Current Path : /sys/arm/xscale/pxa/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/arm/xscale/pxa/pxa_machdep.c |
/* $NetBSD: hpc_machdep.c,v 1.70 2003/09/16 08:18:22 agc Exp $ */ /*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_ddb.h" #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/xscale/pxa/pxa_machdep.c 218913 2011-02-21 13:11:05Z cognet $"); #define _ARM32_BUS_DMA_PRIVATE #include <sys/param.h> #include <sys/systm.h> #include <sys/sysproto.h> #include <sys/signalvar.h> #include <sys/imgact.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/linker.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/pcpu.h> #include <sys/proc.h> #include <sys/ptrace.h> #include <sys/cons.h> #include <sys/bio.h> #include <sys/bus.h> #include <sys/buf.h> #include <sys/exec.h> #include <sys/kdb.h> #include <sys/msgbuf.h> #include <machine/reg.h> #include <machine/cpu.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_object.h> #include <vm/vm_page.h> #include <vm/vm_pager.h> #include <vm/vm_map.h> #include <vm/vnode_pager.h> #include <machine/pmap.h> #include <machine/vmparam.h> #include <machine/pcb.h> #include <machine/undefined.h> #include <machine/machdep.h> #include <machine/metadata.h> #include <machine/armreg.h> #include <machine/bus.h> #include <sys/reboot.h> #include <arm/xscale/pxa/pxareg.h> #include <arm/xscale/pxa/pxavar.h> #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_IOPXS 1 #define KERNEL_PT_BEFOREKERN 2 #define KERNEL_PT_AFKERNEL 3 /* L2 table for mapping after kernel */ #define KERNEL_PT_AFKERNEL_NUM 9 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */ #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM) /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; extern void *_end; extern int *end; struct pcpu __pcpu; struct pcpu *pcpup = &__pcpu; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[PXA2X0_SDRAM_BANKS * 2 + 4]; vm_paddr_t dump_avail[PXA2X0_SDRAM_BANKS * 2 + 4]; vm_offset_t physical_pages; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; struct pv_addr minidataclean; static struct trapframe proc0_tf; static void pxa_probe_sdram(bus_space_tag_t, bus_space_handle_t, uint32_t *, uint32_t *); /* Static device mappings. */ static const struct pmap_devmap pxa_devmap[] = { /* * Map the on-board devices up into the KVA region so we don't muck * up user-space. */ { PXA2X0_PERIPH_START + PXA2X0_PERIPH_OFFSET, PXA2X0_PERIPH_START, PXA250_PERIPH_END - PXA2X0_PERIPH_START, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; #define SDRAM_START 0xa0000000 extern vm_offset_t xscale_cache_clean_addr; void * initarm(void *arg, void *arg2) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; int i, j; uint32_t memsize[PXA2X0_SDRAM_BANKS], memstart[PXA2X0_SDRAM_BANKS]; set_cpufuncs(); lastaddr = fake_preload_metadata(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); freemempos = 0xa0200000; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + 0x20000000; #define alloc_pages(var, np) \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + 0x20000000; } i++; } freemem_pt = freemempos; freemempos = 0xa0100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); #ifdef ARM_USE_SMALL_ALLOC freemempos -= PAGE_SIZE; freemem_pt = trunc_page(freemem_pt); freemem_after = freemempos - ((freemem_pt - 0xa0100000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000) , (void *)0xc0100000, freemem_pt - 0xa0100000, 1); freemem_after -= ((freemem_after - 0xa0001000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000) , (void *)0xc0001000, trunc_page(freemem_after) - 0xa0001000, 0); freemempos = trunc_page(freemem_after); freemempos -= PAGE_SIZE; #endif /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); #if 0 /* XXXBJR: What is this? Don't know if there's an analogue. */ pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); #endif pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, SDRAM_START, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, SDRAM_START + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, SDRAM_START + 0x200000, (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1); afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef ARM_USE_SMALL_ALLOC if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) { arm_add_smallalloc_pages((void *)(freemem_after), (void*)(freemem_after + PAGE_SIZE), afterkern - (freemem_after + PAGE_SIZE), 0); } #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, pxa_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* * Sort out bus_space for on-board devices. */ pxa_obio_tag_init(); /* * Fetch the SDRAM start/size from the PXA2X0 SDRAM configration * registers. */ pxa_probe_sdram(obio_tag, PXA2X0_MEMCTL_BASE, memstart, memsize); physmem = 0; for (i = 0; i < PXA2X0_SDRAM_BANKS; i++) { physmem += memsize[i] / PAGE_SIZE; } /* Fire up consoles. */ cninit(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); proc_linkup(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; /* Enable MMU, I-cache, D-cache, write buffer. */ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; /* * ARM USE_SMALL_ALLOC uses dump_avail, so it must be filled before * calling pmap_bootstrap. */ i = 0; for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) { if (memsize[j] > 0) { dump_avail[i++] = round_page(memstart[j]); dump_avail[i++] = trunc_page(memstart[j] + memsize[j]); } } dump_avail[i] = 0; dump_avail[i] = 0; pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); i = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[i++] = 0xa0000000; phys_avail[i++] = 0xa0001000; /* *XXX: Gross hack to get our * pages in the vm_page_array . */ #endif for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) { if (memsize[j] > 0) { phys_avail[i] = round_page(memstart[j]); dump_avail[i++] = round_page(memstart[j]); phys_avail[i] = trunc_page(memstart[j] + memsize[j]); dump_avail[i++] = trunc_page(memstart[j] + memsize[j]); } } dump_avail[i] = 0; phys_avail[i++] = 0; dump_avail[i] = 0; phys_avail[i] = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[2] = round_page(virtual_avail - KERNBASE + phys_avail[2]); #else phys_avail[0] = round_page(virtual_avail - KERNBASE + phys_avail[0]); #endif init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); } static void pxa_probe_sdram(bus_space_tag_t bst, bus_space_handle_t bsh, uint32_t *memstart, uint32_t *memsize) { uint32_t mdcnfg, dwid, dcac, drac, dnb; int i; mdcnfg = bus_space_read_4(bst, bsh, MEMCTL_MDCNFG); /* * Scan all 4 SDRAM banks */ for (i = 0; i < PXA2X0_SDRAM_BANKS; i++) { memstart[i] = 0; memsize[i] = 0; switch (i) { case 0: case 1: if ((i == 0 && (mdcnfg & MDCNFG_DE0) == 0) || (i == 1 && (mdcnfg & MDCNFG_DE1) == 0)) continue; dwid = mdcnfg >> MDCNFD_DWID01_SHIFT; dcac = mdcnfg >> MDCNFD_DCAC01_SHIFT; drac = mdcnfg >> MDCNFD_DRAC01_SHIFT; dnb = mdcnfg >> MDCNFD_DNB01_SHIFT; break; case 2: case 3: if ((i == 2 && (mdcnfg & MDCNFG_DE2) == 0) || (i == 3 && (mdcnfg & MDCNFG_DE3) == 0)) continue; dwid = mdcnfg >> MDCNFD_DWID23_SHIFT; dcac = mdcnfg >> MDCNFD_DCAC23_SHIFT; drac = mdcnfg >> MDCNFD_DRAC23_SHIFT; dnb = mdcnfg >> MDCNFD_DNB23_SHIFT; break; default: panic("pxa_probe_sdram: impossible"); } dwid = 2 << (1 - (dwid & MDCNFD_DWID_MASK)); /* 16/32 width */ dcac = 1 << ((dcac & MDCNFD_DCAC_MASK) + 8); /* 8-11 columns */ drac = 1 << ((drac & MDCNFD_DRAC_MASK) + 11); /* 11-13 rows */ dnb = 2 << (dnb & MDCNFD_DNB_MASK); /* # of banks */ memsize[i] = dwid * dcac * drac * dnb; memstart[i] = PXA2X0_SDRAM0_START + (i * PXA2X0_SDRAM_BANK_SIZE); } } #define TIMER_FREQUENCY 3686400 #define UNIMPLEMENTED panic("%s: unimplemented", __func__) /* XXXBJR: Belongs with DELAY in a timer.c of some sort. */ void cpu_startprofclock(void) { UNIMPLEMENTED; } void cpu_stopprofclock(void) { UNIMPLEMENTED; } static struct arm32_dma_range pxa_range = { .dr_sysbase = 0, .dr_busbase = 0, .dr_len = ~0u, }; struct arm32_dma_range * bus_dma_get_range(void) { return (&pxa_range); } int bus_dma_get_range_nb(void) { return (1); }