uint32_t); static int uaudio_mixer_signext(uint8_t, int); static int uaudio_mixer_bsd2value(struct uaudio_mixer_node *, int32_t val); static const void *uaudio_mixer_verify_desc(const void *, uint32_t); static void uaudio_mixer_init(struct uaudio_softc *); static uint8_t umidi_convert_to_usb(struct umidi_sub_chan *, uint8_t, uint8_t); static struct umidi_sub_chan *umidi_sub_by_fifo(struct usb_fifo *); static void umidi_start_read(struct usb_fifo *); static void umidi_stop_read(struct usb_fifo *); static void umidi_start_write(struct usb_fifo *); static void umidi_stop_write(struct usb_fifo *); static int umidi_open(struct usb_fifo *, int); static int umidi_ioctl(struct usb_fifo *, u_long cmd, void *, int); static void umidi_close(struct usb_fifo *, int); static void umidi_init(device_t dev); static int umidi_probe(device_t dev); static int umidi_detach(device_t dev); #ifdef USB_DEBUG static void uaudio_chan_dump_ep_desc( const usb_endpoint_descriptor_audio_t *); static void uaudio_mixer_dump_cluster(uint8_t, const struct uaudio_terminal_node *); static const char *uaudio_mixer_get_terminal_name(uint16_t); #endif static const struct usb_config uaudio_cfg_record[UAUDIO_NCHANBUFS] = { [0] = { .type = UE_ISOCHRONOUS, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 0, /* use "wMaxPacketSize * frames" */ .frames = UAUDIO_NFRAMES, .flags = {.short_xfer_ok = 1,}, .callback = &uaudio_chan_record_callback, }, [1] = { .type = UE_ISOCHRONOUS, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 0, /* use "wMaxPacketSize * frames" */ .frames = UAUDIO_NFRAMES, .flags = {.short_xfer_ok = 1,}, .callback = &uaudio_chan_record_callback, }, }; static const struct usb_config uaudio_cfg_play[UAUDIO_NCHANBUFS] = { [0] = { .type = UE_ISOCHRONOUS, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = 0, /* use "wMaxPacketSize * frames" */ .frames = UAUDIO_NFRAMES, .flags = {.short_xfer_ok = 1,}, .callback = &uaudio_chan_play_callback, }, [1] = { .type = UE_ISOCHRONOUS, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = 0, /* use "wMaxPacketSize * frames" */ .frames = UAUDIO_NFRAMES, .flags = {.short_xfer_ok = 1,}, .callback = &uaudio_chan_play_callback, }, }; static const struct usb_config uaudio_mixer_config[1] = { [0] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .bufsize = (sizeof(struct usb_device_request) + 4), .callback = &uaudio_mixer_write_cfg_callback, .timeout = 1000, /* 1 second */ }, }; static const uint8_t umidi_cmd_to_len[16] = { [0x0] = 0, /* reserved */ [0x1] = 0, /* reserved */ [0x2] = 2, /* bytes */ [0x3] = 3, /* bytes */ [0x4] = 3, /* bytes */ [0x5] = 1, /* bytes */ [0x6] = 2, /* bytes */ [0x7] = 3, /* bytes */ [0x8] = 3, /* bytes */ [0x9] = 3, /* bytes */ [0xA] = 3, /* bytes */ [0xB] = 3, /* bytes */ [0xC] = 2, /* bytes */ [0xD] = 2, /* bytes */ [0xE] = 3, /* bytes */ [0xF] = 1, /* bytes */ }; static const struct usb_config umidi_config[UMIDI_N_TRANSFER] = { [UMIDI_TX_TRANSFER] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = UMIDI_TX_BUFFER, .callback = &umidi_bulk_write_callback, }, [UMIDI_RX_TRANSFER] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = 4, /* bytes */ .flags = {.short_xfer_ok = 1,.proxy_buffer = 1,}, .callback = &umidi_bulk_read_callback, }, }; static devclass_t uaudio_devclass; static device_method_t uaudio_methods[] = { DEVMETHOD(device_probe, uaudio_probe), DEVMETHOD(device_attach, uaudio_attach), DEVMETHOD(device_detach, uaudio_detach), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, bus_generic_resume), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD_END }; static driver_t uaudio_driver = { .name = "uaudio", .methods = uaudio_methods, .size = sizeof(struct uaudio_softc), }; static const STRUCT_USB_HOST_ID __used uaudio_devs[] = { /* Generic USB audio class match */ {USB_IFACE_CLASS(UICLASS_AUDIO), USB_IFACE_SUBCLASS(UISUBCLASS_AUDIOCONTROL),}, /* Generic USB MIDI class match */ {USB_IFACE_CLASS(UICLASS_AUDIO), USB_IFACE_SUBCLASS(UISUBCLASS_MIDISTREAM),}, }; static int uaudio_probe(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); /* lookup non-standard device */ if (uaa->info.bInterfaceClass != UICLASS_AUDIO) { if (usb_test_quirk(uaa, UQ_AU_VENDOR_CLASS) == 0) return (ENXIO); } /* check for AUDIO control interface */ if (uaa->info.bInterfaceSubClass == UISUBCLASS_AUDIOCONTROL) { if (usb_test_quirk(uaa, UQ_BAD_AUDIO)) return (ENXIO); else return (BUS_PROBE_GENERIC); } /* check for MIDI stream */ if (uaa->info.bInterfaceSubClass == UISUBCLASS_MIDISTREAM) { if (usb_test_quirk(uaa, UQ_BAD_MIDI)) return (ENXIO); else return (BUS_PROBE_GENERIC); } return (ENXIO); } static int uaudio_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct uaudio_softc *sc = device_get_softc(dev); struct usb_interface_descriptor *id; device_t child; sc->sc_play_chan.priv_sc = sc; sc->sc_rec_chan.priv_sc = sc; sc->sc_udev = uaa->device; sc->sc_mixer_iface_index = uaa->info.bIfaceIndex; sc->sc_mixer_iface_no = uaa->info.bIfaceNum; if (usb_test_quirk(uaa, UQ_AUDIO_SWAP_LR)) sc->sc_uq_audio_swap_lr = 1; if (usb_test_quirk(uaa, UQ_AU_INP_ASYNC)) sc->sc_uq_au_inp_async = 1; if (usb_test_quirk(uaa, UQ_AU_NO_XU)) sc->sc_uq_au_no_xu = 1; if (usb_test_quirk(uaa, UQ_BAD_ADC)) sc->sc_uq_bad_adc = 1; if (usb_test_quirk(uaa, UQ_AU_VENDOR_CLASS)) sc->sc_uq_au_vendor_class = 1; umidi_init(dev); device_set_usb_desc(dev); id = usbd_get_interface_descriptor(uaa->iface); uaudio_chan_fill_info(sc, uaa->device); uaudio_mixer_fill_info(sc, uaa->device, id); DPRINTF("audio rev %d.%02x\n", sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); DPRINTF("%d mixer controls\n", sc->sc_mixer_count); if (sc->sc_play_chan.valid) { device_printf(dev, "Play: %d Hz, %d ch, %s format.\n", sc->sc_play_chan.sample_rate, sc->sc_play_chan.p_asf1d->bNrChannels, sc->sc_play_chan.p_fmt->description); } else { device_printf(dev, "No playback.\n"); } if (sc->sc_rec_chan.valid) { device_printf(dev, "Record: %d Hz, %d ch, %s format.\n", sc->sc_rec_chan.sample_rate, sc->sc_rec_chan.p_asf1d->bNrChannels, sc->sc_rec_chan.p_fmt->description); } else { device_printf(dev, "No recording.\n"); } if (sc->sc_midi_chan.valid) { if (umidi_probe(dev)) { goto detach; } device_printf(dev, "MIDI sequencer.\n"); } else { device_printf(dev, "No midi sequencer.\n"); } DPRINTF("doing child attach\n"); /* attach the children */ sc->sc_sndcard_func.func = SCF_PCM; /* * Only attach a PCM device if we have a playback, recording * or mixer device present: */ if (sc->sc_play_chan.valid || sc->sc_rec_chan.valid || sc->sc_mix_info) { child = device_add_child(dev, "pcm", -1); if (child == NULL) { DPRINTF("out of memory\n"); goto detach; } device_set_ivars(child, &sc->sc_sndcard_func); } if (bus_generic_attach(dev)) { DPRINTF("child attach failed\n"); goto detach; } return (0); /* success */ detach: uaudio_detach(dev); return (ENXIO); } static void uaudio_pcm_setflags(device_t dev, uint32_t flags) { pcm_setflags(dev, pcm_getflags(dev) | flags); } int uaudio_attach_sub(device_t dev, kobj_class_t mixer_class, kobj_class_t chan_class) { struct uaudio_softc *sc = device_get_softc(device_get_parent(dev)); char status[SND_STATUSLEN]; uaudio_mixer_init(sc); if (sc->sc_uq_audio_swap_lr) { DPRINTF("hardware has swapped left and right\n"); /* uaudio_pcm_setflags(dev, SD_F_PSWAPLR); */ } if (!(sc->sc_mix_info & SOUND_MASK_PCM)) { DPRINTF("emulating master volume\n"); /* * Emulate missing pcm mixer controller * through FEEDER_VOLUME */ uaudio_pcm_setflags(dev, SD_F_SOFTPCMVOL); } if (mixer_init(dev, mixer_class, sc)) { goto detach; } sc->sc_mixer_init = 1; snprintf(status, sizeof(status), "at ? %s", PCM_KLDSTRING(snd_uaudio)); if (pcm_register(dev, sc, sc->sc_play_chan.valid ? 1 : 0, sc->sc_rec_chan.valid ? 1 : 0)) { goto detach; } uaudio_pcm_setflags(dev, SD_F_MPSAFE); sc->sc_pcm_registered = 1; if (sc->sc_play_chan.valid) { pcm_addchan(dev, PCMDIR_PLAY, chan_class, sc); } if (sc->sc_rec_chan.valid) { pcm_addchan(dev, PCMDIR_REC, chan_class, sc); } pcm_setstatus(dev, status); return (0); /* success */ detach: uaudio_detach_sub(dev); return (ENXIO); } int uaudio_detach_sub(device_t dev) { struct uaudio_softc *sc = device_get_softc(device_get_parent(dev)); int error = 0; repeat: if (sc->sc_pcm_registered) { error = pcm_unregister(dev); } else { if (sc->sc_mixer_init) { error = mixer_uninit(dev); } } if (error) { device_printf(dev, "Waiting for sound application to exit!\n"); usb_pause_mtx(NULL, 2 * hz); goto repeat; /* try again */ } return (0); /* success */ } static int uaudio_detach(device_t dev) { struct uaudio_softc *sc = device_get_softc(dev); /* * Stop USB transfers early so that any audio applications * will time out and close opened /dev/dspX.Y device(s), if * any. */ if (sc->sc_play_chan.valid) usbd_transfer_unsetup(sc->sc_play_chan.xfer, UAUDIO_NCHANBUFS); if (sc->sc_rec_chan.valid) usbd_transfer_unsetup(sc->sc_rec_chan.xfer, UAUDIO_NCHANBUFS); if (bus_generic_detach(dev) != 0) { DPRINTF("detach failed!