Current Path : /sys/boot/sparc64/loader/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/boot/sparc64/loader/main.c |
/*- * Initial implementation: * Copyright (c) 2001 Robert Drehmel * All rights reserved. * * As long as the above copyright statement and this notice remain * unchanged, you can do what ever you want with this file. */ /*- * Copyright (c) 2008 - 2012 Marius Strobl <marius@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/boot/sparc64/loader/main.c 238904 2012-07-30 11:11:05Z marius $"); /* * FreeBSD/sparc64 kernel loader - machine dependent part * * - implements copyin and readin functions that map kernel * pages on demand. The machine independent code does not * know the size of the kernel early enough to pre-enter * TTEs and install just one 4MB mapping seemed to limiting * to me. */ #include <stand.h> #include <sys/param.h> #include <sys/exec.h> #include <sys/linker.h> #include <sys/queue.h> #include <sys/types.h> #ifdef LOADER_ZFS_SUPPORT #include <sys/vtoc.h> #include "../zfs/libzfs.h" #endif #include <vm/vm.h> #include <machine/asi.h> #include <machine/cmt.h> #include <machine/cpufunc.h> #include <machine/elf.h> #include <machine/fireplane.h> #include <machine/jbus.h> #include <machine/lsu.h> #include <machine/metadata.h> #include <machine/tte.h> #include <machine/tlb.h> #include <machine/upa.h> #include <machine/ver.h> #include <machine/vmparam.h> #include "bootstrap.h" #include "libofw.h" #include "dev_net.h" extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[]; enum { HEAPVA = 0x800000, HEAPSZ = 0x1000000, LOADSZ = 0x1000000 /* for kernel and modules */ }; /* At least Sun Fire V1280 require page sized allocations to be claimed. */ CTASSERT(HEAPSZ % PAGE_SIZE == 0); static struct mmu_ops { void (*tlb_init)(void); int (*mmu_mapin)(vm_offset_t va, vm_size_t len); } *mmu_ops; typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3, void *openfirmware); static inline u_long dtlb_get_data_sun4u(u_int, u_int); static int dtlb_enter_sun4u(u_int, u_long data, vm_offset_t); static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t); static inline u_long itlb_get_data_sun4u(u_int, u_int); static int itlb_enter_sun4u(u_int, u_long data, vm_offset_t); static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t); static void itlb_relocate_locked0_sun4u(void); extern vm_offset_t md_load(char *, vm_offset_t *); static int sparc64_autoload(void); static ssize_t sparc64_readin(const int, vm_offset_t, const size_t); static ssize_t sparc64_copyin(const void *, vm_offset_t, size_t); static vm_offset_t claim_virt(vm_offset_t, size_t, int); static vm_offset_t alloc_phys(size_t, int); static int map_phys(int, size_t, vm_offset_t, vm_offset_t); static void release_phys(vm_offset_t, u_int); static int __elfN(exec)(struct preloaded_file *); static int mmu_mapin_sun4u(vm_offset_t, vm_size_t); static vm_offset_t init_heap(void); static phandle_t find_bsp_sun4u(phandle_t, uint32_t); const char *cpu_cpuid_prop_sun4u(void); uint32_t cpu_get_mid_sun4u(void); static void tlb_init_sun4u(void); #ifdef LOADER_DEBUG typedef u_int64_t tte_t; static void pmap_print_tlb_sun4u(void); static