Current Path : /sys/contrib/rdma/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/contrib/rdma/ib_verbs.h |
/* * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2004 Infinicon Corporation. All rights reserved. * Copyright (c) 2004 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ * * $FreeBSD: release/9.1.0/sys/contrib/rdma/ib_verbs.h 178784 2008-05-05 18:35:55Z kmacy $ */ #if !defined(IB_VERBS_H) #define IB_VERBS_H #include <contrib/rdma/types.h> #include <sys/lock.h> #include <sys/mutex.h> struct rdma_scatterlist { void *page; unsigned int length; unsigned int offset; }; struct vm_object; union ib_gid { u8 raw[16]; struct { __be64 subnet_prefix; __be64 interface_id; } global; }; enum rdma_node_type { /* IB values map to NodeInfo:NodeType. */ RDMA_NODE_IB_CA = 1, RDMA_NODE_IB_SWITCH, RDMA_NODE_IB_ROUTER, RDMA_NODE_RNIC }; enum rdma_transport_type { RDMA_TRANSPORT_IB, RDMA_TRANSPORT_IWARP }; enum rdma_transport_type rdma_node_get_transport(enum rdma_node_type node_type); enum ib_device_cap_flags { IB_DEVICE_RESIZE_MAX_WR = 1, IB_DEVICE_BAD_PKEY_CNTR = (1<<1), IB_DEVICE_BAD_QKEY_CNTR = (1<<2), IB_DEVICE_RAW_MULTI = (1<<3), IB_DEVICE_AUTO_PATH_MIG = (1<<4), IB_DEVICE_CHANGE_PHY_PORT = (1<<5), IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), IB_DEVICE_SHUTDOWN_PORT = (1<<8), IB_DEVICE_INIT_TYPE = (1<<9), IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), IB_DEVICE_SYS_IMAGE_GUID = (1<<11), IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), IB_DEVICE_SRQ_RESIZE = (1<<13), IB_DEVICE_N_NOTIFY_CQ = (1<<14), IB_DEVICE_ZERO_STAG = (1<<15), IB_DEVICE_SEND_W_INV = (1<<16), IB_DEVICE_MEM_WINDOW = (1<<17) }; enum ib_atomic_cap { IB_ATOMIC_NONE, IB_ATOMIC_HCA, IB_ATOMIC_GLOB }; struct ib_device_attr { u64 fw_ver; __be64 sys_image_guid; u64 max_mr_size; u64 page_size_cap; u32 vendor_id; u32 vendor_part_id; u32 hw_ver; int max_qp; int max_qp_wr; int device_cap_flags; int max_sge; int max_sge_rd; int max_cq; int max_cqe; int max_mr; int max_pd; int max_qp_rd_atom; int max_ee_rd_atom; int max_res_rd_atom; int max_qp_init_rd_atom; int max_ee_init_rd_atom; enum ib_atomic_cap atomic_cap; int max_ee; int max_rdd; int max_mw; int max_raw_ipv6_qp; int max_raw_ethy_qp; int max_mcast_grp; int max_mcast_qp_attach; int max_total_mcast_qp_attach; int max_ah; int max_fmr; int max_map_per_fmr; int max_srq; int max_srq_wr; int max_srq_sge; u16 max_pkeys; u8 local_ca_ack_delay; }; enum ib_mtu { IB_MTU_256 = 1, IB_MTU_512 = 2, IB_MTU_1024 = 3, IB_MTU_2048 = 4, IB_MTU_4096 = 5 }; static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) { switch (mtu) { case IB_MTU_256: return 256; case IB_MTU_512: return 512; case IB_MTU_1024: return 1024; case IB_MTU_2048: return 2048; case IB_MTU_4096: return 4096; default: return -1; } } enum ib_port_state { IB_PORT_NOP = 0, IB_PORT_DOWN = 1, IB_PORT_INIT = 2, IB_PORT_ARMED = 3, IB_PORT_ACTIVE = 4, IB_PORT_ACTIVE_DEFER = 5 }; enum ib_port_cap_flags { IB_PORT_SM = 1 << 1, IB_PORT_NOTICE_SUP = 1 << 2, IB_PORT_TRAP_SUP = 1 << 3, IB_PORT_OPT_IPD_SUP = 1 << 4, IB_PORT_AUTO_MIGR_SUP = 1 << 5, IB_PORT_SL_MAP_SUP = 1 << 6, IB_PORT_MKEY_NVRAM = 1 << 7, IB_PORT_PKEY_NVRAM = 1 << 8, IB_PORT_LED_INFO_SUP = 1 << 9, IB_PORT_SM_DISABLED = 1 << 10, IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, IB_PORT_CM_SUP = 1 << 16, IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, IB_PORT_REINIT_SUP = 1 << 18, IB_PORT_DEVICE_MGMT_SUP = 1 << 19, IB_PORT_VENDOR_CLASS_SUP = 1 << 20, IB_PORT_DR_NOTICE_SUP = 1 << 21, IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, IB_PORT_BOOT_MGMT_SUP = 1 << 23, IB_PORT_LINK_LATENCY_SUP = 1 << 24, IB_PORT_CLIENT_REG_SUP = 1 << 25 }; enum ib_port_width { IB_WIDTH_1X = 1, IB_WIDTH_4X = 2, IB_WIDTH_8X = 4, IB_WIDTH_12X = 8 }; static inline int ib_width_enum_to_int(enum ib_port_width width) { switch (width) { case IB_WIDTH_1X: return 1; case IB_WIDTH_4X: return 4; case IB_WIDTH_8X: return 8; case IB_WIDTH_12X: return 12; default: return -1; } } struct ib_port_attr { enum ib_port_state state; enum ib_mtu max_mtu; enum ib_mtu active_mtu; int gid_tbl_len; u32 port_cap_flags; u32 max_msg_sz; u32 bad_pkey_cntr; u32 qkey_viol_cntr; u16 pkey_tbl_len; u16 lid; u16 sm_lid; u8 lmc; u8 max_vl_num; u8 sm_sl; u8 subnet_timeout; u8 init_type_reply; u8 active_width; u8 active_speed; u8 phys_state; }; enum ib_device_modify_flags { IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 }; struct ib_device_modify { u64 sys_image_guid; char node_desc[64]; }; enum ib_port_modify_flags { IB_PORT_SHUTDOWN = 1, IB_PORT_INIT_TYPE = (1<<2), IB_PORT_RESET_QKEY_CNTR = (1<<3) }; struct ib_port_modify { u32 set_port_cap_mask; u32 clr_port_cap_mask; u8 init_type; }; enum ib_event_type { IB_EVENT_CQ_ERR, IB_EVENT_QP_FATAL, IB_EVENT_QP_REQ_ERR, IB_EVENT_QP_ACCESS_ERR, IB_EVENT_COMM_EST, IB_EVENT_SQ_DRAINED, IB_EVENT_PATH_MIG, IB_EVENT_PATH_MIG_ERR, IB_EVENT_DEVICE_FATAL, IB_EVENT_PORT_ACTIVE, IB_EVENT_PORT_ERR, IB_EVENT_LID_CHANGE, IB_EVENT_PKEY_CHANGE, IB_EVENT_SM_CHANGE, IB_EVENT_SRQ_ERR, IB_EVENT_SRQ_LIMIT_REACHED, IB_EVENT_QP_LAST_WQE_REACHED, IB_EVENT_CLIENT_REREGISTER }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3, }; struct ib_event { struct ib_device *device; union { struct ib_cq *cq; struct ib_qp *qp; struct ib_srq *srq; u8 port_num; } element; enum ib_event_type event; }; struct ib_event_handler { struct ib_device *device; void (*handler)(struct ib_event_handler *, struct ib_event *); TAILQ_ENTRY(ib_event_handler) list; }; #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ do { \ (_ptr)->device = _device; \ (_ptr)->handler = _handler; \ } while (0) struct ib_global_route { union ib_gid dgid; u32 flow_label; u8 sgid_index; u8 hop_limit; u8 traffic_class; }; struct ib_grh { __be32 version_tclass_flow; __be16 paylen; u8 next_hdr; u8 hop_limit; union ib_gid sgid; union ib_gid dgid; }; enum { IB_MULTICAST_QPN = 0xffffff }; #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) enum ib_ah_flags { IB_AH_GRH = 1 }; enum ib_rate { IB_RATE_PORT_CURRENT = 0, IB_RATE_2_5_GBPS = 2, IB_RATE_5_GBPS = 5, IB_RATE_10_GBPS = 3, IB_RATE_20_GBPS = 6, IB_RATE_30_GBPS = 4, IB_RATE_40_GBPS = 7, IB_RATE_60_GBPS = 8, IB_RATE_80_GBPS = 9, IB_RATE_120_GBPS = 10 }; /** * ib_rate_to_mult - Convert the IB rate enum to a multiple of the * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. * @rate: rate to convert. */ int ib_rate_to_mult(enum ib_rate rate); /** * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate * enum. * @mult: multiple to convert. */ enum ib_rate mult_to_ib_rate(int mult); struct ib_ah_attr { struct ib_global_route grh; u16 dlid; u8 sl; u8 src_path_bits; u8 static_rate; u8 ah_flags; u8 port_num; }; enum ib_wc_status { IB_WC_SUCCESS, IB_WC_LOC_LEN_ERR, IB_WC_LOC_QP_OP_ERR, IB_WC_LOC_EEC_OP_ERR, IB_WC_LOC_PROT_ERR, IB_WC_WR_FLUSH_ERR, IB_WC_MW_BIND_ERR, IB_WC_BAD_RESP_ERR, IB_WC_LOC_ACCESS_ERR, IB_WC_REM_INV_REQ_ERR, IB_WC_REM_ACCESS_ERR, IB_WC_REM_OP_ERR, IB_WC_RETRY_EXC_ERR, IB_WC_RNR_RETRY_EXC_ERR, IB_WC_LOC_RDD_VIOL_ERR, IB_WC_REM_INV_RD_REQ_ERR, IB_WC_REM_ABORT_ERR, IB_WC_INV_EECN_ERR, IB_WC_INV_EEC_STATE_ERR, IB_WC_FATAL_ERR, IB_WC_RESP_TIMEOUT_ERR, IB_WC_GENERAL_ERR }; enum ib_wc_opcode { IB_WC_SEND, IB_WC_RDMA_WRITE, IB_WC_RDMA_READ, IB_WC_COMP_SWAP, IB_WC_FETCH_ADD, IB_WC_BIND_MW, /* * Set value of IB_WC_RECV so consumers can test if a completion is a * receive by testing (opcode & IB_WC_RECV). */ IB_WC_RECV = 1 << 7, IB_WC_RECV_RDMA_WITH_IMM }; enum ib_wc_flags { IB_WC_GRH = 1, IB_WC_WITH_IMM = (1<<1) }; struct ib_wc { u64 wr_id; enum ib_wc_status status; enum ib_wc_opcode opcode; u32 vendor_err; u32 byte_len; struct ib_qp *qp; __be32 imm_data; u32 src_qp; int wc_flags; u16 pkey_index; u16 slid; u8 sl; u8 dlid_path_bits; u8 port_num; /* valid only for DR SMPs on switches */ }; enum ib_cq_notify_flags { IB_CQ_SOLICITED = 1 << 0, IB_CQ_NEXT_COMP = 1 << 1, IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, }; enum ib_srq_attr_mask { IB_SRQ_MAX_WR = 1 << 0, IB_SRQ_LIMIT = 1 << 1, }; struct ib_srq_attr { u32 max_wr; u32 max_sge; u32 srq_limit; }; struct ib_srq_init_attr { void (*event_handler)(struct ib_event *, void *); void *srq_context; struct ib_srq_attr attr; }; struct ib_qp_cap { u32 max_send_wr; u32 max_recv_wr; u32 max_send_sge; u32 max_recv_sge; u32 max_inline_data; }; enum ib_sig_type { IB_SIGNAL_ALL_WR, IB_SIGNAL_REQ_WR }; enum ib_qp_type { /* * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries * here (and in that order) since the MAD layer uses them as * indices into a 2-entry table. */ IB_QPT_SMI, IB_QPT_GSI, IB_QPT_RC, IB_QPT_UC, IB_QPT_UD, IB_QPT_RAW_IPV6, IB_QPT_RAW_ETY }; struct ib_qp_init_attr { void (*event_handler)(struct ib_event *, void *); void *qp_context; struct ib_cq *send_cq; struct ib_cq *recv_cq; struct ib_srq *srq; struct ib_qp_cap cap; enum ib_sig_type sq_sig_type; enum ib_qp_type qp_type; u8 port_num; /* special QP types only */ }; enum ib_rnr_timeout { IB_RNR_TIMER_655_36 = 0, IB_RNR_TIMER_000_01 = 1, IB_RNR_TIMER_000_02 = 2, IB_RNR_TIMER_000_03 = 3, IB_RNR_TIMER_000_04 = 4, IB_RNR_TIMER_000_06 = 5, IB_RNR_TIMER_000_08 = 6, IB_RNR_TIMER_000_12 = 7, IB_RNR_TIMER_000_16 = 8, IB_RNR_TIMER_000_24 = 9, IB_RNR_TIMER_000_32 = 10, IB_RNR_TIMER_000_48 = 11, IB_RNR_TIMER_000_64 = 12, IB_RNR_TIMER_000_96 = 13, IB_RNR_TIMER_001_28 = 14, IB_RNR_TIMER_001_92 = 15, IB_RNR_TIMER_002_56 = 16, IB_RNR_TIMER_003_84 = 17, IB_RNR_TIMER_005_12 = 18, IB_RNR_TIMER_007_68 = 19, IB_RNR_TIMER_010_24 = 20, IB_RNR_TIMER_015_36 = 21, IB_RNR_TIMER_020_48 = 22, IB_RNR_TIMER_030_72 = 23, IB_RNR_TIMER_040_96 = 24, IB_RNR_TIMER_061_44 = 25, IB_RNR_TIMER_081_92 = 26, IB_RNR_TIMER_122_88 = 27, IB_RNR_TIMER_163_84 = 28, IB_RNR_TIMER_245_76 = 29, IB_RNR_TIMER_327_68 = 30, IB_RNR_TIMER_491_52 = 31 }; enum ib_qp_attr_mask { IB_QP_STATE = 1, IB_QP_CUR_STATE = (1<<1), IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), IB_QP_ACCESS_FLAGS = (1<<3), IB_QP_PKEY_INDEX = (1<<4), IB_QP_PORT = (1<<5), IB_QP_QKEY = (1<<6), IB_QP_AV = (1<<7), IB_QP_PATH_MTU = (1<<8), IB_QP_TIMEOUT = (1<<9), IB_QP_RETRY_CNT = (1<<10), IB_QP_RNR_RETRY = (1<<11), IB_QP_RQ_PSN = (1<<12), IB_QP_MAX_QP_RD_ATOMIC = (1<<13), IB_QP_ALT_PATH = (1<<14), IB_QP_MIN_RNR_TIMER = (1<<15), IB_QP_SQ_PSN = (1<<16), IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), IB_QP_PATH_MIG_STATE = (1<<18), IB_QP_CAP = (1<<19), IB_QP_DEST_QPN = (1<<20) }; enum ib_qp_state { IB_QPS_RESET, IB_QPS_INIT, IB_QPS_RTR, IB_QPS_RTS, IB_QPS_SQD, IB_QPS_SQE, IB_QPS_ERR }; enum ib_mig_state { IB_MIG_MIGRATED, IB_MIG_REARM, IB_MIG_ARMED }; struct ib_qp_attr { enum ib_qp_state qp_state; enum ib_qp_state cur_qp_state; enum ib_mtu path_mtu; enum ib_mig_state path_mig_state; u32 qkey; u32 rq_psn; u32 sq_psn; u32 dest_qp_num; int qp_access_flags; struct ib_qp_cap cap; struct ib_ah_attr ah_attr; struct ib_ah_attr alt_ah_attr; u16 pkey_index; u16 alt_pkey_index; u8 en_sqd_async_notify; u8 sq_draining; u8 max_rd_atomic; u8 max_dest_rd_atomic; u8 min_rnr_timer; u8 port_num; u8 timeout; u8 retry_cnt; u8 rnr_retry; u8 alt_port_num; u8 alt_timeout; }; enum ib_wr_opcode { IB_WR_RDMA_WRITE, IB_WR_RDMA_WRITE_WITH_IMM, IB_WR_SEND, IB_WR_SEND_WITH_IMM, IB_WR_RDMA_READ, IB_WR_ATOMIC_CMP_AND_SWP, IB_WR_ATOMIC_FETCH_AND_ADD }; enum ib_send_flags { IB_SEND_FENCE = 1, IB_SEND_SIGNALED = (1<<1), IB_SEND_SOLICITED = (1<<2), IB_SEND_INLINE = (1<<3) }; struct ib_sge { u64 addr; u32 length; u32 lkey; }; struct ib_send_wr { struct ib_send_wr *next; u64 wr_id; struct ib_sge *sg_list; int num_sge; enum ib_wr_opcode opcode; int send_flags; __be32 imm_data; union { struct { u64 remote_addr; u32 rkey; } rdma; struct { u64 remote_addr; u64 compare_add; u64 swap; u32 rkey; } atomic; struct { struct ib_ah *ah; u32 remote_qpn; u32 remote_qkey; u16 pkey_index; /* valid for GSI only */ u8 port_num; /* valid for DR SMPs on switch only */ } ud; } wr; }; struct ib_recv_wr { struct ib_recv_wr *next; u64 wr_id; struct ib_sge *sg_list; int num_sge; }; enum ib_access_flags { IB_ACCESS_LOCAL_WRITE = 1, IB_ACCESS_REMOTE_WRITE = (1<<1), IB_ACCESS_REMOTE_READ = (1<<2), IB_ACCESS_REMOTE_ATOMIC = (1<<3), IB_ACCESS_MW_BIND = (1<<4) }; struct ib_phys_buf { u64 addr; u64 size; }; struct ib_mr_attr { struct ib_pd *pd; u64 device_virt_addr; u64 size; int mr_access_flags; u32 lkey; u32 rkey; }; enum ib_mr_rereg_flags { IB_MR_REREG_TRANS = 1, IB_MR_REREG_PD = (1<<1), IB_MR_REREG_ACCESS = (1<<2) }; struct ib_mw_bind { struct ib_mr *mr; u64 wr_id; u64 addr; u32 length; int send_flags; int mw_access_flags; }; struct ib_fmr_attr { int max_pages; int max_maps; u8 page_shift; }; /* * XXX can this really be on 7 different lists at once? * */ struct ib_ucontext { struct ib_device *device; TAILQ_ENTRY(ib_ucontext) pd_list; TAILQ_ENTRY(ib_ucontext) mr_list; TAILQ_ENTRY(ib_ucontext) mw_list; TAILQ_ENTRY(ib_ucontext) cq_list; TAILQ_ENTRY(ib_ucontext) qp_list; TAILQ_ENTRY(ib_ucontext) srq_list; TAILQ_ENTRY(ib_ucontext) ah_list; int closing; }; struct ib_uobject { u64 user_handle; /* handle given to us by userspace */ struct ib_ucontext *context; /* associated user context */ void *object; /* containing object */ TAILQ_ENTRY(ib_uobject) entry; /* link to context's list */ u32 id; /* index into kernel idr */ volatile uint32_t ref; struct mtx lock; /* protects .live */ int live; }; struct ib_udata { void *inbuf; void *outbuf; size_t inlen; size_t outlen; }; #define IB_UMEM_MAX_PAGE_CHUNK \ ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) struct ib_pd { struct ib_device *device; struct ib_uobject *uobject; volatile int usecnt; /* count all resources */ }; struct ib_ah { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; }; typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); struct ib_cq { struct ib_device *device; struct ib_uobject *uobject; ib_comp_handler comp_handler; void (*event_handler)(struct ib_event *, void *); void * cq_context; int cqe; volatile int usecnt; /* count number of work queues */ }; struct ib_srq { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; void (*event_handler)(struct ib_event *, void *); void *srq_context; volatile int usecnt; }; struct ib_qp { struct ib_device *device; struct ib_pd *pd; struct ib_cq *send_cq; struct ib_cq *recv_cq; struct ib_srq *srq; struct ib_uobject *uobject; void (*event_handler)(struct ib_event *, void *); void *qp_context; u32 qp_num; enum ib_qp_type qp_type; }; struct ib_mr { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; u32 lkey; u32 rkey; volatile int usecnt; /* count number of MWs */ }; struct ib_mw { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; u32 rkey; }; struct ib_fmr { struct ib_device *device; struct ib_pd *pd; TAILQ_ENTRY(ib_fmr) entry; u32 lkey; u32 rkey; }; TAILQ_HEAD(ib_fmr_list_head, ib_fmr); struct ib_mad; struct ib_grh; enum ib_process_mad_flags { IB_MAD_IGNORE_MKEY = 1, IB_MAD_IGNORE_BKEY = 2, IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY }; enum ib_mad_result { IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ }; #define IB_DEVICE_NAME_MAX 64 struct ib_cache { struct mtx lock; struct ib_event_handler event_handler; struct ib_pkey_cache **pkey_cache; struct ib_gid_cache **gid_cache; u8 *lmc_cache; }; struct ib_dma_mapping_ops { int (*mapping_error)(struct ib_device *dev, u64 dma_addr); u64 (*map_single)(struct ib_device *dev, void *ptr, size_t size, enum dma_data_direction direction); void (*unmap_single)(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction); u64 (*map_page)(struct ib_device *dev, void *page, unsigned long offset, size_t size, enum dma_data_direction direction); void (*unmap_page)(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction); int (*map_sg)(struct ib_device *dev, struct rdma_scatterlist *sg, int nents, enum dma_data_direction direction); void (*unmap_sg)(struct ib_device *dev, struct rdma_scatterlist *sg, int nents, enum dma_data_direction direction); u64 (*dma_address)(struct ib_device *dev, struct rdma_scatterlist *sg); unsigned int (*dma_len)(struct ib_device *dev, struct rdma_scatterlist *sg); void (*sync_single_for_cpu)(struct ib_device *dev, u64 dma_handle, size_t size, enum dma_data_direction dir); void (*sync_single_for_device)(struct ib_device *dev, u64 dma_handle, size_t size, enum dma_data_direction dir); void *(*alloc_coherent)(struct ib_device *dev, size_t size, u64 *dma_handle, int flag); void (*free_coherent)(struct ib_device *dev, size_t size, void *cpu_addr, u64 dma_handle); }; struct iw_cm_verbs; struct ib_device { struct device *dma_device; char name[IB_DEVICE_NAME_MAX]; TAILQ_HEAD(, ib_event_handler) event_handler_list; struct mtx event_handler_lock; TAILQ_ENTRY(ib_device) core_list; TAILQ_HEAD(, ib_client_data) client_data_list; struct mtx client_data_lock; struct ib_cache cache; int *pkey_tbl_len; int *gid_tbl_len; u32 flags; int num_comp_vectors; struct iw_cm_verbs *iwcm; int (*query_device)(struct ib_device *device, struct ib_device_attr *device_attr); int (*query_port)(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr); int (*query_gid)(struct ib_device *device, u8 port_num, int index, union ib_gid *gid); int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, u16 *pkey); int (*modify_device)(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify); int (*modify_port)(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify); struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, struct ib_udata *udata); int (*dealloc_ucontext)(struct ib_ucontext *context); int (*mmap)(struct ib_ucontext *context, struct vm_object *vma); struct ib_pd * (*alloc_pd)(struct ib_device *device, struct ib_ucontext *context, struct ib_udata *udata); int (*dealloc_pd)(struct ib_pd *pd); struct ib_ah * (*create_ah)(struct ib_pd *pd, struct ib_ah_attr *ah_attr); int (*modify_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr); int (*query_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr); int (*destroy_ah)(struct ib_ah *ah); struct ib_srq * (*create_srq)(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr, struct ib_udata *udata); int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask, struct ib_udata *udata); int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); int (*destroy_srq)(struct ib_srq *srq); int (*post_srq_recv)(struct ib_srq *srq, struct ib_recv_wr *recv_wr, struct ib_recv_wr **bad_recv_wr); struct ib_qp * (*create_qp)(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr, struct ib_udata *udata); int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_udata *udata); int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); int (*destroy_qp)(struct ib_qp *qp); int (*post_send)(struct ib_qp *qp, struct ib_send_wr *send_wr, struct ib_send_wr **bad_send_wr); int (*post_recv)(struct ib_qp *qp, struct ib_recv_wr *recv_wr, struct ib_recv_wr **bad_recv_wr); struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, int comp_vector, struct ib_ucontext *context, struct ib_udata *udata); int (*destroy_cq)(struct ib_cq *cq); int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); int (*peek_cq)(struct ib_cq *cq, int wc_cnt); int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64 *iova_start); struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_udata *udata); int (*query_mr)(struct ib_mr *mr, struct ib_mr_attr *mr_attr); int (*dereg_mr)(struct ib_mr *mr); int (*rereg_phys_mr)(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64 *iova_start); struct ib_mw * (*alloc_mw)(struct ib_pd *pd); int (*bind_mw)(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind *mw_bind); int (*dealloc_mw)(struct ib_mw *mw); struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr); int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, u64 iova); int (*unmap_fmr)(struct ib_fmr_list_head *fmr_list); int (*dealloc_fmr)(struct ib_fmr *fmr); int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); int (*process_mad)(struct ib_device *device, int process_mad_flags, u8 port_num, struct ib_wc *in_wc, struct