\n"); } sbuf_delete(&sc->sc_sndstat); sc->sc_sndstat_valid = 0; umidi_detach(dev); return (0); } /*========================================================================* * AS - Audio Stream - routines *========================================================================*/ #ifdef USB_DEBUG static void uaudio_chan_dump_ep_desc(const usb_endpoint_descriptor_audio_t *ed) { if (ed) { DPRINTF("endpoint=%p bLength=%d bDescriptorType=%d \n" "bEndpointAddress=%d bmAttributes=0x%x \n" "wMaxPacketSize=%d bInterval=%d \n" "bRefresh=%d bSynchAddress=%d\n", ed, ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, ed->bmAttributes, UGETW(ed->wMaxPacketSize), ed->bInterval, UEP_HAS_REFRESH(ed) ? ed->bRefresh : 0, UEP_HAS_SYNCADDR(ed) ? ed->bSynchAddress : 0); } } #endif /* * The following is a workaround for broken no-name USB audio devices * sold by dealextreme called "3D sound". The problem is that the * manufacturer computed wMaxPacketSize is too small to hold the * actual data sent. In other words the device sometimes sends more * data than it actually reports it can send in a single isochronous * packet. */ static void uaudio_record_fix_fs(usb_endpoint_descriptor_audio_t *ep, uint32_t xps, uint32_t add) { uint32_t mps; mps = UGETW(ep->wMaxPacketSize); /* * If the device indicates it can send more data than what the * sample rate indicates, we apply the workaround. */ if (mps > xps) { /* allow additional data */ xps += add; /* check against the maximum USB 1.x length */ if (xps > 1023) xps = 1023; /* check if we should do an update */ if (mps < xps) { /* simply update the wMaxPacketSize field */ USETW(ep->wMaxPacketSize, xps); DPRINTF("Workaround: Updated wMaxPacketSize " "from %d to %d bytes.\n", (int)mps, (int)xps); } } } static void uaudio_chan_fill_info_sub(struct uaudio_softc *sc, struct usb_device *udev, uint32_t rate, uint8_t channels, uint8_t bit_resolution) { struct usb_descriptor *desc = NULL; const struct usb_audio_streaming_interface_descriptor *asid = NULL; const struct usb_audio_streaming_type1_descriptor *asf1d = NULL; const struct usb_audio_streaming_endpoint_descriptor *sed = NULL; usb_endpoint_descriptor_audio_t *ed1 = NULL; const usb_endpoint_descriptor_audio_t *ed2 = NULL; struct usb_config_descriptor *cd = usbd_get_config_descriptor(udev); struct usb_interface_descriptor *id; const struct uaudio_format *p_fmt; struct uaudio_chan *chan; uint16_t curidx = 0xFFFF; uint16_t lastidx = 0xFFFF; uint16_t alt_index = 0; uint16_t wFormat; uint8_t ep_dir; uint8_t bChannels; uint8_t bBitResolution; uint8_t x; uint8_t audio_if = 0; uint8_t uma_if_class; while ((desc = usb_desc_foreach(cd, desc))) { if ((desc->bDescriptorType == UDESC_INTERFACE) && (desc->bLength >= sizeof(*id))) { id = (void *)desc; if (id->bInterfaceNumber != lastidx) { lastidx = id->bInterfaceNumber; curidx++; alt_index = 0; } else { alt_index++; } uma_if_class = ((id->bInterfaceClass == UICLASS_AUDIO) || ((id->bInterfaceClass == UICLASS_VENDOR) && (sc->sc_uq_au_vendor_class != 0))); if ((uma_if_class != 0) && (id->bInterfaceSubClass == UISUBCLASS_AUDIOSTREAM)) { audio_if = 1; } else { audio_if = 0; } if ((uma_if_class != 0) && (id->bInterfaceSubClass == UISUBCLASS_MIDISTREAM)) { /* * XXX could allow multiple MIDI interfaces */ if ((sc->sc_midi_chan.valid == 0) && usbd_get_iface(udev, curidx)) { sc->sc_midi_chan.iface_index = curidx; sc->sc_midi_chan.iface_alt_index = alt_index; sc->sc_midi_chan.valid = 1; } } asid = NULL; asf1d = NULL; ed1 = NULL; ed2 = NULL; sed = NULL; } if ((desc->bDescriptorType == UDESC_CS_INTERFACE) && (desc->bDescriptorSubtype == AS_GENERAL) && (desc->bLength >= sizeof(*asid))) { if (asid == NULL) { asid = (void *)desc; } } if ((desc->bDescriptorType == UDESC_CS_INTERFACE) && (desc->bDescriptorSubtype == FORMAT_TYPE) && (desc->bLength >= sizeof(*asf1d))) { if (asf1d == NULL) { asf1d = (void *)desc; if (asf1d->bFormatType != FORMAT_TYPE_I) { DPRINTFN(11, "ignored bFormatType = %d\n", asf1d->bFormatType); asf1d = NULL; continue; } if (asf1d->bLength < (sizeof(*asf1d) + ((asf1d->bSamFreqType == 0) ? 6 : (asf1d->bSamFreqType * 3)))) { DPRINTFN(11, "'asf1d' descriptor is too short\n"); asf1d = NULL; continue; } } } if ((desc->bDescriptorType == UDESC_ENDPOINT) && (desc->bLength >= UEP_MINSIZE)) { if (ed1 == NULL) { ed1 = (void *)desc; if (UE_GET_XFERTYPE(ed1->bmAttributes) != UE_ISOCHRONOUS) { ed1 = NULL; } } } if ((desc->bDescriptorType == UDESC_CS_ENDPOINT) && (desc->bDescriptorSubtype == AS_GENERAL) && (desc->bLength >= sizeof(*sed))) { if (sed == NULL) { sed = (void *)desc; } } if (audio_if && asid && asf1d && ed1 && sed) { ep_dir = UE_GET_DIR(ed1->bEndpointAddress); /* We ignore sync endpoint information until further. */ wFormat = UGETW(asid->wFormatTag); bChannels = UAUDIO_MAX_CHAN(asf1d->bNrChannels); bBitResolution = asf1d->bBitResolution; if (asf1d->bSamFreqType == 0) { DPRINTFN(16, "Sample rate: %d-%dHz\n", UA_SAMP_LO(asf1d), UA_SAMP_HI(asf1d)); if ((rate >= UA_SAMP_LO(asf1d)) && (rate <= UA_SAMP_HI(asf1d))) { goto found_rate; } } else { for (x = 0; x < asf1d->bSamFreqType; x++) { DPRINTFN(16, "Sample rate = %dHz\n", UA_GETSAMP(asf1d, x)); if (rate == UA_GETSAMP(asf1d, x)) { goto found_rate; } } } audio_if = 0; continue; found_rate: for (p_fmt = uaudio_formats; p_fmt->wFormat; p_fmt++) { if ((p_fmt->wFormat == wFormat) && (p_fmt->bPrecision == bBitResolution)) { goto found_format; } } audio_if = 0; continue; found_format: if ((bChannels == channels) && (bBitResolution == bit_resolution)) { chan = (ep_dir == UE_DIR_IN) ? &sc->sc_rec_chan : &sc->sc_play_chan; if ((chan->valid == 0) && usbd_get_iface(udev, curidx)) { chan->valid = 1; #ifdef USB_DEBUG uaudio_chan_dump_ep_desc(ed1); uaudio_chan_dump_ep_desc(ed2); if (sed->bmAttributes & UA_SED_FREQ_CONTROL) { DPRINTFN(2, "FREQ_CONTROL\n"); } if (sed->bmAttributes & UA_SED_PITCH_CONTROL) { DPRINTFN(2, "PITCH_CONTROL\n"); } #endif DPRINTF("Sample rate = %dHz, channels = %d, " "bits = %d, format = %s\n", rate, channels, bit_resolution, p_fmt->description); chan->sample_rate = rate; chan->p_asid = asid; chan->p_asf1d = asf1d; chan->p_ed1 = ed1; chan->p_ed2 = ed2; chan->p_fmt = p_fmt; chan->p_sed = sed; chan->iface_index = curidx; chan->iface_alt_index = alt_index; if (ep_dir == UE_DIR_IN) chan->usb_cfg = uaudio_cfg_record; else chan->usb_cfg = uaudio_cfg_play; chan->sample_size = (( UAUDIO_MAX_CHAN(chan->p_asf1d->bNrChannels) * chan->p_asf1d->bBitResolution) / 8); if (ep_dir == UE_DIR_IN && usbd_get_speed(udev) == USB_SPEED_FULL) { uaudio_record_fix_fs(ed1, chan->sample_size * (rate / 1000), chan->sample_size * (rate / 4000)); } if (sc->sc_sndstat_valid) { sbuf_printf(&sc->sc_sndstat, "\n\t" "mode %d.%d:(%s) %dch, %d/%dbit, %s, %dHz", curidx, alt_index, (ep_dir == UE_DIR_IN) ? "input" : "output", asf1d->bNrChannels, asf1d->bBitResolution, asf1d->bSubFrameSize * 8, p_fmt->description, rate); } } } audio_if = 0; continue; } } } /* This structure defines all the supported rates. */ static const uint32_t uaudio_rate_list[] = { 96000, 88000, 80000, 72000, 64000, 56000, 48000, 44100, 40000, 32000, 24000, 22050, 16000, 11025, 8000, 0 }; static void uaudio_chan_fill_info(struct uaudio_softc *sc, struct usb_device *udev) { uint32_t rate = uaudio_default_rate; uint8_t z; uint8_t bits = uaudio_default_bits; uint8_t y; uint8_t channels = uaudio_default_channels; uint8_t x; bits -= (bits % 8); if ((bits == 0) || (bits > 32)) { /* set a valid value */ bits = 32; } if (channels == 0) { switch (usbd_get_speed(udev)) { case USB_SPEED_LOW: case USB_SPEED_FULL: /* * Due to high bandwidth usage and problems * with HIGH-speed split transactions we * disable surround setups on FULL-speed USB * by default */ channels = 2; break; default: channels = 16; break; } } else if (channels > 16) { channels = 16; } if (sbuf_new(&sc->sc_sndstat, NULL, 4096, SBUF_AUTOEXTEND)) { sc->sc_sndstat_valid = 1; } /* try to search for a valid config */ for (x = channels; x; x--) { for (y = bits; y; y -= 8) { /* try user defined rate, if any */ if (rate != 0) uaudio_chan_fill_info_sub(sc, udev, rate, x, y); /* try find a matching rate, if any */ for (z = 0; uaudio_rate_list[z]; z++) { uaudio_chan_fill_info_sub(sc, udev, uaudio_rate_list[z], x, y); if (sc->sc_rec_chan.valid && sc->sc_play_chan.valid) { goto done; } } } } done: if (sc->sc_sndstat_valid) { sbuf_finish(&sc->sc_sndstat); } } static void uaudio_chan_play_callback(struct usb_xfer *xfer, usb_error_t error) { struct uaudio_chan *ch = usbd_xfer_softc(xfer); struct usb_page_cache *pc; uint32_t total; uint32_t blockcount; uint32_t n; uint32_t offset; int actlen; int sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); if (ch->end == ch->start) { DPRINTF("no buffer!\n"); return; } switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: tr_transferred: if (actlen < sumlen) { DPRINTF("short transfer, " "%d of %d bytes\n", actlen, sumlen); } chn_intr(ch->pcm_ch); case USB_ST_SETUP: if (ch->bytes_per_frame[1] > usbd_xfer_max_framelen(xfer)) { DPRINTF("bytes per transfer, %d, " "exceeds maximum, %d!