void pmap_print_tte_sun4u(tte_t, tte_t); #endif static struct mmu_ops mmu_ops_sun4u = { tlb_init_sun4u, mmu_mapin_sun4u }; /* sun4u */ struct tlb_entry *dtlb_store; struct tlb_entry *itlb_store; u_int dtlb_slot; u_int itlb_slot; static int cpu_impl; static u_int dtlb_slot_max; static u_int itlb_slot_max; static u_int tlb_locked; static vm_offset_t curkva = 0; static vm_offset_t heapva; static char bootpath[64]; static phandle_t root; /* * Machine dependent structures that the machine independent * loader part uses. */ struct devsw *devsw[] = { #ifdef LOADER_DISK_SUPPORT &ofwdisk, #endif #ifdef LOADER_NET_SUPPORT &netdev, #endif #ifdef LOADER_ZFS_SUPPORT &zfs_dev, #endif 0 }; struct arch_switch archsw; static struct file_format sparc64_elf = { __elfN(loadfile), __elfN(exec) }; struct file_format *file_formats[] = { &sparc64_elf, 0 }; struct fs_ops *file_system[] = { #ifdef LOADER_UFS_SUPPORT &ufs_fsops, #endif #ifdef LOADER_CD9660_SUPPORT &cd9660_fsops, #endif #ifdef LOADER_ZFS_SUPPORT &zfs_fsops, #endif #ifdef LOADER_ZIP_SUPPORT &zipfs_fsops, #endif #ifdef LOADER_GZIP_SUPPORT &gzipfs_fsops, #endif #ifdef LOADER_BZIP2_SUPPORT &bzipfs_fsops, #endif #ifdef LOADER_NFS_SUPPORT &nfs_fsops, #endif #ifdef LOADER_TFTP_SUPPORT &tftp_fsops, #endif 0 }; struct netif_driver *netif_drivers[] = { #ifdef LOADER_NET_SUPPORT &ofwnet, #endif 0 }; extern struct console ofwconsole; struct console *consoles[] = { &ofwconsole, 0 }; #ifdef LOADER_DEBUG static int watch_phys_set_mask(vm_offset_t pa, u_long mask) { u_long lsucr; stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3)); lsucr = ldxa(0, ASI_LSU_CTL_REG); lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) | (mask << LSU_PM_SHIFT); stxa(0, ASI_LSU_CTL_REG, lsucr); return (0); } static int watch_phys_set(vm_offset_t pa, int sz) { u_long off; off = (u_long)pa & 7; /* Test for misaligned watch points. */ if (off + sz > 8) return (-1); return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off)); } static int watch_virt_set_mask(vm_offset_t va, u_long mask) { u_long lsucr; stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3)); lsucr = ldxa(0, ASI_LSU_CTL_REG); lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) | (mask << LSU_VM_SHIFT); stxa(0, ASI_LSU_CTL_REG, lsucr); return (0); } static int watch_virt_set(vm_offset_t va, int sz) { u_long off; off = (u_long)va & 7; /* Test for misaligned watch points. */ if (off + sz > 8) return (-1); return (watch_virt_set_mask(va, ((1 << sz) - 1) << off)); } #endif /* * archsw functions */ static int sparc64_autoload(void) { return (0); } static ssize_t sparc64_readin(const int fd, vm_offset_t va, const size_t len) { mmu_ops->mmu_mapin(va, len); return (read(fd, (void *)va, len)); } static ssize_t sparc64_copyin(const void *src, vm_offset_t dest, size_t len) { mmu_ops->mmu_mapin(dest, len); memcpy((void *)dest, src, len); return (len); } /* * other MD functions */ static vm_offset_t claim_virt(vm_offset_t virt, size_t size, int align) { vm_offset_t mva; if (OF_call_method("claim", mmu, 3, 1, virt, size, align, &mva) == -1) return ((vm_offset_t)-1); return (mva); } static