Current Path : /sys/amd64/linux32/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/linux32/linux32_machdep.c |
/*- * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2002 Doug Rabson * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/amd64/linux32/linux32_machdep.c 225617 2011-09-16 13:58:51Z kmacy $"); #include <sys/param.h> #include <sys/kernel.h> #include <sys/systm.h> #include <sys/capability.h> #include <sys/file.h> #include <sys/fcntl.h> #include <sys/clock.h> #include <sys/imgact.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mman.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/resource.h> #include <sys/resourcevar.h> #include <sys/sched.h> #include <sys/syscallsubr.h> #include <sys/sysproto.h> #include <sys/unistd.h> #include <sys/wait.h> #include <machine/frame.h> #include <machine/pcb.h> #include <machine/psl.h> #include <machine/segments.h> #include <machine/specialreg.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_map.h> #include <compat/freebsd32/freebsd32_util.h> #include <amd64/linux32/linux.h> #include <amd64/linux32/linux32_proto.h> #include <compat/linux/linux_ipc.h> #include <compat/linux/linux_misc.h> #include <compat/linux/linux_signal.h> #include <compat/linux/linux_util.h> #include <compat/linux/linux_emul.h> struct l_old_select_argv { l_int nfds; l_uintptr_t readfds; l_uintptr_t writefds; l_uintptr_t exceptfds; l_uintptr_t timeout; } __packed; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } static int linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, l_int flags, l_int fd, l_loff_t pos); int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru) { lru->ru_utime.tv_sec = ru->ru_utime.tv_sec; lru->ru_utime.tv_usec = ru->ru_utime.tv_usec; lru->ru_stime.tv_sec = ru->ru_stime.tv_sec; lru->ru_stime.tv_usec = ru->ru_stime.tv_usec; lru->ru_maxrss = ru->ru_maxrss; lru->ru_ixrss = ru->ru_ixrss; lru->ru_idrss = ru->ru_idrss; lru->ru_isrss = ru->ru_isrss; lru->ru_minflt = ru->ru_minflt; lru->ru_majflt = ru->ru_majflt; lru->ru_nswap = ru->ru_nswap; lru->ru_inblock = ru->ru_inblock; lru->ru_oublock = ru->ru_oublock; lru->ru_msgsnd = ru->ru_msgsnd; lru->ru_msgrcv = ru->ru_msgrcv; lru->ru_nsignals = ru->ru_nsignals; lru->ru_nvcsw = ru->ru_nvcsw; lru->ru_nivcsw = ru->ru_nivcsw; } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), path); #endif error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); if (error == 0) /* Linux process can execute FreeBSD one, do not attempt * to create emuldata for such process using * linux_proc_init, this leads to a panic on KASSERT * because such process has p->p_emuldata == NULL. */ if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) error = linux_proc_init(td, 0, 0); return (error); } CTASSERT(sizeof(struct l_iovec32) == 8); static int linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop) { struct l_iovec32 iov32; struct iovec *iov; struct uio *uio; uint32_t iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp, int error) { struct l_iovec32 iov32; struct iovec *iov; uint32_t iovlen; int i; *iovp = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof(struct iovec); iov = malloc(iovlen, M_IOV, M_WAITOK); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(iov, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } *iovp = iov; return(0); } int linux_readv(struct thread *td, struct linux_readv_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int linux_writev(struct thread *td, struct linux_writev_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } struct l_ipc_kludge { l_uintptr_t msgp; l_long msgtyp; } __packed; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == 0) return (EINVAL); error = copyin(args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = PTRIN(tmp.msgp); a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = PTRIN((l_uint)args->arg3); return (linux_shmat(td, &a)); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) printf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = PTRIN(linux_args.readfds); newsel.writefds = PTRIN(linux_args.writefds); newsel.exceptfds = PTRIN(linux_args.exceptfds); newsel.timeout = PTRIN(linux_args.timeout); return (linux_select(td, &newsel)); } int linux_set_cloned_tls(struct thread *td, void *desc) { struct user_segment_descriptor sd; struct l_user_desc info; struct pcb *pcb; int error; int a[2]; error = copyin(desc, &info, sizeof(struct l_user_desc)); if (error) { printf(LMSG("copyin failed!")); } else { /* We might copy out the entry_number as GUGS32_SEL. */ info.entry_number = GUGS32_SEL; error = copyout(&info, desc, sizeof(struct l_user_desc)); if (error) printf(LMSG("copyout failed!")); a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(clone)) printf("Segment created in clone with " "CLONE_SETTLS: lobase: %x, hibase: %x, " "lolimit: %x, hilimit: %x, type: %i, " "dpl: %i, p: %i, xx: %i, long: %i, " "def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_long, sd.sd_def32, sd.sd_gran); #endif pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; /* XXXKIB pcb->pcb_gs32sd = sd; */ td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL); set_pcb_flags(pcb, PCB_GS32BIT | PCB_32BIT); } return (error); } int linux_set_upcall_kse(struct thread *td, register_t stack) { td->td_frame->tf_rsp = stack; return (0); } #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { #ifdef DEBUG if (ldebug(mmap2)) printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"), args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot, args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * PAGE_SIZE)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"), linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pgoff); #endif return (linux_mmap_common(td, linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, (uint32_t)linux_args.pgoff)); } static int linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, l_int flags, l_int fd, l_loff_t pos) { struct proc *p = td->td_proc; struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; struct file *fp; error = 0; bsd_args.flags = 0; fp = NULL; /* * Linux mmap(2): * You must specify exactly one of MAP_SHARED and MAP_PRIVATE */ if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) return (EINVAL); if (flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (flags & LINUX_MAP_ANON) { /* Enforce pos to be on page boundary, then ignore. */ if ((pos & PAGE_MASK) != 0) return (EINVAL); pos = 0; bsd_args.flags |= MAP_ANON; } else bsd_args.flags |= MAP_NOSYNC; if (flags & LINUX_MAP_GROWSDOWN) bsd_args.flags |= MAP_STACK; /* * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC * on Linux/i386. We do this to ensure maximum compatibility. * Linux/ia64 does the same in i386 emulation mode. */ bsd_args.prot = prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; if (bsd_args.fd != -1) { /* * Linux follows Solaris mmap(2) description: * The file descriptor fildes is opened with * read permission, regardless of the * protection options specified. */ if ((error = fget(td, bsd_args.fd, CAP_MMAP, &fp)) != 0) return (error); if (fp->f_type != DTYPE_VNODE) { fdrop(fp, td); return (EINVAL); } /* Linux mmap() just fails for O_WRONLY files */ if (!(fp->f_flag & FREAD)) { fdrop(fp, td); return (EACCES); } fdrop(fp, td); } if (flags & LINUX_MAP_GROWSDOWN) { /* * The Linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, Linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in Linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It then maps the top SGROWSIZ bytes, * and auto grows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { /* * Some Linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ PROC_LOCK(p); p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK - lim_cur(p, RLIMIT_STACK); PROC_UNLOCK(p); } /* * This gives us our maximum stack size and a new BOS. * If we're using VM_STACK, then mmap will just map * the top SGROWSIZ bytes, and let the stack grow down * to the limit at BOS. If we're not using VM_STACK * we map the full stack, since we don't have a way * to autogrow it. */ if (len > STACK_SIZE - GUARD_SIZE) { bsd_args.addr = (caddr_t)PTRIN(addr); bsd_args.len = len; } else { bsd_args.addr = (caddr_t)PTRIN(addr) - (STACK_SIZE - GUARD_SIZE - len); bsd_args.len = STACK_SIZE - GUARD_SIZE; } } else { bsd_args.addr = (caddr_t)PTRIN(addr); bsd_args.len = len; } bsd_args.pos = pos; #ifdef DEBUG if (ldebug(mmap)) printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", __func__, (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif error = sys_mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf("-> %s() return: 0x%x (0x%08x)\n", __func__, error, (u_int)td->td_retval[0]); #endif return (error); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { struct mprotect_args bsd_args; bsd_args.addr = uap->addr; bsd_args.len = uap->len; bsd_args.prot = uap->prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; return (sys_mprotect(td, &bsd_args)); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_pipe(struct thread *td, struct linux_pipe_args *args) { int error; int fildes[2]; #ifdef DEBUG if (ldebug(pipe)) printf(ARGS(pipe, "*")); #endif error = kern_pipe(td, fildes); if (error) return (error); /* XXX: Close descriptors on error. */ return (copyout(fildes, args->pipefds, sizeof fildes)); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) printf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We don't use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; #ifdef DEBUG if (ldebug(sigsuspend)) printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; #ifdef DEBUG if (ldebug(pause)) printf(ARGS(pause, "")); #endif PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = PTRIN(lss.ss_sp); ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = PTROUT(oss.ss_sp); lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) { struct ftruncate_args sa; #ifdef DEBUG if (ldebug(ftruncate64)) printf(ARGS(ftruncate64, "%u, %jd"), args->fd, (intmax_t)args->length); #endif sa.fd = args->fd; sa.length = args->length; return sys_ftruncate(td, &sa); } int linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) { struct timeval atv; l_timeval atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); atv32.tv_sec = atv.tv_sec; atv32.tv_usec = atv.tv_usec; error = copyout(&atv32, uap->tp, sizeof(atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = tz_minuteswest; rtz.tz_dsttime = tz_dsttime; error = copyout(&rtz, uap->tzp, sizeof(rtz)); } return (error); } int linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap) { l_timeval atv32; struct timeval atv, *tvp; struct timezone atz, *tzp; int error; if (uap->tp) { error = copyin(uap->tp, &atv32, sizeof(atv32)); if (error) return (error); atv.tv_sec = atv32.tv_sec; atv.tv_usec = atv32.tv_usec; tvp = &atv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &atz, sizeof(atz)); if (error) return (error); tzp = &atz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) { struct l_rusage s32; struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error != 0) return (error); if (uap->rusage != NULL) { bsd_to_linux_rusage(&s, &s32); error = copyout(&s32, uap->rusage, sizeof(s32)); } return (error); } int linux_sched_rr_get_interval(struct thread *td, struct linux_sched_rr_get_interval_args *uap) { struct timespec ts; struct l_timespec ts32; int error; error = kern_sched_rr_get_interval(td, uap->pid, &ts); if (error != 0) return (error); ts32.tv_sec = ts.tv_sec; ts32.tv_nsec = ts.tv_nsec; return (copyout(&ts32, uap->interval, sizeof(ts32))); } int linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) { struct l_user_desc info; struct user_segment_descriptor sd; struct pcb *pcb; int a[2]; int error; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); #ifdef DEBUG if (ldebug(set_thread_area)) printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, " "%i, %i, %i"), info.entry_number, info.base_addr, info.limit, info.seg_32bit, info.contents, info.read_exec_only, info.limit_in_pages, info.seg_not_present, info.useable); #endif /* * Semantics of Linux version: every thread in the system has array * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. * This syscall loads one of the selected TLS decriptors with a value * and also loads GDT descriptors 6, 7 and 8 with the content of * the per-thread descriptors. * * Semantics of FreeBSD version: I think we can ignore that Linux has * three per-thread descriptors and use just the first one. * The tls_array[] is used only in [gs]et_thread_area() syscalls and * for loading the GDT descriptors. We use just one GDT descriptor * for TLS, so we will load just one. * * XXX: This doesn't work when a user space process tries to use more * than one TLS segment. Comment in the Linux source says wine might * do this. */ /* * GLIBC reads current %gs and call set_thread_area() with it. * We should let GUDATA_SEL and GUGS32_SEL proceed as well because * we use these segments. */ switch (info.entry_number) { case GUGS32_SEL: case GUDATA_SEL: case 6: case -1: info.entry_number = GUGS32_SEL; break; default: return (EINVAL); } /* * We have to copy out the GDT entry we use. * * XXX: What if a user space program does not check the return value * and tries to use 6, 7 or 8? */ error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (error); if (LINUX_LDT_empty(&info)) { a[0] = 0; a[1] = 0; } else { a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); } memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(set_thread_area)) printf("Segment created in set_thread_area: " "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, " "type: %i, dpl: %i, p: %i, xx: %i, long: %i, " "def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_long, sd.sd_def32, sd.sd_gran); #endif pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; set_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT); update_gdt_gsbase(td, info.base_addr); return (0); } int linux_wait4(struct thread *td, struct linux_wait4_args *args) { int error, options; struct rusage ru, *rup; struct l_rusage lru; #ifdef DEBUG if (ldebug(wait4)) printf(ARGS(wait4, "%d, %p, %d, %p"), args->pid, (void *)args->status, args->options, (void *)args->rusage); #endif options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; if (args->rusage != NULL) rup = &ru; else rup = NULL; error = linux_common_wait(td, args->pid, args->status, options, rup); if (error) return (error); if (args->rusage != NULL) { bsd_to_linux_rusage(rup, &lru); error = copyout(&lru, args->rusage, sizeof(lru)); } return (error); }