\n", ch->bytes_per_frame[1], usbd_xfer_max_framelen(xfer)); break; } blockcount = ch->intr_frames; /* setup number of frames */ usbd_xfer_set_frames(xfer, blockcount); /* reset total length */ total = 0; /* setup frame lengths */ for (n = 0; n != blockcount; n++) { ch->sample_curr += ch->sample_rem; if (ch->sample_curr >= ch->frames_per_second) { ch->sample_curr -= ch->frames_per_second; usbd_xfer_set_frame_len(xfer, n, ch->bytes_per_frame[1]); total += ch->bytes_per_frame[1]; } else { usbd_xfer_set_frame_len(xfer, n, ch->bytes_per_frame[0]); total += ch->bytes_per_frame[0]; } } DPRINTFN(6, "transfer %d bytes\n", total); offset = 0; pc = usbd_xfer_get_frame(xfer, 0); while (total > 0) { n = (ch->end - ch->cur); if (n > total) { n = total; } usbd_copy_in(pc, offset, ch->cur, n); total -= n; ch->cur += n; offset += n; if (ch->cur >= ch->end) { ch->cur = ch->start; } } usbd_transfer_submit(xfer); break; default: /* Error */ if (error == USB_ERR_CANCELLED) { break; } goto tr_transferred; } } static void uaudio_chan_record_callback(struct usb_xfer *xfer, usb_error_t error) { struct uaudio_chan *ch = usbd_xfer_softc(xfer); struct usb_page_cache *pc; uint32_t offset0; uint32_t offset1; uint32_t mfl; int m; int n; int len; int actlen; int nframes; int blockcount; usbd_xfer_status(xfer, &actlen, NULL, NULL, &nframes); mfl = usbd_xfer_max_framelen(xfer); if (ch->end == ch->start) { DPRINTF("no buffer!\n"); return; } switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(6, "transferred %d bytes\n", actlen); offset0 = 0; pc = usbd_xfer_get_frame(xfer, 0); for (n = 0; n != nframes; n++) { offset1 = offset0; len = usbd_xfer_frame_len(xfer, n); while (len > 0) { m = (ch->end - ch->cur); if (m > len) m = len; usbd_copy_out(pc, offset1, ch->cur, m); len -= m; offset1 += m; ch->cur += m; if (ch->cur >= ch->end) { ch->cur = ch->start; } } offset0 += mfl; } chn_intr(ch->pcm_ch); case USB_ST_SETUP: tr_setup: blockcount = ch->intr_frames; usbd_xfer_set_frames(xfer, blockcount); for (n = 0; n < blockcount; n++) { usbd_xfer_set_frame_len(xfer, n, mfl); } usbd_transfer_submit(xfer); break; default: /* Error */ if (error == USB_ERR_CANCELLED) { break; } goto tr_setup; } } void * uaudio_chan_init(struct uaudio_softc *sc, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct uaudio_chan *ch = ((dir == PCMDIR_PLAY) ? &sc->sc_play_chan : &sc->sc_rec_chan); uint32_t buf_size; uint32_t frames; uint32_t format; uint16_t fps; uint8_t endpoint; uint8_t blocks; uint8_t iface_index; uint8_t alt_index; uint8_t fps_shift; usb_error_t err; fps = usbd_get_isoc_fps(sc->sc_udev); if (fps < 8000) { /* FULL speed USB */ frames = 8; } else { /* HIGH speed USB */ frames = UAUDIO_NFRAMES; } /* setup play/record format */ ch->pcm_cap.fmtlist = ch->pcm_format; ch->pcm_format[0] = 0; ch->pcm_format[1] = 0; ch->pcm_cap.minspeed = ch->sample_rate; ch->pcm_cap.maxspeed = ch->sample_rate; /* setup mutex and PCM channel */ ch->pcm_ch = c; ch->pcm_mtx = c->lock; format = ch->p_fmt->freebsd_fmt; switch (ch->p_asf1d->bNrChannels) { case 2: /* stereo */ format = SND_FORMAT(format, 2, 0); break; case 1: /* mono */ format = SND_FORMAT(format, 1, 0); break; default: /* surround and more */ format = feeder_matrix_default_format( SND_FORMAT(format, ch->p_asf1d->bNrChannels, 0)); break; } ch->pcm_cap.fmtlist[0] = format; ch->pcm_cap.fmtlist[1] = 0; /* check if format is not supported */ if (format == 0) { DPRINTF("The selected audio format is not supported\n"); goto error; } /* set alternate interface corresponding to the mode */ endpoint = ch->p_ed1->bEndpointAddress; iface_index = ch->iface_index; alt_index = ch->iface_alt_index; DPRINTF("endpoint=0x%02x, speed=%d, iface=%d alt=%d\n", endpoint, ch->sample_rate, iface_index, alt_index); err = usbd_set_alt_interface_index(sc->sc_udev, iface_index, alt_index); if (err) { DPRINTF("setting of alternate index failed: %s!\n", usbd_errstr(err)); goto error; } usbd_set_parent_iface(sc->sc_udev, iface_index, sc->sc_mixer_iface_index); /* * Only set the sample rate if the channel reports that it * supports the frequency control. */ if (ch->p_sed->bmAttributes & UA_SED_FREQ_CONTROL) { if (uaudio_set_speed(sc->sc_udev, endpoint, ch->sample_rate)) { /* * If the endpoint is adaptive setting the speed may * fail. */ DPRINTF("setting of sample rate failed! (continuing anyway)\n"); } } if (usbd_transfer_setup(sc->sc_udev, &iface_index, ch->xfer, ch->usb_cfg, UAUDIO_NCHANBUFS, ch, ch->pcm_mtx)) { DPRINTF("could not allocate USB transfers!\n"); goto error; } fps_shift = usbd_xfer_get_fps_shift(ch->xfer[0]); /* down shift number of frames per second, if any */ fps >>= fps_shift; frames >>= fps_shift; /* bytes per frame should not be zero */ ch->bytes_per_frame[0] = ((ch->sample_rate / fps) * ch->sample_size); ch->bytes_per_frame[1] = (((ch->sample_rate + fps - 1) / fps) * ch->sample_size); /* setup data rate dithering, if any */ ch->frames_per_second = fps; ch->sample_rem = ch->sample_rate % fps; ch->sample_curr = 0; ch->frames_per_second = fps; /* compute required buffer size */ buf_size = (ch->bytes_per_frame[1] * frames); ch->intr_size = buf_size; ch->intr_frames = frames; DPRINTF("fps=%d sample_rem=%d\n", fps, ch->sample_rem); if (ch->intr_frames == 0) { DPRINTF("frame shift is too high!\n"); goto error; } /* setup double buffering */ buf_size *= 2; blocks = 2; ch->buf = malloc(buf_size, M_DEVBUF, M_WAITOK | M_ZERO); if (ch->buf == NULL) goto error; if (sndbuf_setup(b, ch->buf, buf_size) != 0) goto error; if (sndbuf_resize(b, blocks, ch->intr_size)) goto error; ch->start = ch->buf; ch->end = ch->buf + buf_size; ch->cur = ch->buf; ch->pcm_buf = b; if (ch->pcm_mtx == NULL) { DPRINTF("ERROR: PCM channels does not have a mutex!\n"); goto error; } return (ch); error: uaudio_chan_free(ch); return (NULL); } int uaudio_chan_free(struct uaudio_chan *ch) { if (ch->buf != NULL) { free(ch->buf, M_DEVBUF); ch->buf = NULL; } usbd_transfer_unsetup(ch->xfer, UAUDIO_NCHANBUFS); ch->valid = 0; return (0); } int uaudio_chan_set_param_blocksize(struct uaudio_chan *ch, uint32_t blocksize) { return (ch->intr_size); } int uaudio_chan_set_param_fragments(struct uaudio_chan *ch, uint32_t blocksize, uint32_t blockcount) { return (1); } int uaudio_chan_set_param_speed(struct uaudio_chan *ch, uint32_t speed) { if (speed != ch->sample_rate) { DPRINTF("rate conversion required\n"); } return (ch->sample_rate); } int uaudio_chan_getptr(struct uaudio_chan *ch) { return (ch->cur - ch->start); } struct pcmchan_caps * uaudio_chan_getcaps(struct uaudio_chan *ch) { return (&ch->pcm_cap); } static struct pcmchan_matrix uaudio_chan_matrix_swap_2_0 = { .id = SND_CHN_MATRIX_DRV, .channels = 2, .ext = 0, .map = { /* Right */ [0] = { .type = SND_CHN_T_FR, .members = SND_CHN_T_MASK_FR | SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF | SND_CHN_T_MASK_BR | SND_CHN_T_MASK_BC | SND_CHN_T_MASK_SR }, /* Left */ [1] = { .type = SND_CHN_T_FL, .members = SND_CHN_T_MASK_FL | SND_CHN_T_MASK_FC | SND_CHN_T_MASK_LF | SND_CHN_T_MASK_BL | SND_CHN_T_MASK_BC | SND_CHN_T_MASK_SL }, [2] = { .type = SND_CHN_T_MAX, .members = 0 } }, .mask = SND_CHN_T_MASK_FR | SND_CHN_T_MASK_FL, .offset = { 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }; struct pcmchan_matrix * uaudio_chan_getmatrix(struct uaudio_chan *ch, uint32_t format) { struct uaudio_softc *sc; sc = ch->priv_sc; if (sc != NULL && sc->sc_uq_audio_swap_lr != 0 && AFMT_CHANNEL(format) == 2) return (&uaudio_chan_matrix_swap_2_0); return (feeder_matrix_format_map(format)); } int uaudio_chan_set_param_format(struct uaudio_chan *ch, uint32_t format) { ch->format = format; return (0); } int uaudio_chan_start(struct uaudio_chan *ch) { ch->cur = ch->start; #if (UAUDIO_NCHANBUFS != 2) #error "please update code" #endif if (ch->xfer[0]) { usbd_transfer_start(ch->xfer[0]); } if (ch->xfer[1]) { usbd_transfer_start(ch->xfer[1]); } return (0); } int uaudio_chan_stop(struct uaudio_chan *ch) { #if (UAUDIO_NCHANBUFS != 2) #error "please update code" #endif usbd_transfer_stop(ch->xfer[0]); usbd_transfer_stop(ch->xfer[1]); return (0); } /*========================================================================* * AC - Audio Controller - routines *========================================================================*/ static void uaudio_mixer_add_ctl_sub(struct uaudio_softc *sc, struct uaudio_mixer_node *mc) { struct uaudio_mixer_node *p_mc_new = malloc(sizeof(*p_mc_new), M_USBDEV, M_WAITOK); if (p_mc_new != NULL) { memcpy(p_mc_new, mc, sizeof(*p_mc_new)); p_mc_new->next = sc->sc_mixer_root; sc->sc_mixer_root = p_mc_new; sc->sc_mixer_count++; } else { DPRINTF("out of memory\n"); } } static void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct uaudio_mixer_node *mc) { int32_t res; if (mc->class < UAC_NCLASSES) { DPRINTF("adding %s.