vm_offset_t alloc_phys(size_t size, int align) { cell_t phys_hi, phys_low; if (OF_call_method("claim", memory, 2, 2, size, align, &phys_low, &phys_hi) == -1) return ((vm_offset_t)-1); return ((vm_offset_t)phys_hi << 32 | phys_low); } static int map_phys(int mode, size_t size, vm_offset_t virt, vm_offset_t phys) { return (OF_call_method("map", mmu, 5, 0, (uint32_t)phys, (uint32_t)(phys >> 32), virt, size, mode)); } static void release_phys(vm_offset_t phys, u_int size) { (void)OF_call_method("release", memory, 3, 0, (uint32_t)phys, (uint32_t)(phys >> 32), size); } static int __elfN(exec)(struct preloaded_file *fp) { struct file_metadata *fmp; vm_offset_t mdp; Elf_Addr entry; Elf_Ehdr *e; int error; if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0) return (EFTYPE); e = (Elf_Ehdr *)&fmp->md_data; if ((error = md_load(fp->f_args, &mdp)) != 0) return (error); printf("jumping to kernel entry at %#lx.\n", e->e_entry); #ifdef LOADER_DEBUG pmap_print_tlb_sun4u(); #endif dev_cleanup(); entry = e->e_entry; OF_release((void *)heapva, HEAPSZ); ((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware); panic("%s: exec returned", __func__); } static inline u_long dtlb_get_data_sun4u(u_int tlb, u_int slot) { u_long data, pstate; slot = TLB_DAR_SLOT(tlb, slot); /* * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to * work around errata of USIII and beyond. */ pstate = rdpr(pstate); wrpr(pstate, pstate & ~PSTATE_IE, 0); (void)ldxa(slot, ASI_DTLB_DATA_ACCESS_REG); data = ldxa(slot, ASI_DTLB_DATA_ACCESS_REG); wrpr(pstate, pstate, 0); return (data); } static inline u_long itlb_get_data_sun4u(u_int tlb, u_int slot) { u_long data, pstate; slot = TLB_DAR_SLOT(tlb, slot); /* * We read ASI_DTLB_DATA_ACCESS_REG twice back-to-back in order to * work around errata of USIII and beyond. */ pstate = rdpr(pstate); wrpr(pstate, pstate & ~PSTATE_IE, 0); (void)ldxa(slot, ASI_ITLB_DATA_ACCESS_REG); data = ldxa(slot, ASI_ITLB_DATA_ACCESS_REG); wrpr(pstate, pstate, 0); return (data); } static vm_offset_t dtlb_va_to_pa_sun4u(vm_offset_t va) { u_long pstate, reg; u_int i, tlb; pstate = rdpr(pstate); wrpr(pstate, pstate & ~PSTATE_IE, 0); for (i = 0; i < dtlb_slot_max; i++) { reg = ldxa(TLB_DAR_SLOT(tlb_locked, i), ASI_DTLB_TAG_READ_REG); if (TLB_TAR_VA(reg) != va) continue; reg = dtlb_get_data_sun4u(tlb_locked, i); wrpr(pstate, pstate, 0); reg >>= TD_PA_SHIFT; if (cpu_impl == CPU_IMPL_SPARC64V || cpu_impl >= CPU_IMPL_ULTRASPARCIII) return (reg & TD_PA_CH_MASK); return (reg & TD_PA_SF_MASK); } wrpr(pstate, pstate, 0); return (-1); } static vm_offset_t itlb_va_to_pa_sun4u(vm_offset_t va) { u_long pstate, reg; int i; pstate = rdpr(pstate); wrpr(pstate, pstate & ~PSTATE_IE, 0); for (i = 0; i < itlb_slot_max; i++) { reg = ldxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_TAG_READ_REG); if (TLB_TAR_VA(reg) != va) continue; reg = itlb_get_data_sun4u(tlb_locked, i); wrpr(pstate, pstate, 0); reg >>= TD_PA_SHIFT; if (cpu_impl == CPU_IMPL_SPARC64V || cpu_impl >= CPU_IMPL_ULTRASPARCIII) return (reg & TD_PA_CH_MASK); return (reg & TD_PA_SF_MASK); } wrpr(pstate, pstate, 0); return (-1); } static int dtlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt) { return (OF_call_method("SUNW,dtlb-load", mmu, 3, 0, index, data, virt)); } static int itlb_enter_sun4u(u_int index, u_long data, vm_offset_t virt) { if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp && index == 0 && (data & TD_L) != 0) panic("%s: won't enter locked TLB entry at index 0 on USIII+", __func__); return (OF_call_method("SUNW,itlb-load", mmu, 3, 0, index, data, virt)); } static void itlb_relocate_locked0_sun4u(void) { u_long data, pstate, tag; int i; if (cpu_impl != CPU_IMPL_ULTRASPARCIIIp) return; pstate = rdpr(pstate); wrpr(pstate, pstate & ~PSTATE_IE, 0); data = itlb_get_data_sun4u(tlb_locked, 0); if ((data & (TD_V | TD_L)) != (TD_V | TD_L)) { wrpr(pstate, pstate, 0); return; } /* Flush the mapping of slot 0. */ tag = ldxa(TLB_DAR_SLOT(tlb_locked, 0), ASI_ITLB_TAG_READ_REG); stxa(TLB_DEMAP_VA(TLB_TAR_VA(tag)) | TLB_DEMAP_PRIMARY | TLB_DEMAP_PAGE, ASI_IMMU_DEMAP, 0); flush(0); /* The USIII-family ignores the address. */ /* * Search a replacement slot != 0 and enter the data and tag * that formerly were in slot 0. */ for (i = 1; i < itlb_slot_max; i++) { if ((itlb_get_data_sun4u(tlb_locked, i) & TD_V) != 0) continue; stxa(AA_IMMU_TAR, ASI_IMMU, tag); stxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_DATA_ACCESS_REG, data); flush(0); /* The USIII-family ignores the address. */ break; } wrpr(pstate, pstate, 0); if (i == itlb_slot_max) panic("%s: could not find a replacement slot", __func__); } static int mmu_mapin_sun4u(vm_offset_t va, vm_size_t len) { vm_offset_t pa, mva; u_long data; u_int index; if (va + len > curkva) curkva = va + len; pa = (vm_offset_t)-1; len += va & PAGE_MASK_4M; va &= ~PAGE_MASK_4M; while (len) { if (dtlb_va_to_pa_sun4u(va) == (vm_offset_t)-1 || itlb_va_to_pa_sun4u(va) == (vm_offset_t)-1) { /* Allocate a physical page, claim the virtual area. */ if (pa == (vm_offset_t)-1) { pa = alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M); if (pa == (vm_offset_t)-1) panic("%s: out of memory", __func__); mva = claim_virt(va, PAGE_SIZE_4M, 0); if (mva != va) panic("%s: can't claim virtual page " "(wanted %#lx, got %#lx)", __func__, va, mva); /* * The mappings may have changed, be paranoid. */ continue; } /* * Actually, we can only allocate two pages less at * most (depending on the kernel TSB size). */ if (dtlb_slot >= dtlb_slot_max) panic("%s: out of dtlb_slots", __func__); if (itlb_slot >= itlb_slot_max) panic("%s: out of itlb_slots", __func__); data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP | TD_CV | TD_P | TD_W; dtlb_store[dtlb_slot].te_pa = pa; dtlb_store[dtlb_slot].te_va = va; index = dtlb_slot_max - dtlb_slot - 1; if (dtlb_enter_sun4u(index, data, va) < 0) panic("%s: can't enter dTLB slot %d data " "%#lx va %#lx", __func__, index, data, va); dtlb_slot++; itlb_store[itlb_slot].te_pa = pa; itlb_store[itlb_slot].te_va = va; index = itlb_slot_max - itlb_slot - 1; if (itlb_enter_sun4u(index, data, va) < 0) panic("%s: can't enter iTLB slot %d data " "%#lx va %#lxd", __func__, index, data, va); itlb_slot++; pa = (vm_offset_t)-1; } len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len; va += PAGE_SIZE_4M; } if (pa != (vm_offset_t)-1) release_phys(pa, PAGE_SIZE_4M); return (0); } static vm_offset_t init_heap(void) { /* There is no need for continuous physical heap memory. */ heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32); return (heapva); } static phandle_t find_bsp_sun4u(phandle_t node, uint32_t bspid) { char type[sizeof("cpu")]; phandle_t child; uint32_t cpuid; for (; node > 0; node = OF_peer(node)) { child = OF_child(node); if (child > 0) { child = find_bsp_sun4u(child, bspid); if (child > 0) return (child); } else { if (OF_getprop(node, "device_type", type, sizeof(type)) <= 0) continue; if (strcmp(type, "cpu") != 0) continue; if (OF_getprop(node, cpu_cpuid_prop_sun4u(), &cpuid, sizeof(cpuid)) <= 0) continue; if (cpuid == bspid) return (node); } } return (0); } const char * cpu_cpuid_prop_sun4u(void) { switch (cpu_impl) { case CPU_IMPL_SPARC64: case CPU_IMPL_SPARC64V: case CPU_IMPL_ULTRASPARCI: case CPU_IMPL_ULTRASPARCII: case CPU_IMPL_ULTRASPARCIIi: case CPU_IMPL_ULTRASPARCIIe: return ("upa-portid"); case CPU_IMPL_ULTRASPARCIII: case CPU_IMPL_ULTRASPARCIIIp: case CPU_IMPL_ULTRASPARCIIIi: case CPU_IMPL_ULTRASPARCIIIip: return ("portid"); case CPU_IMPL_ULTRASPARCIV: case CPU_IMPL_ULTRASPARCIVp: return ("cpuid"); default: return (""); } } uint32_t cpu_get_mid_sun4u(void) { switch (cpu_impl) { case CPU_IMPL_SPARC64: case CPU_IMPL_SPARC64V: case CPU_IMPL_ULTRASPARCI: case CPU_IMPL_ULTRASPARCII: case CPU_IMPL_ULTRASPARCIIi: case CPU_IMPL_ULTRASPARCIIe: return (UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG))); case CPU_IMPL_ULTRASPARCIII: case CPU_IMPL_ULTRASPARCIIIp: return (FIREPLANE_CR_GET_AID(ldxa(AA_FIREPLANE_CONFIG, ASI_FIREPLANE_CONFIG_REG))); case CPU_IMPL_ULTRASPARCIIIi: case CPU_IMPL_ULTRASPARCIIIip: return (JBUS_CR_GET_JID(ldxa(0, ASI_JBUS_CONFIG_REG))); case CPU_IMPL_ULTRASPARCIV: case CPU_IMPL_ULTRASPARCIVp: return (INTR_ID_GET_ID(ldxa(AA_INTR_ID, ASI_INTR_ID))); default: return (0); } } static void tlb_init_sun4u(void) { phandle_t bsp; cpu_impl = VER_IMPL(rdpr(ver)); switch (cpu_impl) { case CPU_IMPL_SPARC64: case CPU_IMPL_ULTRASPARCI: case CPU_IMPL_ULTRASPARCII: case CPU_IMPL_ULTRASPARCIIi: case CPU_IMPL_ULTRASPARCIIe: tlb_locked = TLB_DAR_T32; break; case CPU_IMPL_ULTRASPARCIII: case CPU_IMPL_ULTRASPARCIIIp: case CPU_IMPL_ULTRASPARCIIIi: case CPU_IMPL_ULTRASPARCIIIip: case CPU_IMPL_ULTRASPARCIV: case CPU_IMPL_ULTRASPARCIVp: tlb_locked = TLB_DAR_T16; break; case CPU_IMPL_SPARC64V: tlb_locked = TLB_DAR_FTLB; break; } bsp = find_bsp_sun4u(OF_child(root), cpu_get_mid_sun4u()); if (bsp == 0) panic("%s: no node for bootcpu?!?!", __func__); if (OF_getprop(bsp, "#dtlb-entries", &dtlb_slot_max, sizeof(dtlb_slot_max)) == -1 || OF_getprop(bsp, "#itlb-entries", &itlb_slot_max, sizeof(itlb_slot_max)) == -1) panic("%s: can't get TLB slot max.", __func__); if (cpu_impl == CPU_IMPL_ULTRASPARCIIIp) { #ifdef LOADER_DEBUG printf("pre fixup:\n"); pmap_print_tlb_sun4u(); #endif /* * Relocate the locked entry in it16 slot 0 (if existent) * as part of working around Cheetah+ erratum 34. */ itlb_relocate_locked0_sun4u(); #ifdef LOADER_DEBUG