ib_grh *in_grh, struct ib_mad *in_mad, struct ib_mad *out_mad); struct ib_dma_mapping_ops *dma_ops; struct module *owner; #ifdef notyet struct class_device class_dev; struct kobject ports_parent; struct list_head port_list; #endif enum { IB_DEV_UNINITIALIZED, IB_DEV_REGISTERED, IB_DEV_UNREGISTERED } reg_state; u64 uverbs_cmd_mask; int uverbs_abi_ver; char node_desc[64]; __be64 node_guid; u8 node_type; u8 phys_port_cnt; }; struct ib_client { char *name; void (*add) (struct ib_device *); void (*remove)(struct ib_device *); TAILQ_ENTRY(ib_client) list; }; struct ib_device *ib_alloc_device(size_t size); void ib_dealloc_device(struct ib_device *device); int ib_register_device (struct ib_device *device); void ib_unregister_device(struct ib_device *device); int ib_register_client (struct ib_client *client); void ib_unregister_client(struct ib_client *client); void *ib_get_client_data(struct ib_device *device, struct ib_client *client); void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data); static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) { return copyin(udata->inbuf, dest, len); } static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) { return copyout(src, udata->outbuf, len); } /** * ib_modify_qp_is_ok - Check that the supplied attribute mask * contains all required attributes and no attributes not allowed for * the given QP state transition. * @cur_state: Current QP state * @next_state: Next QP state * @type: QP type * @mask: Mask of supplied QP attributes * * This function is a helper function that a low-level driver's * modify_qp method can use to validate the consumer's input. It * checks that cur_state and next_state are valid QP states, that a * transition from cur_state to next_state is allowed by the IB spec, * and that the attribute mask supplied is allowed for the transition. */ int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, enum ib_qp_type type, enum ib_qp_attr_mask mask); int ib_register_event_handler (struct ib_event_handler *event_handler); int ib_unregister_event_handler(struct ib_event_handler *event_handler); void ib_dispatch_event(struct ib_event *event); int ib_query_device(struct ib_device *device, struct ib_device_attr *device_attr); int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr); int ib_query_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid); int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey); int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify); int ib_modify_port(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify); int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num, u16 *index); int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index); /** * ib_alloc_pd - Allocates an unused protection domain. * @device: The device on which to allocate the protection domain. * * A protection domain object provides an association between QPs, shared * receive queues, address handles, memory regions, and memory windows. */ struct ib_pd *ib_alloc_pd(struct ib_device *device); /** * ib_dealloc_pd - Deallocates a protection domain. * @pd: The protection domain to deallocate. */ int ib_dealloc_pd(struct ib_pd *pd); /** * ib_create_ah - Creates an address handle for the given address vector. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); /** * ib_init_ah_from_wc - Initializes address handle attributes from a * work completion. * @device: Device on which the received message arrived. * @port_num: Port on which the received message arrived. * @wc: Work completion associated with the received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @ah_attr: Returned attributes that can be used when creating an address * handle for replying to the message. */ int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, struct ib_grh *grh, struct ib_ah_attr *ah_attr); /** * ib_create_ah_from_wc - Creates an address handle associated with the * sender of the specified work completion. * @pd: The protection domain associated with the address handle. * @wc: Work completion information associated with a received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @port_num: The outbound port number to associate with the address. * * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, struct ib_grh *grh, u8 port_num); /** * ib_modify_ah - Modifies the address vector associated with an address * handle. * @ah: The address handle to modify. * @ah_attr: The new address vector attributes to associate with the * address handle. */ int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); /** * ib_query_ah - Queries the address vector associated with an address * handle. * @ah: The address handle to query. * @ah_attr: The address vector attributes associated with the address * handle. */ int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); /** * ib_destroy_ah - Destroys an address handle. * @ah: The address handle to destroy. */ int ib_destroy_ah(struct ib_ah *ah); /** * ib_create_srq - Creates a SRQ associated with the specified protection * domain. * @pd: The protection domain associated with the SRQ. * @srq_init_attr: A list of initial attributes required to create the * SRQ. If SRQ creation succeeds, then the attributes are updated to * the actual capabilities of the created SRQ. * * srq_attr->max_wr and srq_attr->max_sge are read the determine the * requested size of the SRQ, and set to the actual values allocated * on return. If ib_create_srq() succeeds, then max_wr and max_sge * will always be at least as large as the requested values. */ struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr); /** * ib_modify_srq - Modifies the attributes for the specified SRQ. * @srq: The SRQ to modify. * @srq_attr: On input, specifies the SRQ attributes to modify. On output, * the current values of selected SRQ attributes are returned. * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ * are being modified. * * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or * IB_SRQ_LIMIT to set the SRQ's limit and request notification when * the number of receives queued drops below the limit. */ int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask); /** * ib_query_srq - Returns the attribute list and current values for the * specified SRQ. * @srq: The SRQ to query. * @srq_attr: The attributes of the specified SRQ. */ int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr); /** * ib_destroy_srq - Destroys the specified SRQ. * @srq: The SRQ to destroy. */ int ib_destroy_srq(struct ib_srq *srq); /** * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. * @srq: The SRQ to post the work request on. * @recv_wr: A list of work requests to post on the receive queue. * @bad_recv_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ib_post_srq_recv(struct ib_srq *srq, struct ib_recv_wr *recv_wr, struct ib_recv_wr **bad_recv_wr) { return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); } /** * ib_create_qp - Creates a QP associated with the specified protection * domain. * @pd: The protection domain associated with the QP. * @qp_init_attr: A list of initial attributes required to create the * QP. If QP creation succeeds, then the attributes are updated to * the actual capabilities of the created QP. */ struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr); /** * ib_modify_qp - Modifies the attributes for the specified QP and then * transitions the QP to the given state. * @qp: The QP to modify. * @qp_attr: On input, specifies the QP attributes to modify. On output, * the current values of selected QP attributes are returned. * @qp_attr_mask: A bit-mask used to specify which attributes of the QP * are being modified. */ int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask); /** * ib_query_qp - Returns the attribute list and current values for the * specified QP. * @qp: The QP to query. * @qp_attr: The attributes of the specified QP. * @qp_attr_mask: A bit-mask used to select specific attributes to query. * @qp_init_attr: Additional attributes of the selected QP. * * The qp_attr_mask may be used to limit the query to gathering only the * selected attributes. */ int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); /** * ib_destroy_qp - Destroys the specified QP. * @qp: The QP to destroy. */ int ib_destroy_qp(struct ib_qp *qp); /** * ib_post_send - Posts a list of work requests to the send queue of * the specified QP. * @qp: The QP to post the work request on. * @send_wr: A list of work requests to post on the send queue. * @bad_send_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ib_post_send(struct ib_qp *qp, struct ib_send_wr *send_wr, struct ib_send_wr **bad_send_wr) { return qp->device->post_send(qp, send_wr, bad_send_wr); } /** * ib_post_recv - Posts a list of work requests to the receive queue of * the specified QP. * @qp: The QP to post the work request on. * @recv_wr: A list of work requests to post on the receive queue. * @bad_recv_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ib_post_recv(struct ib_qp *qp, struct ib_recv_wr *recv_wr, struct ib_recv_wr **bad_recv_wr) { return qp->device->post_recv(qp, recv_wr, bad_recv_wr); } /** * ib_create_cq - Creates a CQ on the specified device. * @device: The device on which to create the CQ. * @comp_handler: A user-specified callback that is invoked when a * completion event occurs on the CQ. * @event_handler: A user-specified callback that is invoked when an * asynchronous event not associated with a completion occurs on the CQ. * @cq_context: Context associated with the CQ returned to the user via * the associated completion and event handlers. * @cqe: The minimum size of the CQ. * @comp_vector - Completion vector used to signal completion events. * Must be >= 0 and < context->num_comp_vectors. * * Users can examine the cq structure to determine the actual CQ size. */ struct ib_cq *ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, void (*event_handler)(struct ib_event *, void *), void *cq_context, int