%d\n", uac_names[mc->class], mc->ctl); } else { DPRINTF("adding %d\n", mc->ctl); } if (mc->type == MIX_ON_OFF) { mc->minval = 0; mc->maxval = 1; } else if (mc->type == MIX_SELECTOR) { } else { /* determine min and max values */ mc->minval = uaudio_mixer_get(sc->sc_udev, GET_MIN, mc); mc->minval = uaudio_mixer_signext(mc->type, mc->minval); mc->maxval = uaudio_mixer_get(sc->sc_udev, GET_MAX, mc); mc->maxval = uaudio_mixer_signext(mc->type, mc->maxval); /* check if max and min was swapped */ if (mc->maxval < mc->minval) { res = mc->maxval; mc->maxval = mc->minval; mc->minval = res; } /* compute value range */ mc->mul = mc->maxval - mc->minval; if (mc->mul == 0) mc->mul = 1; /* compute value alignment */ res = uaudio_mixer_get(sc->sc_udev, GET_RES, mc); DPRINTF("Resolution = %d\n", (int)res); } uaudio_mixer_add_ctl_sub(sc, mc); #ifdef USB_DEBUG if (uaudio_debug > 2) { uint8_t i; for (i = 0; i < mc->nchan; i++) { DPRINTF("[mix] wValue=%04x\n", mc->wValue[0]); } DPRINTF("[mix] wIndex=%04x type=%d ctl='%d' " "min=%d max=%d\n", mc->wIndex, mc->type, mc->ctl, mc->minval, mc->maxval); } #endif } static void uaudio_mixer_add_input(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { #ifdef USB_DEBUG const struct usb_audio_input_terminal *d = iot[id].u.it; DPRINTFN(3, "bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " "iChannelNames=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bNrChannels, UGETW(d->wChannelConfig), d->iChannelNames); #endif } static void uaudio_mixer_add_output(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { #ifdef USB_DEBUG const struct usb_audio_output_terminal *d = iot[id].u.ot; DPRINTFN(3, "bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bSourceId, d->iTerminal); #endif } static void uaudio_mixer_add_mixer(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { struct uaudio_mixer_node mix; const struct usb_audio_mixer_unit_0 *d0 = iot[id].u.mu; const struct usb_audio_mixer_unit_1 *d1; uint32_t bno; /* bit number */ uint32_t p; /* bit number accumulator */ uint32_t mo; /* matching outputs */ uint32_t mc; /* matching channels */ uint32_t ichs; /* input channels */ uint32_t ochs; /* output channels */ uint32_t c; uint32_t chs; /* channels */ uint32_t i; uint32_t o; DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n", d0->bUnitId, d0->bNrInPins); /* compute the number of input channels */ ichs = 0; for (i = 0; i < d0->bNrInPins; i++) { ichs += (uaudio_mixer_get_cluster(d0->baSourceId[i], iot) .bNrChannels); } d1 = (const void *)(d0->baSourceId + d0->bNrInPins); /* and the number of output channels */ ochs = d1->bNrChannels; DPRINTFN(3, "ichs=%d ochs=%d\n", ichs, ochs); memset(&mix, 0, sizeof(mix)); mix.wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no); uaudio_mixer_determine_class(&iot[id], &mix); mix.type = MIX_SIGNED_16; if (uaudio_mixer_verify_desc(d0, ((ichs * ochs) + 7) / 8) == NULL) { return; } for (p = i = 0; i < d0->bNrInPins; i++) { chs = uaudio_mixer_get_cluster(d0->baSourceId[i], iot).bNrChannels; mc = 0; for (c = 0; c < chs; c++) { mo = 0; for (o = 0; o < ochs; o++) { bno = ((p + c) * ochs) + o; if (BIT_TEST(d1->bmControls, bno)) { mo++; } } if (mo == 1) { mc++; } } if ((mc == chs) && (chs <= MIX_MAX_CHAN)) { /* repeat bit-scan */ mc = 0; for (c = 0; c < chs; c++) { for (o = 0; o < ochs; o++) { bno = ((p + c) * ochs) + o; if (BIT_TEST(d1->bmControls, bno)) { mix.wValue[mc++] = MAKE_WORD(p + c + 1, o + 1); } } } mix.nchan = chs; uaudio_mixer_add_ctl(sc, &mix); } else { /* XXX */ } p += chs; } } static void uaudio_mixer_add_selector(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { const struct usb_audio_selector_unit *d = iot[id].u.su; struct uaudio_mixer_node mix; uint16_t i; DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins); if (d->bNrInPins == 0) { return; } memset(&mix, 0, sizeof(mix)); mix.wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no); mix.wValue[0] = MAKE_WORD(0, 0); uaudio_mixer_determine_class(&iot[id], &mix); mix.nchan = 1; mix.type = MIX_SELECTOR; mix.ctl = SOUND_MIXER_NRDEVICES; mix.minval = 1; mix.maxval = d->bNrInPins; if (mix.maxval > MAX_SELECTOR_INPUT_PIN) { mix.maxval = MAX_SELECTOR_INPUT_PIN; } mix.mul = (mix.maxval - mix.minval); for (i = 0; i < MAX_SELECTOR_INPUT_PIN; i++) { mix.slctrtype[i] = SOUND_MIXER_NRDEVICES; } for (i = 0; i < mix.maxval; i++) { mix.slctrtype[i] = uaudio_mixer_feature_name (&iot[d->baSourceId[i]], &mix); } mix.class = 0; /* not used */ uaudio_mixer_add_ctl(sc, &mix); } static uint32_t uaudio_mixer_feature_get_bmaControls(const struct usb_audio_feature_unit *d, uint8_t i) { uint32_t temp = 0; uint32_t offset = (i * d->bControlSize); if (d->bControlSize > 0) { temp |= d->bmaControls[offset]; if (d->bControlSize > 1) { temp |= d->bmaControls[offset + 1] << 8; if (d->bControlSize > 2) { temp |= d->bmaControls[offset + 2] << 16; if (d->bControlSize > 3) { temp |= d->bmaControls[offset + 3] << 24; } } } } return (temp); } static void uaudio_mixer_add_feature(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { const struct usb_audio_feature_unit *d = iot[id].u.fu; struct uaudio_mixer_node mix; uint32_t fumask; uint32_t mmask; uint32_t cmask; uint16_t mixernumber; uint8_t nchan; uint8_t chan; uint8_t ctl; uint8_t i; if (d->bControlSize == 0) { return; } memset(&mix, 0, sizeof(mix)); nchan = (d->bLength - 7) / d->bControlSize; mmask = uaudio_mixer_feature_get_bmaControls(d, 0); cmask = 0; if (nchan == 0) { return; } /* figure out what we can control */ for (chan = 1; chan < nchan; chan++) { DPRINTFN(10, "chan=%d mask=%x\n", chan, uaudio_mixer_feature_get_bmaControls(d, chan)); cmask |= uaudio_mixer_feature_get_bmaControls(d, chan); } if (nchan > MIX_MAX_CHAN) { nchan = MIX_MAX_CHAN; } mix.wIndex = MAKE_WORD(d->bUnitId, sc->sc_mixer_iface_no); for (ctl = 1; ctl <= LOUDNESS_CONTROL; ctl++) { fumask = FU_MASK(ctl); DPRINTFN(5, "ctl=%d fumask=0x%04x\n", ctl, fumask); if (mmask & fumask) { mix.nchan = 1; mix.wValue[0] = MAKE_WORD(ctl, 0); } else if (cmask & fumask) { mix.nchan = nchan - 1; for (i = 1; i < nchan; i++) { if (uaudio_mixer_feature_get_bmaControls(d, i) & fumask) mix.wValue[i - 1] = MAKE_WORD(ctl, i); else mix.wValue[i - 1] = -1; } } else { continue; } mixernumber = uaudio_mixer_feature_name(&iot[id], &mix); switch (ctl) { case MUTE_CONTROL: mix.type = MIX_ON_OFF; mix.ctl = SOUND_MIXER_NRDEVICES; break; case VOLUME_CONTROL: mix.type = MIX_SIGNED_16; mix.ctl = mixernumber; break; case BASS_CONTROL: mix.type = MIX_SIGNED_8; mix.ctl = SOUND_MIXER_BASS; break; case MID_CONTROL: mix.type = MIX_SIGNED_8; mix.ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */ break; case TREBLE_CONTROL: mix.type = MIX_SIGNED_8; mix.ctl = SOUND_MIXER_TREBLE; break; case GRAPHIC_EQUALIZER_CONTROL: continue; /* XXX don't add anything */ break; case AGC_CONTROL: mix.type = MIX_ON_OFF; mix.ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */ break; case DELAY_CONTROL: mix.type = MIX_UNSIGNED_16; mix.ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */ break; case BASS_BOOST_CONTROL: mix.type = MIX_ON_OFF; mix.ctl = SOUND_MIXER_NRDEVICES; /* XXXXX */ break; case LOUDNESS_CONTROL: mix.type = MIX_ON_OFF; mix.ctl = SOUND_MIXER_LOUD; /* Is this correct ? */ break; default: mix.type = MIX_UNKNOWN; break; } if (mix.type != MIX_UNKNOWN) { uaudio_mixer_add_ctl(sc, &mix); } } } static void uaudio_mixer_add_processing_updown(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { const struct usb_audio_processing_unit_0 *d0 = iot[id].u.pu; const struct usb_audio_processing_unit_1 *d1 = (const void *)(d0->baSourceId + d0->bNrInPins); const struct usb_audio_processing_unit_updown *ud = (const void *)(d1->bmControls + d1->bControlSize); struct uaudio_mixer_node mix; uint8_t i; if (uaudio_mixer_verify_desc(d0, sizeof(*ud)) == NULL) { return; } if (uaudio_mixer_verify_desc(d0, sizeof(*ud) + (2 * ud->bNrModes)) == NULL) { return; } DPRINTFN(3, "bUnitId=%d bNrModes=%d\n", d0->bUnitId, ud->bNrModes); if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { DPRINTF("no mode select\n"); return; } memset(&mix, 0, sizeof(mix)); mix.wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no); mix.nchan = 1; mix.wValue[0] = MAKE_WORD(UD_MODE_SELECT_CONTROL, 0); uaudio_mixer_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; /* XXX */ for (i = 0; i < ud->bNrModes; i++) { DPRINTFN(3, "i=%d bm=0x%x\n", i, UGETW(ud->waModes[i])); /* XXX */ } uaudio_mixer_add_ctl(sc, &mix); } static void uaudio_mixer_add_processing(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { const struct usb_audio_processing_unit_0 *d0 = iot[id].u.pu; const struct usb_audio_processing_unit_1 *d1 = (const void *)(d0->baSourceId + d0->bNrInPins); struct uaudio_mixer_node mix; uint16_t ptype; memset(&mix, 0, sizeof(mix)); ptype = UGETW(d0->wProcessType); DPRINTFN(3, "wProcessType=%d bUnitId=%d " "bNrInPins=%d\n", ptype, d0->bUnitId, d0->bNrInPins); if (d1->bControlSize == 0) { return; } if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { mix.wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no); mix.nchan = 1; mix.wValue[0] = MAKE_WORD(XX_ENABLE_CONTROL, 0); uaudio_mixer_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; uaudio_mixer_add_ctl(sc, &mix); } switch (ptype) { case UPDOWNMIX_PROCESS: uaudio_mixer_add_processing_updown(sc, iot, id); break; case DOLBY_PROLOGIC_PROCESS: case P3D_STEREO_EXTENDER_PROCESS: case REVERBATION_PROCESS: case CHORUS_PROCESS: case DYN_RANGE_COMP_PROCESS: default: DPRINTF("unit %d, type=%d is not implemented\n", d0->bUnitId, ptype); break; } } static void uaudio_mixer_add_extension(struct uaudio_softc *sc, const struct uaudio_terminal_node *iot, int id) { const struct usb_audio_extension_unit_0 *d0 = iot[id].u.eu; const struct usb_audio_extension_unit_1 *d1 = (const void *)(d0->baSourceId + d0->bNrInPins); struct uaudio_mixer_node mix; DPRINTFN(3, "bUnitId=%d bNrInPins=%d\n", d0->bUnitId, d0->bNrInPins); if (sc->sc_uq_au_no_xu) { return; } if (d1->bControlSize == 0) { return; } if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { memset(&mix, 0, sizeof(mix)); mix.wIndex = MAKE_WORD(d0->bUnitId, sc->sc_mixer_iface_no); mix.nchan = 1; mix.wValue[0] = MAKE_WORD(UA_EXT_ENABLE, 0); uaudio_mixer_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; uaudio_mixer_add_ctl(sc, &mix); } } static const void * uaudio_mixer_verify_desc(const void *arg, uint32_t len) { const struct usb_audio_mixer_unit_1 *d1; const struct usb_audio_extension_unit_1 *e1; const struct usb_audio_processing_unit_1 *u1; union { const struct usb_descriptor *desc; const struct usb_audio_input_terminal *it; const struct usb_audio_output_terminal *ot; const struct usb_audio_mixer_unit_0 *mu; const struct usb_audio_selector_unit *su; const struct usb_audio_feature_unit *fu; const struct usb_audio_processing_unit_0 *pu; const struct usb_audio_extension_unit_0 *eu; } u; u.desc = arg; if (u.desc == NULL) { goto error; } if (u.desc->bDescriptorType != UDESC_CS_INTERFACE) { goto error; } switch (u.