printf("post fixup:\n"); pmap_print_tlb_sun4u(); #endif } dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store)); itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store)); if (dtlb_store == NULL || itlb_store == NULL) panic("%s: can't allocate TLB store", __func__); } #ifdef LOADER_ZFS_SUPPORT static void sparc64_zfs_probe(void) { struct vtoc8 vtoc; struct zfs_devdesc zfs_currdev; char alias[64], devname[sizeof(alias) + sizeof(":x") - 1]; char type[sizeof("device_type")]; char *bdev, *dev, *odev; uint64_t guid; int fd, len, part; phandle_t aliases, options; /* Get the GUID of the ZFS pool on the boot device. */ guid = 0; zfs_probe_dev(bootpath, &guid); /* * Get the GUIDs of the ZFS pools on any additional disks listed in * the boot-device environment variable. */ if ((aliases = OF_finddevice("/aliases")) == -1) goto out; options = OF_finddevice("/options"); len = OF_getproplen(options, "boot-device"); if (len <= 0) goto out; bdev = odev = malloc(len + 1); if (bdev == NULL) goto out; if (OF_getprop(options, "boot-device", bdev, len) <= 0) goto out; bdev[len] = '\0'; while ((dev = strsep(&bdev, " ")) != NULL) { if (*dev == '\0') continue; strcpy(alias, dev); (void)OF_getprop(aliases, dev, alias, sizeof(alias)); /* * Don't probe the boot disk twice. Note that bootpath * includes the partition specifier. */ if (strncmp(alias, bootpath, strlen(alias)) == 0) continue; if (OF_getprop(OF_finddevice(alias), "device_type", type, sizeof(type)) == -1) continue; if (strcmp(type, "block") != 0) continue; /* Find freebsd-zfs slices in the VTOC. */ fd = open(alias, O_RDONLY); if (fd == -1) continue; lseek(fd, 0, SEEK_SET); if (read(fd, &vtoc, sizeof(vtoc)) != sizeof(vtoc)) { close(fd); continue; } close(fd); for (part = 0; part < 8; part++) { if (part == 2 || vtoc.part[part].tag != VTOC_TAG_FREEBSD_ZFS) continue; (void)sprintf(devname, "%s:%c", alias, part + 'a'); if (zfs_probe_dev(devname, NULL) == ENXIO) break; } } free(odev); out: if (guid != 0) { zfs_currdev.pool_guid = guid; zfs_currdev.root_guid = 0; zfs_currdev.d_dev = &zfs_dev; zfs_currdev.d_type = zfs_currdev.d_dev->dv_type; (void)strncpy(bootpath, zfs_fmtdev(&zfs_currdev), sizeof(bootpath) - 1); bootpath[sizeof(bootpath) - 1] = '\0'; } } #endif /* LOADER_ZFS_SUPPORT */ int main(int (*openfirm)(void *)) { char compatible[32]; struct devsw **dp; /* * Tell the Open Firmware functions where they find the OFW gate. */ OF_init(openfirm); archsw.arch_getdev = ofw_getdev; archsw.arch_copyin = sparc64_copyin; archsw.arch_copyout = ofw_copyout; archsw.arch_readin = sparc64_readin; archsw.arch_autoload = sparc64_autoload; #ifdef LOADER_ZFS_SUPPORT archsw.arch_zfs_probe = sparc64_zfs_probe; #endif if (init_heap() == (vm_offset_t)-1) OF_exit(); setheap((void *)heapva, (void *)(heapva + HEAPSZ)); /* * Probe for a console. */ cons_probe(); if ((root = OF_peer(0)) == -1) panic("%s: can't get root phandle", __func__); OF_getprop(root, "compatible", compatible, sizeof(compatible)); mmu_ops = &mmu_ops_sun4u; mmu_ops->tlb_init(); /* * Set up the current device. */ OF_getprop(chosen, "bootpath", bootpath, sizeof(bootpath)); /* * Sun compatible