cqe, int comp_vector); /** * ib_resize_cq - Modifies the capacity of the CQ. * @cq: The CQ to resize. * @cqe: The minimum size of the CQ. * * Users can examine the cq structure to determine the actual CQ size. */ int ib_resize_cq(struct ib_cq *cq, int cqe); /** * ib_destroy_cq - Destroys the specified CQ. * @cq: The CQ to destroy. */ int ib_destroy_cq(struct ib_cq *cq); /** * ib_poll_cq - poll a CQ for completion(s) * @cq:the CQ being polled * @num_entries:maximum number of completions to return * @wc:array of at least @num_entries &struct ib_wc where completions * will be returned * * Poll a CQ for (possibly multiple) completions. If the return value * is < 0, an error occurred. If the return value is >= 0, it is the * number of completions returned. If the return value is * non-negative and < num_entries, then the CQ was emptied. */ static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc) { return cq->device->poll_cq(cq, num_entries, wc); } /** * ib_peek_cq - Returns the number of unreaped completions currently * on the specified CQ. * @cq: The CQ to peek. * @wc_cnt: A minimum number of unreaped completions to check for. * * If the number of unreaped completions is greater than or equal to wc_cnt, * this function returns wc_cnt, otherwise, it returns the actual number of * unreaped completions. */ int ib_peek_cq(struct ib_cq *cq, int wc_cnt); /** * ib_req_notify_cq - Request completion notification on a CQ. * @cq: The CQ to generate an event for. * @flags: * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP * to request an event on the next solicited event or next work * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS * may also be |ed in to request a hint about missed events, as * described below. * * Return Value: * < 0 means an error occurred while requesting notification * == 0 means notification was requested successfully, and if * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events * were missed and it is safe to wait for another event. In * this case is it guaranteed that any work completions added * to the CQ since the last CQ poll will trigger a completion * notification event. * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed * in. It means that the consumer must poll the CQ again to * make sure it is empty to avoid missing an event because of a * race between requesting notification and an entry being * added to the CQ. This return value means it is possible * (but not guaranteed) that a work completion has been added * to the CQ since the last poll without triggering a * completion notification event. */ static inline int ib_req_notify_cq(struct ib_cq *cq, enum ib_cq_notify_flags flags) { return cq->device->req_notify_cq(cq, flags); } /** * ib_req_ncomp_notif - Request completion notification when there are * at least the specified number of unreaped completions on the CQ. * @cq: The CQ to generate an event for. * @wc_cnt: The number of unreaped completions that should be on the * CQ before an event is generated. */ static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) { return cq->device->req_ncomp_notif ? cq->device->req_ncomp_notif(cq, wc_cnt) : ENOSYS; } /** * ib_get_dma_mr - Returns a memory region for system memory that is * usable for DMA. * @pd: The protection domain associated with the memory region. * @mr_access_flags: Specifies the memory access rights. * * Note that the ib_dma_*() functions defined below must be used * to create/destroy addresses used with the Lkey or Rkey returned * by ib_get_dma_mr(). */ struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); #ifdef notyet /** * ib_dma_mapping_error - check a DMA addr for error * @dev: The device for which the dma_addr was created * @dma_addr: The DMA address to check */ static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) { if (dev->dma_ops) return dev->dma_ops->mapping_error(dev, dma_addr); return dma_mapping_error(dma_addr); } /** * ib_dma_map_single - Map a kernel virtual address to DMA address * @dev: The device for which the dma_addr is to be created * @cpu_addr: The kernel virtual address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline u64 ib_dma_map_single(struct ib_device *dev, void *cpu_addr, size_t size, enum dma_data_direction direction) { if (dev->dma_ops) return dev->dma_ops->map_single(dev, cpu_addr, size, direction); return dma_map_single(dev->dma_device, cpu_addr, size, direction); } /** * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline void ib_dma_unmap_single(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction) { if (dev->dma_ops) dev->dma_ops->unmap_single(dev, addr, size, direction); else dma_unmap_single(dev->dma_device, addr, size, direction); } /** * ib_dma_map_page - Map a physical page to DMA address * @dev: The device for which the dma_addr is to be created * @page: The page to be mapped * @offset: The offset within the page * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline u64 ib_dma_map_page(struct