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: len += sizeof(*u.it); break; case UDESCSUB_AC_OUTPUT: len += sizeof(*u.ot); break; case UDESCSUB_AC_MIXER: len += sizeof(*u.mu); if (u.desc->bLength < len) { goto error; } len += u.mu->bNrInPins; if (u.desc->bLength < len) { goto error; } d1 = (const void *)(u.mu->baSourceId + u.mu->bNrInPins); len += sizeof(*d1); break; case UDESCSUB_AC_SELECTOR: len += sizeof(*u.su); if (u.desc->bLength < len) { goto error; } len += u.su->bNrInPins; break; case UDESCSUB_AC_FEATURE: len += (sizeof(*u.fu) + 1); break; case UDESCSUB_AC_PROCESSING: len += sizeof(*u.pu); if (u.desc->bLength < len) { goto error; } len += u.pu->bNrInPins; if (u.desc->bLength < len) { goto error; } u1 = (const void *)(u.pu->baSourceId + u.pu->bNrInPins); len += sizeof(*u1); if (u.desc->bLength < len) { goto error; } len += u1->bControlSize; break; case UDESCSUB_AC_EXTENSION: len += sizeof(*u.eu); if (u.desc->bLength < len) { goto error; } len += u.eu->bNrInPins; if (u.desc->bLength < len) { goto error; } e1 = (const void *)(u.eu->baSourceId + u.eu->bNrInPins); len += sizeof(*e1); if (u.desc->bLength < len) { goto error; } len += e1->bControlSize; break; default: goto error; } if (u.desc->bLength < len) { goto error; } return (u.desc); error: if (u.desc) { DPRINTF("invalid descriptor, type=%d, " "sub_type=%d, len=%d of %d bytes\n", u.desc->bDescriptorType, u.desc->bDescriptorSubtype, u.desc->bLength, len); } return (NULL); } #ifdef USB_DEBUG static void uaudio_mixer_dump_cluster(uint8_t id, const struct uaudio_terminal_node *iot) { static const char *channel_names[16] = { "LEFT", "RIGHT", "CENTER", "LFE", "LEFT_SURROUND", "RIGHT_SURROUND", "LEFT_CENTER", "RIGHT_CENTER", "SURROUND", "LEFT_SIDE", "RIGHT_SIDE", "TOP", "RESERVED12", "RESERVED13", "RESERVED14", "RESERVED15", }; uint16_t cc; uint8_t i; const struct usb_audio_cluster cl = uaudio_mixer_get_cluster(id, iot); cc = UGETW(cl.wChannelConfig); DPRINTF("cluster: bNrChannels=%u iChannelNames=%u wChannelConfig=" "0x%04x:\n", cl.iChannelNames, cl.bNrChannels, cc); for (i = 0; cc; i++) { if (cc & 1) { DPRINTF(" - %s\n", channel_names[i]); } cc >>= 1; } } #endif static struct usb_audio_cluster uaudio_mixer_get_cluster(uint8_t id, const struct uaudio_terminal_node *iot) { struct usb_audio_cluster r; const struct usb_descriptor *dp; uint8_t i; for (i = 0; i < UAUDIO_RECURSE_LIMIT; i++) { /* avoid infinite loops */ dp = iot[id].u.desc; if (dp == NULL) { goto error; } switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: r.bNrChannels = iot[id].u.it->bNrChannels; r.wChannelConfig[0] = iot[id].u.it->wChannelConfig[0]; r.wChannelConfig[1] = iot[id].u.it->wChannelConfig[1]; r.iChannelNames = iot[id].u.it->iChannelNames; goto done; case UDESCSUB_AC_OUTPUT: id = iot[id].u.ot->bSourceId; break; case UDESCSUB_AC_MIXER: r = *(const struct usb_audio_cluster *) &iot[id].u.mu->baSourceId[iot[id].u.mu-> bNrInPins]; goto done; case UDESCSUB_AC_SELECTOR: if (iot[id].u.su->bNrInPins > 0) { /* XXX This is not really right */ id = iot[id].u.su->baSourceId[0]; } break; case UDESCSUB_AC_FEATURE: id = iot[id].u.fu->bSourceId; break; case UDESCSUB_AC_PROCESSING: r = *((const struct usb_audio_cluster *) &iot[id].u.pu->baSourceId[iot[id].u.pu-> bNrInPins]); goto done; case UDESCSUB_AC_EXTENSION: r = *((const struct usb_audio_cluster *) &iot[id].u.eu->baSourceId[iot[id].u.eu-> bNrInPins]); goto done; default: goto error; } } error: DPRINTF("bad data\n"); memset(&r, 0, sizeof(r)); done: return (r); } #ifdef USB_DEBUG struct uaudio_tt_to_string { uint16_t terminal_type; const char *desc; }; static const struct uaudio_tt_to_string uaudio_tt_to_string[] = { /* USB terminal types */ {UAT_UNDEFINED, "UAT_UNDEFINED"}, {UAT_STREAM, "UAT_STREAM"}, {UAT_VENDOR, "UAT_VENDOR"}, /* input terminal types */ {UATI_UNDEFINED, "UATI_UNDEFINED"}, {UATI_MICROPHONE, "UATI_MICROPHONE"}, {UATI_DESKMICROPHONE, "UATI_DESKMICROPHONE"}, {UATI_PERSONALMICROPHONE, "UATI_PERSONALMICROPHONE"}, {UATI_OMNIMICROPHONE, "UATI_OMNIMICROPHONE"}, {UATI_MICROPHONEARRAY, "UATI_MICROPHONEARRAY"}, {UATI_PROCMICROPHONEARR, "UATI_PROCMICROPHONEARR"}, /* output terminal types */ {UATO_UNDEFINED, "UATO_UNDEFINED"}, {UATO_SPEAKER, "UATO_SPEAKER"}, {UATO_HEADPHONES, "UATO_HEADPHONES"}, {UATO_DISPLAYAUDIO, "UATO_DISPLAYAUDIO"}, {UATO_DESKTOPSPEAKER, "UATO_DESKTOPSPEAKER"}, {UATO_ROOMSPEAKER, "UATO_ROOMSPEAKER"}, {UATO_COMMSPEAKER, "UATO_COMMSPEAKER"}, {UATO_SUBWOOFER, "UATO_SUBWOOFER"}, /* bidir terminal types */ {UATB_UNDEFINED, "UATB_UNDEFINED"}, {UATB_HANDSET, "UATB_HANDSET"}, {UATB_HEADSET, "UATB_HEADSET"}, {UATB_SPEAKERPHONE, "UATB_SPEAKERPHONE"}, {UATB_SPEAKERPHONEESUP, "UATB_SPEAKERPHONEESUP"}, {UATB_SPEAKERPHONEECANC, "UATB_SPEAKERPHONEECANC"}, /* telephony terminal types */ {UATT_UNDEFINED, "UATT_UNDEFINED"}, {UATT_PHONELINE, "UATT_PHONELINE"}, {UATT_TELEPHONE, "UATT_TELEPHONE"}, {UATT_DOWNLINEPHONE, "UATT_DOWNLINEPHONE"}, /* external terminal types */ {UATE_UNDEFINED, "UATE_UNDEFINED"}, {UATE_ANALOGCONN, "UATE_ANALOGCONN"}, {UATE_LINECONN, "UATE_LINECONN"}, {UATE_LEGACYCONN, "UATE_LEGACYCONN"}, {UATE_DIGITALAUIFC, "UATE_DIGITALAUIFC"}, {UATE_SPDIF, "UATE_SPDIF"}, {UATE_1394DA, "UATE_1394DA"}, {UATE_1394DV, "UATE_1394DV"}, /* embedded function terminal types */ {UATF_UNDEFINED, "UATF_UNDEFINED"}, {UATF_CALIBNOISE, "UATF_CALIBNOISE"}, {UATF_EQUNOISE, "UATF_EQUNOISE"}, {UATF_CDPLAYER, "UATF_CDPLAYER"}, {UATF_DAT, "UATF_DAT"}, {UATF_DCC, "UATF_DCC"}, {UATF_MINIDISK, "UATF_MINIDISK"}, {UATF_ANALOGTAPE, "UATF_ANALOGTAPE"}, {UATF_PHONOGRAPH, "UATF_PHONOGRAPH"}, {UATF_VCRAUDIO, "UATF_VCRAUDIO"}, {UATF_VIDEODISCAUDIO, "UATF_VIDEODISCAUDIO"}, {UATF_DVDAUDIO, "UATF_DVDAUDIO"}, {UATF_TVTUNERAUDIO, "UATF_TVTUNERAUDIO"}, {UATF_SATELLITE, "UATF_SATELLITE"}, {UATF_CABLETUNER, "UATF_CABLETUNER"}, {UATF_DSS, "UATF_DSS"}, {UATF_RADIORECV, "UATF_RADIORECV"}, {UATF_RADIOXMIT, "UATF_RADIOXMIT"}, {UATF_MULTITRACK, "UATF_MULTITRACK"}, {UATF_SYNTHESIZER, "UATF_SYNTHESIZER"}, /* unknown */ {0x0000, "UNKNOWN"}, }; static const char * uaudio_mixer_get_terminal_name(uint16_t terminal_type) { const struct uaudio_tt_to_string *uat = uaudio_tt_to_string; while (uat->terminal_type) { if (uat->terminal_type == terminal_type) { break; } uat++; } if (uat->terminal_type == 0) { DPRINTF("unknown terminal type (0x%04x)", terminal_type); } return (uat->desc); } #endif static uint16_t uaudio_mixer_determine_class(const struct uaudio_terminal_node *iot, struct uaudio_mixer_node *mix) { uint16_t terminal_type = 0x0000; const struct uaudio_terminal_node *input[2]; const struct uaudio_terminal_node *output[2]; input[0] = uaudio_mixer_get_input(iot, 0); input[1] = uaudio_mixer_get_input(iot, 1); output[0] = uaudio_mixer_get_output(iot, 0); output[1] = uaudio_mixer_get_output(iot, 1); /* * check if there is only * one output terminal: */ if (output[0] && (!output[1])) { terminal_type = UGETW(output[0]->u.ot->wTerminalType); } /* * If the only output terminal is USB, * the class is UAC_RECORD. */ if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) { mix->class = UAC_RECORD; if (input[0] && (!input[1])) { terminal_type = UGETW(input[0]->u.it->wTerminalType); } else { terminal_type = 0; } goto done; } /* * if the unit is connected to just * one input terminal, the * class is UAC_INPUT: */ if (input[0] && (!input[1])) { mix->class = UAC_INPUT; terminal_type = UGETW(input[0]->u.it->wTerminalType); goto done; } /* * Otherwise, the class is UAC_OUTPUT. */ mix->class = UAC_OUTPUT; done: return (terminal_type); } struct uaudio_tt_to_feature { uint16_t terminal_type; uint16_t feature; }; static const struct uaudio_tt_to_feature