bootable CD-ROMs have a disk label placed * before the cd9660 data, with the actual filesystem being * in the first partition, while the other partitions contain * pseudo disk labels with embedded boot blocks for different * architectures, which may be followed by UFS filesystems. * The firmware will set the boot path to the partition it * boots from ('f' in the sun4u case), but we want the kernel * to be loaded from the cd9660 fs ('a'), so the boot path * needs to be altered. */ if (bootpath[strlen(bootpath) - 2] == ':' && bootpath[strlen(bootpath) - 1] == 'f' && strstr(bootpath, "cdrom") != NULL) { bootpath[strlen(bootpath) - 1] = 'a'; printf("Boot path set to %s\n", bootpath); } /* * Initialize devices. */ for (dp = devsw; *dp != 0; dp++) if ((*dp)->dv_init != 0) (*dp)->dv_init(); /* * Now that sparc64_zfs_probe() might have altered bootpath, * export it. */ env_setenv("currdev", EV_VOLATILE, bootpath, ofw_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE, bootpath, env_noset, env_nounset); printf("\n"); printf("%s, Revision %s\n", bootprog_name, bootprog_rev); printf("(%s, %s)\n", bootprog_maker, bootprog_date); printf("bootpath=\"%s\"\n", bootpath); /* Give control to the machine independent loader code. */ interact(); return (1); } COMMAND_SET(heap, "heap", "show heap usage", command_heap); static int command_heap(int argc, char *argv[]) { mallocstats(); printf("heap base at %p, top at %p, upper limit at %p\n", heapva, sbrk(0), heapva + HEAPSZ); return(CMD_OK); } COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); static int command_reboot(int argc, char *argv[]) { int i; for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); printf("Rebooting...\n"); OF_exit(); } /* provide this for panic, as it's not in the startup code */ void exit(int code) { OF_exit(); } #ifdef LOADER_DEBUG static const char *const page_sizes[] = { " 8k", " 64k", "512k", " 4m" }; static void pmap_print_tte_sun4u(tte_t tag, tte_t tte) { printf("%s %s ", page_sizes[(tte >> TD_SIZE_SHIFT) & TD_SIZE_MASK], tag & TD_G ? "G" : " "); printf(tte & TD_W ? "W " : " "); printf(tte & TD_P ? "\e[33mP\e[0m " : " "); printf(tte & TD_E ? "E " : " "); printf(tte & TD_CV ? "CV " : " "); printf(tte & TD_CP ? "CP " : " "); printf(tte & TD_L ? "\e[32mL\e[0m " : " "); printf(tte & TD_IE ? "IE " : " "); printf(tte & TD_NFO ? "NFO " : " "); printf("pa=0x%lx va=0x%lx ctx=%ld\n", TD_PA(tte), TLB_TAR_VA(tag), TLB_TAR_CTX(tag)); } static void pmap_print_tlb_sun4u(void) { tte_t tag, tte; u_long pstate; int i; pstate = rdpr(pstate); for (i = 0; i < itlb_slot_max; i++) { wrpr(pstate, pstate & ~PSTATE_IE, 0); tte = itlb_get_data_sun4u(tlb_locked, i); wrpr(pstate, pstate, 0); if (!(tte & TD_V)) continue; tag = ldxa(TLB_DAR_SLOT(tlb_locked, i), ASI_ITLB_TAG_READ_REG); printf("iTLB-%2u: ", i); pmap_print_tte_sun4u(tag, tte); } for (i = 0; i < dtlb_slot_max; i++) { wrpr(pstate, pstate & ~PSTATE_IE, 0); tte = dtlb_get_data_sun4u(tlb_locked, i); wrpr(pstate, pstate, 0); if (!(tte & TD_V)) continue; tag = ldxa(TLB_DAR_SLOT(tlb_locked, i), ASI_DTLB_TAG_READ_REG); printf("dTLB-%2u: ", i); pmap_print_tte_sun4u(tag, tte); } } #endif