uaudio_tt_to_feature[] = { {UAT_STREAM, SOUND_MIXER_PCM}, {UATI_MICROPHONE, SOUND_MIXER_MIC}, {UATI_DESKMICROPHONE, SOUND_MIXER_MIC}, {UATI_PERSONALMICROPHONE, SOUND_MIXER_MIC}, {UATI_OMNIMICROPHONE, SOUND_MIXER_MIC}, {UATI_MICROPHONEARRAY, SOUND_MIXER_MIC}, {UATI_PROCMICROPHONEARR, SOUND_MIXER_MIC}, {UATO_SPEAKER, SOUND_MIXER_SPEAKER}, {UATO_DESKTOPSPEAKER, SOUND_MIXER_SPEAKER}, {UATO_ROOMSPEAKER, SOUND_MIXER_SPEAKER}, {UATO_COMMSPEAKER, SOUND_MIXER_SPEAKER}, {UATE_ANALOGCONN, SOUND_MIXER_LINE}, {UATE_LINECONN, SOUND_MIXER_LINE}, {UATE_LEGACYCONN, SOUND_MIXER_LINE}, {UATE_DIGITALAUIFC, SOUND_MIXER_ALTPCM}, {UATE_SPDIF, SOUND_MIXER_ALTPCM}, {UATE_1394DA, SOUND_MIXER_ALTPCM}, {UATE_1394DV, SOUND_MIXER_ALTPCM}, {UATF_CDPLAYER, SOUND_MIXER_CD}, {UATF_SYNTHESIZER, SOUND_MIXER_SYNTH}, {UATF_VIDEODISCAUDIO, SOUND_MIXER_VIDEO}, {UATF_DVDAUDIO, SOUND_MIXER_VIDEO}, {UATF_TVTUNERAUDIO, SOUND_MIXER_VIDEO}, /* telephony terminal types */ {UATT_UNDEFINED, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */ {UATT_PHONELINE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */ {UATT_TELEPHONE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */ {UATT_DOWNLINEPHONE, SOUND_MIXER_PHONEIN}, /* SOUND_MIXER_PHONEOUT */ {UATF_RADIORECV, SOUND_MIXER_RADIO}, {UATF_RADIOXMIT, SOUND_MIXER_RADIO}, {UAT_UNDEFINED, SOUND_MIXER_VOLUME}, {UAT_VENDOR, SOUND_MIXER_VOLUME}, {UATI_UNDEFINED, SOUND_MIXER_VOLUME}, /* output terminal types */ {UATO_UNDEFINED, SOUND_MIXER_VOLUME}, {UATO_DISPLAYAUDIO, SOUND_MIXER_VOLUME}, {UATO_SUBWOOFER, SOUND_MIXER_VOLUME}, {UATO_HEADPHONES, SOUND_MIXER_VOLUME}, /* bidir terminal types */ {UATB_UNDEFINED, SOUND_MIXER_VOLUME}, {UATB_HANDSET, SOUND_MIXER_VOLUME}, {UATB_HEADSET, SOUND_MIXER_VOLUME}, {UATB_SPEAKERPHONE, SOUND_MIXER_VOLUME}, {UATB_SPEAKERPHONEESUP, SOUND_MIXER_VOLUME}, {UATB_SPEAKERPHONEECANC, SOUND_MIXER_VOLUME}, /* external terminal types */ {UATE_UNDEFINED, SOUND_MIXER_VOLUME}, /* embedded function terminal types */ {UATF_UNDEFINED, SOUND_MIXER_VOLUME}, {UATF_CALIBNOISE, SOUND_MIXER_VOLUME}, {UATF_EQUNOISE, SOUND_MIXER_VOLUME}, {UATF_DAT, SOUND_MIXER_VOLUME}, {UATF_DCC, SOUND_MIXER_VOLUME}, {UATF_MINIDISK, SOUND_MIXER_VOLUME}, {UATF_ANALOGTAPE, SOUND_MIXER_VOLUME}, {UATF_PHONOGRAPH, SOUND_MIXER_VOLUME}, {UATF_VCRAUDIO, SOUND_MIXER_VOLUME}, {UATF_SATELLITE, SOUND_MIXER_VOLUME}, {UATF_CABLETUNER, SOUND_MIXER_VOLUME}, {UATF_DSS, SOUND_MIXER_VOLUME}, {UATF_MULTITRACK, SOUND_MIXER_VOLUME}, {0xffff, SOUND_MIXER_VOLUME}, /* default */ {0x0000, SOUND_MIXER_VOLUME}, }; static uint16_t uaudio_mixer_feature_name(const struct uaudio_terminal_node *iot, struct uaudio_mixer_node *mix) { const struct uaudio_tt_to_feature *uat = uaudio_tt_to_feature; uint16_t terminal_type = uaudio_mixer_determine_class(iot, mix); if ((mix->class == UAC_RECORD) && (terminal_type == 0)) { return (SOUND_MIXER_IMIX); } while (uat->terminal_type) { if (uat->terminal_type == terminal_type) { break; } uat++; } DPRINTF("terminal_type=%s (0x%04x) -> %d\n", uaudio_mixer_get_terminal_name(terminal_type), terminal_type, uat->feature); return (uat->feature); } static const struct uaudio_terminal_node * uaudio_mixer_get_input(const struct uaudio_terminal_node *iot, uint8_t i) { struct uaudio_terminal_node *root = iot->root; uint8_t n; n = iot->usr.id_max; do { if (iot->usr.bit_input[n / 8] & (1 << (n % 8))) { if (!i--) return (root + n); } } while (n--); return (NULL); } static const struct uaudio_terminal_node * uaudio_mixer_get_output(const struct uaudio_terminal_node *iot, uint8_t i) { struct uaudio_terminal_node *root = iot->root; uint8_t n; n = iot->usr.id_max; do { if (iot->usr.bit_output[n / 8] & (1 << (n % 8))) { if (!i--) return (root + n); } } while (n--); return (NULL); } static void uaudio_mixer_find_inputs_sub(struct uaudio_terminal_node *root, const uint8_t *p_id, uint8_t n_id, struct uaudio_search_result *info) { struct uaudio_terminal_node *iot; uint8_t n; uint8_t i; if (info->recurse_level >= UAUDIO_RECURSE_LIMIT) { return; } info->recurse_level++; for (n = 0; n < n_id; n++) { i = p_id[n]; if (info->bit_visited[i / 8] & (1 << (i % 8))) { /* don't go into a circle */ DPRINTF("avoided going into a circle at id=%d!\n", i); continue; } else { info->bit_visited[i / 8] |= (1 << (i % 8)); } iot = (root + i); if (iot->u.desc == NULL) { continue; } switch (iot->u.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: info->bit_input[i / 8] |= (1 << (i % 8)); break; case UDESCSUB_AC_FEATURE: uaudio_mixer_find_inputs_sub (root, &iot->u.fu->bSourceId, 1, info); break; case UDESCSUB_AC_OUTPUT: uaudio_mixer_find_inputs_sub (root, &iot->u.ot->bSourceId, 1, info); break; case UDESCSUB_AC_MIXER: uaudio_mixer_find_inputs_sub (root, iot->u.mu->baSourceId, iot->u.mu->bNrInPins, info); break; case UDESCSUB_AC_SELECTOR: uaudio_mixer_find_inputs_sub (root, iot->u.su->baSourceId, iot->u.su->bNrInPins, info); break; case UDESCSUB_AC_PROCESSING: uaudio_mixer_find_inputs_sub (root, iot->u.pu->baSourceId, iot->u.pu->bNrInPins, info); break; case UDESCSUB_AC_EXTENSION: uaudio_mixer_find_inputs_sub (root, iot->u.eu->baSourceId, iot->u.eu->bNrInPins, info); break; case UDESCSUB_AC_HEADER: default: break; } } info->recurse_level--; } static void uaudio_mixer_find_outputs_sub(struct uaudio_terminal_node *root, uint8_t id, uint8_t n_id, struct uaudio_search_result *info) { struct uaudio_terminal_node *iot = (root + id); uint8_t j; j = n_id; do { if ((j != id) && ((root + j)->u.desc) && ((root + j)->u.desc->bDescriptorSubtype == UDESCSUB_AC_OUTPUT)) { /* * "j" (output) <--- virtual wire <--- "id" (input) * * if "j" has "id" on the input, then "id" have "j" on * the output, because they are connected: */ if ((root + j)->usr.bit_input[id / 8] & (1 << (id % 8))) { iot->usr.bit_output[j / 8] |= (1 << (j % 8)); } } } while (j--); } static void uaudio_mixer_fill_info(struct uaudio_softc *sc, struct usb_device *udev, void *desc) { const struct usb_audio_control_descriptor *acdp; struct usb_config_descriptor *cd = usbd_get_config_descriptor(udev); const struct usb_descriptor *dp; const struct usb_audio_unit *au; struct uaudio_terminal_node *iot = NULL; uint16_t wTotalLen; uint8_t ID_max = 0; /* inclusive */ uint8_t i; desc = usb_desc_foreach(cd, desc); if (desc == NULL) { DPRINTF("no Audio Control header\n"); goto done; } acdp = desc; if ((acdp->bLength < sizeof(*acdp)) || (acdp->bDescriptorType != UDESC_CS_INTERFACE) || (acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER)) { DPRINTF("invalid Audio Control header\n"); goto done; } /* "wTotalLen" is allowed to be corrupt */ wTotalLen = UGETW(acdp->wTotalLength) - acdp->bLength; /* get USB audio revision */ sc->sc_audio_rev = UGETW(acdp->bcdADC); DPRINTFN(3, "found AC header, vers=%03x, len=%d\n", sc->sc_audio_rev, wTotalLen); if (sc->sc_audio_rev != UAUDIO_VERSION) { if (sc->sc_uq_bad_adc) { } else { DPRINTF("invalid audio version\n"); goto done; } } iot = malloc(sizeof(struct uaudio_terminal_node) * 256, M_TEMP, M_WAITOK | M_ZERO); if (iot == NULL) { DPRINTF("no memory!\n"); goto done; } while ((desc = usb_desc_foreach(cd, desc))) { dp = desc; if (dp->bLength > wTotalLen) { break; } else { wTotalLen -= dp->bLength; } au = uaudio_mixer_verify_desc(dp, 0); if (au) { iot[au->bUnitId].u.desc = (const void *)au; if (au->bUnitId > ID_max) { ID_max = au->bUnitId; } } } DPRINTF("Maximum ID=%d\n", ID_max); /* * determine sourcing inputs for * all nodes in the tree: */ i = ID_max; do { uaudio_mixer_find_inputs_sub(iot, &i, 1, &((iot + i)->usr)); } while (i--); /* * determine outputs for * all nodes in the tree: */ i = ID_max; do { uaudio_mixer_find_outputs_sub(iot, i, ID_max, &((iot + i)->usr)); } while (i--); /* set "id_max" and "root" */ i = ID_max; do { (iot + i)->usr.id_max = ID_max; (iot + i)->root = iot; } while (i--); #ifdef USB_DEBUG i = ID_max; do { uint8_t j; if (iot[i].u.desc == NULL) { continue; } DPRINTF("id %d:\n", i); switch (iot[i].u.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: DPRINTF(" - AC_INPUT type=%s\n", uaudio_mixer_get_terminal_name (UGETW(iot[i].u.it->wTerminalType))); uaudio_mixer_dump_cluster(i, iot); break; case UDESCSUB_AC_OUTPUT: DPRINTF(" - AC_OUTPUT type=%s " "src=%d\n", uaudio_mixer_get_terminal_name (UGETW(iot[i].u.ot->wTerminalType)), iot[i].u.ot->bSourceId); break; case UDESCSUB_AC_MIXER: DPRINTF(" - AC_MIXER src:\n"); for (j = 0; j < iot[i].u.mu->bNrInPins; j++) { DPRINTF(" - %d\n", iot[i].u.mu->baSourceId[j]); } uaudio_mixer_dump_cluster(i, iot); break; case UDESCSUB_AC_SELECTOR: DPRINTF(" - AC_SELECTOR src:\n"); for (j = 0; j < iot[i].u.su->bNrInPins; j++) { DPRINTF(" - %d\n", iot[i].u.su->baSourceId[j]); } break; case UDESCSUB_AC_FEATURE: DPRINTF(" - AC_FEATURE src=%d\n", iot[i].u.fu->bSourceId); break; case UDESCSUB_AC_PROCESSING: DPRINTF(" - AC_PROCESSING src:\n"); for (j = 0; j < iot[i].u.pu->bNrInPins; j++) { DPRINTF(" - %d\n", iot[i].u.pu->baSourceId[j]); } uaudio_mixer_dump_cluster(i, iot); break; case UDESCSUB_AC_EXTENSION: DPRINTF(" - AC_EXTENSION src:\n"); for (j = 0; j < iot[i].u.eu->bNrInPins; j++) { DPRINTF("%d ", iot[i].u.eu->baSourceId[j]); } uaudio_mixer_dump_cluster(i, iot); break; default: DPRINTF("unknown audio control (subtype=%d)\n", iot[i].u.desc->bDescriptorSubtype); } DPRINTF("Inputs to this ID are:\n"); j = ID_max; do { if (iot[i].usr.bit_input[j / 8] & (1 << (j % 8))) { DPRINTF(" -- ID=%d\n", j); } } while (j--); DPRINTF("Outputs from this ID are:\n"); j = ID_max; do { if (iot[i].usr.bit_output[j / 8] & (1 << (j % 8))) { DPRINTF(" -- ID=%d\n", j); } } while (j--); } while (i--); #endif /* * scan the config to create a linked * list of "mixer" nodes: */ i = ID_max; do { dp = iot[i].u.desc; if (dp == NULL) { continue; } DPRINTFN(11, "id=%d subtype=%d\n", i, dp->bDescriptorSubtype); switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_HEADER: DPRINTF("unexpected AC header\n"); break; case UDESCSUB_AC_INPUT: uaudio_mixer_add_input(sc, iot, i); break; case UDESCSUB_AC_OUTPUT: uaudio_mixer_add_output(sc, iot, i); break; case UDESCSUB_AC_MIXER: uaudio_mixer_add_mixer(sc, iot, i); break; case UDESCSUB_AC_SELECTOR: uaudio_mixer_add_selector(sc, iot, i); break; case UDESCSUB_AC_FEATURE: uaudio_mixer_add_feature(sc, iot, i); break; case UDESCSUB_AC_PROCESSING: uaudio_mixer_add_processing(sc, iot, i); break; case UDESCSUB_AC_EXTENSION: uaudio_mixer_add_extension(sc, iot, i); break; default: DPRINTF("bad AC desc subtype=0x%02x\n", dp->bDescriptorSubtype); break; } } while (i--); done: if (iot) { free(iot, M_TEMP); } } static uint16_t uaudio_mixer_get(struct usb_device *udev, uint8_t what, struct uaudio_mixer_node *mc) { struct usb_device_request req; uint16_t val; uint16_t len = MIX_SIZE(mc->type); uint8_t data[4]; usb_error_t err; if (mc->wValue[0] == -1) { return (0); } req.bmRequestType = UT_READ_CLASS_INTERFACE; req.bRequest = what; USETW(req.wValue, mc->wValue[0]); USETW(req.wIndex, mc->wIndex); USETW(req.wLength, len); err = usbd_do_request(udev, NULL, &req, data); if (err) { DPRINTF("err=%s\n", usbd_errstr(err)); return (0); } if (len < 1) { data[0] = 0; } if (len < 2) { data[1] = 0; } val = (data[0] | (data[1] << 8)); DPRINTFN(3, "val=%d\n", val); return (val); } static void uaudio_mixer_write_cfg_callback(struct usb_xfer *xfer, usb_error_t error) { struct usb_device_request req; struct uaudio_softc *sc = usbd_xfer_softc(xfer); struct uaudio_mixer_node *mc = sc->sc_mixer_curr; struct usb_page_cache *pc; uint16_t len; uint8_t repeat = 1; uint8_t update; uint8_t chan; uint8_t buf[2]; DPRINTF("\n"); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: tr_transferred: case USB_ST_SETUP: tr_setup: if (mc == NULL) { mc = sc->sc_mixer_root; sc->sc_mixer_curr = mc; sc->sc_mixer_chan = 0; repeat = 0; } while (mc) { while (sc->sc_mixer_chan < mc->nchan) { len = MIX_SIZE(mc->type); chan = sc->sc_mixer_chan; sc->sc_mixer_chan++; update = ((mc->update[chan / 8] & (1 << (chan % 8))) && (mc->wValue[chan] != -1)); mc->update[chan / 8] &= ~(1 << (chan % 8)); if (update) { req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = SET_CUR; USETW(req.wValue, mc->wValue[chan]); USETW(req.wIndex, mc->wIndex); USETW(req.wLength, len); if (len > 0) { buf[0] = (mc->wData[chan] & 0xFF); } if (len > 1) { buf[1] = (mc->wData[chan] >> 8) & 0xFF; } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &req, sizeof(req)); pc = usbd_xfer_get_frame(xfer, 1); usbd_copy_in(pc, 0, buf, len); usbd_xfer_set_frame_len(xfer, 0, sizeof(req)); usbd_xfer_set_frame_len(xfer, 1, len); usbd_xfer_set_frames(xfer, len ? 2 : 1); usbd_transfer_submit(xfer); return; } } mc = mc->next; sc->sc_mixer_curr = mc; sc->sc_mixer_chan = 0; } if (repeat) { goto tr_setup; } break; default: /* Error */ DPRINTF("error=%s\n", usbd_errstr(error)); if (error == USB_ERR_CANCELLED) { /* do nothing - we are detaching */ break; } goto tr_transferred; } } static usb_error_t uaudio_set_speed(struct usb_device *udev, uint8_t endpt, uint32_t speed) { struct usb_device_request req; uint8_t data[3]; DPRINTFN(6, "endpt=%d speed=%u\n", endpt, speed); req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; req.bRequest = SET_CUR; USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); USETW(req.wIndex, endpt); USETW(req.wLength, 3); data[0] = speed; data[1] = speed >> 8; data[2] = speed >> 16; return (usbd_do_request(udev, NULL, &req, data)); } static int uaudio_mixer_signext(uint8_t type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) { val = (int16_t)val; } else { val = (int8_t)val; } } return (val); } static int uaudio_mixer_bsd2value(struct uaudio_mixer_node *mc, int32_t val) { if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if ((val < mc->minval) || (val > mc->maxval)) { val = mc->minval; } } else { /* compute actual volume */ val = (val * mc->mul) / 255; /* add lower offset */ val = val + mc->minval; /* make sure we don't write a value out of range */ if (val > mc->maxval) val = mc->maxval; else if (val < mc->minval) val = mc->minval; } DPRINTFN(6, "type=0x%03x val=%d min=%d max=%d val=%d\n", mc->type, val, mc->minval, mc->maxval, val); return (val); } static void uaudio_mixer_ctl_set(struct uaudio_softc *sc, struct uaudio_mixer_node *mc, uint8_t chan, int32_t val) { val = uaudio_mixer_bsd2value(mc, val); mc->update[chan / 8] |= (1 << (chan % 8)); mc->wData[chan] = val; /* start the transfer, if not already started */ usbd_transfer_start(sc->sc_mixer_xfer[0]); } static void uaudio_mixer_init(struct uaudio_softc *sc) { struct uaudio_mixer_node *mc; int32_t i; for (mc = sc->sc_mixer_root; mc; mc = mc->next) { if (mc->ctl != SOUND_MIXER_NRDEVICES) { /* * Set device mask bits. See * /usr/include/machine/soundcard.h */ sc->sc_mix_info |= (1 << mc->ctl); } if ((mc->ctl == SOUND_MIXER_NRDEVICES) && (mc->type == MIX_SELECTOR)) { for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) { if (mc->slctrtype[i - 1] == SOUND_MIXER_NRDEVICES) { continue; } sc->sc_recsrc_info |= 1 << mc->slctrtype[i - 1]; } } } } int uaudio_mixer_init_sub(struct uaudio_softc *sc, struct snd_mixer *m) { DPRINTF("\n"); if (usbd_transfer_setup(sc->sc_udev, &sc->sc_mixer_iface_index, sc->sc_mixer_xfer, uaudio_mixer_config, 1, sc, mixer_get_lock(m))) { DPRINTFN(0, "could not allocate USB " "transfer for audio mixer!\n"); return (ENOMEM); } if (!(sc->sc_mix_info & SOUND_MASK_VOLUME)) { mix_setparentchild(m, SOUND_MIXER_VOLUME, SOUND_MASK_PCM); mix_setrealdev(m, SOUND_MIXER_VOLUME, SOUND_MIXER_NONE); } mix_setdevs(m, sc->sc_mix_info); mix_setrecdevs(m, sc->sc_recsrc_info); return (0); } int uaudio_mixer_uninit_sub(struct uaudio_softc *sc) { DPRINTF("\n"); usbd_transfer_unsetup(sc->sc_mixer_xfer, 1); return (0); } void uaudio_mixer_set(struct uaudio_softc *sc, unsigned type, unsigned left, unsigned right) { struct uaudio_mixer_node *mc; for (mc = sc->sc_mixer_root; mc; mc = mc->next) { if (mc->ctl == type) { if (mc->nchan == 2) { /* set Right */ uaudio_mixer_ctl_set(sc, mc, 1, (int)(right * 255) / 100); } /* set Left or Mono */ uaudio_mixer_ctl_set(sc, mc, 0, (int)(left * 255) / 100); } } } uint32_t uaudio_mixer_setrecsrc(struct uaudio_softc *sc, uint32_t src) { struct uaudio_mixer_node *mc; uint32_t mask; uint32_t temp; int32_t i; for (mc = sc->sc_mixer_root; mc; mc = mc->next) { if ((mc->ctl == SOUND_MIXER_NRDEVICES) && (mc->type == MIX_SELECTOR)) { /* compute selector mask */ mask = 0; for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) { mask |= (1 << mc->slctrtype[i - 1]); } temp = mask & src; if (temp == 0) { continue; } /* find the first set bit */ temp = (-temp) & temp; /* update "src" */ src &= ~mask; src |= temp; for (i = mc->minval; (i > 0) && (i <= mc->maxval); i++) { if (temp != (1 << mc->slctrtype[i - 1])) { continue; } uaudio_mixer_ctl_set(sc, mc, 0, i); break; } } } return (src); } /*========================================================================* * MIDI support routines *========================================================================*/ static void umidi_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct umidi_chan *chan = usbd_xfer_softc(xfer); struct umidi_sub_chan *sub; struct usb_page_cache *pc; uint8_t buf[4]; uint8_t cmd_len; uint8_t cn; uint16_t pos; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF("actlen=%d bytes\n", actlen); pos = 0; pc = usbd_xfer_get_frame(xfer, 0); while (actlen >= 4) { /* copy out the MIDI data */ usbd_copy_out(pc, pos, buf, 4); /* command length */ cmd_len = umidi_cmd_to_len[buf[0] & 0xF]; /* cable number */ cn = buf[0] >> 4; /* * Lookup sub-channel. The index is range * checked below. */ sub = &chan->sub[cn]; if ((cmd_len != 0) && (cn < chan->max_cable) && (sub->read_open != 0)) { /* Send data to the application */ usb_fifo_put_data_linear( sub->fifo.fp[USB_FIFO_RX], buf + 1, cmd_len, 1); } actlen -= 4; pos += 4; } case USB_ST_SETUP: DPRINTF("start\n"); tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: DPRINTF("error=%s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } /* * The following statemachine, that converts MIDI commands to * USB MIDI packets, derives from Linux's usbmidi.c, which * was written by "Clemens Ladisch": * * Returns: * 0: No command * Else: Command is complete */ static uint8_t umidi_convert_to_usb(struct umidi_sub_chan *sub, uint8_t cn, uint8_t b) { uint8_t p0 = (cn << 4); if (b >= 0xf8) { sub->temp_0[0] = p0 | 0x0f; sub->temp_0[1] = b; sub->temp_0[2] = 0; sub->temp_0[3] = 0; sub->temp_cmd = sub->temp_0; return (1); } else if (b >= 0xf0) { switch (b) { case 0xf0: /* system exclusive begin */ sub->temp_1[1] = b; sub->state = UMIDI_ST_SYSEX_1; break; case 0xf1: /* MIDI time code */ case 0xf3: /* song select */ sub->temp_1[1] = b; sub->state = UMIDI_ST_1PARAM; break; case 0xf2: /* song position pointer */ sub->temp_1[1] = b; sub->state = UMIDI_ST_2PARAM_1; break; case 0xf4: /* unknown */ case 0xf5: /* unknown */ sub->state = UMIDI_ST_UNKNOWN; break; case 0xf6: /* tune request */ sub->temp_1[0] = p0 | 0x05; sub->temp_1[1] = 0xf6; sub->temp_1[2] = 0; sub->temp_1[3] = 0; sub->temp_cmd = sub->temp_1; sub->state = UMIDI_ST_UNKNOWN; return (1); case 0xf7: /* system exclusive end */ switch (sub->state) { case UMIDI_ST_SYSEX_0: sub->temp_1[0] = p0 | 0x05; sub->temp_1[1] = 0xf7; sub->temp_1[2] = 0; sub->temp_1[3] = 0; sub->temp_cmd = sub->temp_1; sub->state = UMIDI_ST_UNKNOWN; return (1); case UMIDI_ST_SYSEX_1: sub->temp_1[0] = p0 | 0x06; sub->temp_1[2] = 0xf7; sub->temp_1[3] = 0; sub->temp_cmd = sub->temp_1; sub->state = UMIDI_ST_UNKNOWN; return (1); case UMIDI_ST_SYSEX_2: sub->temp_1[0] = p0 | 0x07; sub->temp_1[3] = 0xf7; sub->temp_cmd = sub->temp_1; sub->state = UMIDI_ST_UNKNOWN; return (1); } sub->state = UMIDI_ST_UNKNOWN; break; } } else if (b >= 0x80) { sub->temp_1[1] = b; if ((b >= 0xc0) && (b <= 0xdf)) { sub->state = UMIDI_ST_1PARAM; } else { sub->state = UMIDI_ST_2PARAM_1; } } else { /* b < 0x80 */ switch (sub->state) { case UMIDI_ST_1PARAM: if (sub->temp_1[1] < 0xf0) { p0 |= sub->temp_1[1] >> 4; } else { p0 |= 0x02; sub->state = UMIDI_ST_UNKNOWN; } sub->temp_1[0] = p0; sub->temp_1[2] = b; sub->temp_1[3] = 0; sub->temp_cmd = sub->temp_1; return (1); case UMIDI_ST_2PARAM_1: sub->temp_1[2] = b; sub->state = UMIDI_ST_2PARAM_2; break; case UMIDI_ST_2PARAM_2: if (sub->temp_1[1] < 0xf0) { p0 |= sub->temp_1[1] >> 4; sub->state = UMIDI_ST_2PARAM_1; } else { p0 |= 0x03; sub->state = UMIDI_ST_UNKNOWN; } sub->temp_1[0] = p0; sub->temp_1[3] = b; sub->temp_cmd = sub->temp_1; return (1); case UMIDI_ST_SYSEX_0: sub->temp_1[1] = b; sub->state = UMIDI_ST_SYSEX_1; break; case UMIDI_ST_SYSEX_1: sub->temp_1[2] = b; sub->state = UMIDI_ST_SYSEX_2; break; case UMIDI_ST_SYSEX_2: sub->temp_1[0] = p0 | 0x04; sub->temp_1[3] = b; sub->temp_cmd = sub->temp_1; sub->state = UMIDI_ST_SYSEX_0; return (1); default: break; } } return (0); } static void umidi_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct umidi_chan *chan = usbd_xfer_softc(xfer); struct umidi_sub_chan *sub; struct usb_page_cache *pc; uint32_t actlen; uint16_t nframes; uint8_t buf; uint8_t start_cable; uint8_t tr_any; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); /* * NOTE: Some MIDI devices only accept 4 bytes of data per * short terminated USB transfer. */ switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF("actlen=%d bytes\n", len); case USB_ST_SETUP: tr_setup: DPRINTF("start\n"); nframes = 0; /* reset */ start_cable = chan->curr_cable; tr_any = 0; pc = usbd_xfer_get_frame(xfer, 0); while (1) { /* round robin de-queueing */ sub = &chan->sub[chan->curr_cable]; if (sub->write_open) { usb_fifo_get_data_linear(sub->fifo.fp[USB_FIFO_TX], &buf, 1, &actlen, 0); } else { actlen = 0; } if (actlen) { tr_any = 1; DPRINTF("byte=0x%02x from FIFO %u\n", buf, (unsigned int)chan->curr_cable); if (umidi_convert_to_usb(sub, chan->curr_cable, buf)) { DPRINTF("sub=0x%02x 0x%02x 0x%02x 0x%02x\n", sub->temp_cmd[0], sub->temp_cmd[1], sub->temp_cmd[2], sub->temp_cmd[3]); usbd_copy_in(pc, nframes * 4, sub->temp_cmd, 4); nframes++; if ((nframes >= UMIDI_TX_FRAMES) || (chan->single_command != 0)) break; } else { continue; } } chan->curr_cable++; if (chan->curr_cable >= chan->max_cable) chan->curr_cable = 0; if (chan->curr_cable == start_cable) { if (tr_any == 0) break; tr_any = 0; } } if (nframes != 0) { DPRINTF("Transferring %d frames\n", (int)nframes); usbd_xfer_set_frame_len(xfer, 0, 4 * nframes); usbd_transfer_submit(xfer); } break; default: /* Error */ DPRINTF("error=%s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static struct umidi_sub_chan * umidi_sub_by_fifo(struct usb_fifo *fifo) { struct umidi_chan *chan = usb_fifo_softc(fifo); struct umidi_sub_chan *sub; uint32_t n; for (n = 0; n < UMIDI_CABLES_MAX; n++) { sub = &chan->sub[n]; if ((sub->fifo.fp[USB_FIFO_RX] == fifo) || (sub->fifo.fp[USB_FIFO_TX] == fifo)) { return (sub); } } panic("%s:%d cannot find usb_fifo!\n", __FILE__, __LINE__); return (NULL); } static void umidi_start_read(struct usb_fifo *fifo) { struct umidi_chan *chan = usb_fifo_softc(fifo); usbd_transfer_start(chan->xfer[UMIDI_RX_TRANSFER]); } static void umidi_stop_read(struct usb_fifo *fifo) { struct umidi_chan *chan = usb_fifo_softc(fifo); struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo); DPRINTF("\n"); sub->read_open = 0; if (--(chan->read_open_refcount) == 0) { /* * XXX don't stop the read transfer here, hence that causes * problems with some MIDI adapters */ DPRINTF("(stopping read transfer)\n"); } } static void umidi_start_write(struct usb_fifo *fifo) { struct umidi_chan *chan = usb_fifo_softc(fifo); usbd_transfer_start(chan->xfer[UMIDI_TX_TRANSFER]); } static void umidi_stop_write(struct usb_fifo *fifo) { struct umidi_chan *chan = usb_fifo_softc(fifo); struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo); DPRINTF("\n"); sub->write_open = 0; if (--(chan->write_open_refcount) == 0) { DPRINTF("(stopping write transfer)\n"); usbd_transfer_stop(chan->xfer[UMIDI_TX_TRANSFER]); } } static int umidi_open(struct usb_fifo *fifo, int fflags) { struct umidi_chan *chan = usb_fifo_softc(fifo); struct umidi_sub_chan *sub = umidi_sub_by_fifo(fifo); if (fflags & FREAD) { if (usb_fifo_alloc_buffer(fifo, 4, (1024 / 4))) { return (ENOMEM); } mtx_lock(&chan->mtx); chan->read_open_refcount++; sub->read_open = 1; mtx_unlock(&chan->mtx); } if (fflags & FWRITE) { if (usb_fifo_alloc_buffer(fifo, 32, (1024 / 32))) { return (ENOMEM); } /* clear stall first */ mtx_lock(&chan->mtx); usbd_xfer_set_stall(chan->xfer[UMIDI_TX_TRANSFER]); chan->write_open_refcount++; sub->write_open = 1; /* reset */ sub->state = UMIDI_ST_UNKNOWN; mtx_unlock(&chan->mtx); } return (0); /* success */ } static void umidi_close(struct usb_fifo *fifo, int fflags) { if (fflags & FREAD) { usb_fifo_free_buffer(fifo); } if (fflags & FWRITE) { usb_fifo_free_buffer(fifo); } } static int umidi_ioctl(struct usb_fifo *fifo, u_long cmd, void *data, int fflags) { return (ENODEV); } static void umidi_init(device_t dev) { struct uaudio_softc *sc = device_get_softc(dev); struct umidi_chan *chan = &sc->sc_midi_chan; mtx_init(&chan->mtx, "umidi lock", NULL, MTX_DEF | MTX_RECURSE); } static struct usb_fifo_methods umidi_fifo_methods = { .f_start_read = &umidi_start_read, .f_start_write = &umidi_start_write, .f_stop_read = &umidi_stop_read, .f_stop_write = &umidi_stop_write, .f_open = &umidi_open, .f_close = &umidi_close, .f_ioctl = &umidi_ioctl, .basename[0] = "umidi", }; static int umidi_probe(device_t dev) { struct uaudio_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); struct umidi_chan *chan = &sc->sc_midi_chan; struct umidi_sub_chan *sub; int unit = device_get_unit(dev); int error; uint32_t n; if (usb_test_quirk(uaa, UQ_SINGLE_CMD_MIDI)) chan->single_command = 1; if (usbd_set_alt_interface_index(sc->sc_udev, chan->iface_index, chan->iface_alt_index)) { DPRINTF("setting of alternate index failed!\n"); goto detach; } usbd_set_parent_iface(sc->sc_udev, chan->iface_index, sc->sc_mixer_iface_index); error = usbd_transfer_setup(uaa->device, &chan->iface_index, chan->xfer, umidi_config, UMIDI_N_TRANSFER, chan, &chan->mtx); if (error) { DPRINTF("error=%s\n", usbd_errstr(error)); goto detach; } if ((chan->max_cable > UMIDI_CABLES_MAX) || (chan->max_cable == 0)) { chan->max_cable = UMIDI_CABLES_MAX; } for (n = 0; n < chan->max_cable; n++) { sub = &chan->sub[n]; error = usb_fifo_attach(sc->sc_udev, chan, &chan->mtx, &umidi_fifo_methods, &sub->fifo, unit, n, chan->iface_index, UID_ROOT, GID_OPERATOR, 0644); if (error) { goto detach; } } mtx_lock(&chan->mtx); /* clear stall first */ usbd_xfer_set_stall(chan->xfer[UMIDI_RX_TRANSFER]); /* * NOTE: At least one device will not work properly unless the * BULK IN pipe is open all the time. This might have to do * about that the internal queues of the device overflow if we * don't read them regularly. */ usbd_transfer_start(chan->xfer[UMIDI_RX_TRANSFER]); mtx_unlock(&chan->mtx); return (0); /* success */ detach: return (ENXIO); /* failure */ } static int umidi_detach(device_t dev) { struct uaudio_softc *sc = device_get_softc(dev); struct umidi_chan *chan = &sc->sc_midi_chan; uint32_t n; for (n = 0; n < UMIDI_CABLES_MAX; n++) { usb_fifo_detach(&chan->sub[n].fifo); } mtx_lock(&chan->mtx); usbd_transfer_stop(chan->xfer[UMIDI_RX_TRANSFER]); mtx_unlock(&chan->mtx); usbd_transfer_unsetup(chan->xfer, UMIDI_N_TRANSFER); mtx_destroy(&chan->mtx); return (0); } DRIVER_MODULE(uaudio, uhub, uaudio_driver, uaudio_devclass, NULL, 0); MODULE_DEPEND(uaudio, usb, 1, 1, 1); MODULE_DEPEND(uaudio, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(uaudio, 1);