ib_device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { if (dev->dma_ops) return dev->dma_ops->map_page(dev, page, offset, size, direction); return dma_map_page(dev->dma_device, page, offset, size, direction); } /** * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline void ib_dma_unmap_page(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction) { if (dev->dma_ops) dev->dma_ops->unmap_page(dev, addr, size, direction); else dma_unmap_page(dev->dma_device, addr, size, direction); } /** * ib_dma_map_sg - Map a scatter/gather list to DMA addresses * @dev: The device for which the DMA addresses are to be created * @sg: The array of scatter/gather entries * @nents: The number of scatter/gather entries * @direction: The direction of the DMA */ static inline int ib_dma_map_sg(struct ib_device *dev, struct rdma_scatterlist *sg, int nents, enum dma_data_direction direction) { if (dev->dma_ops) return dev->dma_ops->map_sg(dev, sg, nents, direction); return dma_map_sg(dev->dma_device, sg, nents, direction); } /** * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses * @dev: The device for which the DMA addresses were created * @sg: The array of scatter/gather entries * @nents: The number of scatter/gather entries * @direction: The direction of the DMA */ static inline void ib_dma_unmap_sg(struct ib_device *dev, struct rdma_scatterlist *sg, int nents, enum dma_data_direction direction) { if (dev->dma_ops) dev->dma_ops->unmap_sg(dev, sg, nents, direction); else dma_unmap_sg(dev->dma_device, sg, nents, direction); } /** * ib_sg_dma_address - Return the DMA address from a scatter/gather entry * @dev: The device for which the DMA addresses were created * @sg: The scatter/gather entry */ static inline u64 ib_sg_dma_address(struct ib_device *dev, struct rdma_scatterlist *sg) { if (dev->dma_ops) return dev->dma_ops->dma_address(dev, sg); return sg_dma_address(sg); } /** * ib_sg_dma_len - Return the DMA length from a scatter/gather entry * @dev: The device for which the DMA addresses were created * @sg: The scatter/gather entry */ static inline unsigned int ib_sg_dma_len(struct ib_device *dev, struct rdma_scatterlist *sg) { if (dev->dma_ops) return dev->dma_ops->dma_len(dev, sg); return sg_dma_len(sg); } /** * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @dir: The direction of the DMA */ static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction dir) { if (dev->dma_ops) dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); else dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); } /** * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @dir: The direction of the DMA */ static inline void ib_dma_sync_single_for_device(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction dir) { if (dev->dma_ops) dev->dma_ops->sync_single_for_device(dev, addr, size, dir); else dma_sync_single_for_device(dev->dma_device, addr, size, dir); } /** * ib_dma_alloc_coherent - Allocate memory and map it for DMA * @dev: The device for which the DMA address is requested * @size: The size of the region to allocate in bytes * @dma_handle: A pointer for returning the DMA address of the region * @flag: memory allocator flags */ static inline void *ib_dma_alloc_coherent(struct ib_device *dev, size_t size, u64 *dma_handle, gfp_t flag) { if (dev->dma_ops) return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); else { dma_addr_t handle; void *ret; ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); *dma_handle = handle; return ret; } } /** * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() * @dev: The device for which the DMA addresses were allocated * @size: The size of the region * @cpu_addr: the address returned by ib_dma_alloc_coherent() * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() */ static inline void ib_dma_free_coherent(struct ib_device *dev, size_t size, void *cpu_addr, u64 dma_handle) { if (dev->dma_ops) dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); else dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); } #endif /** * ib_reg_phys_mr - Prepares a virtually addressed memory region for use * by an HCA. * @pd: The protection domain associated assigned to the registered region. * @phys_buf_array: Specifies a list of physical buffers to use in the * memory region. * @num_phys_buf: Specifies the size of the phys_buf_array. * @mr_access_flags: Specifies the memory access rights. * @iova_start: The offset of the region's starting I/O virtual address. */ struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64 *iova_start); /** * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. * Conceptually, this call performs the functions deregister memory region * followed by register physical memory region. Where possible, * resources are reused instead of deallocated and reallocated. * @mr: The memory region to modify. * @mr_rereg_mask: A bit-mask used to indicate which of the following * properties of the memory region are being modified. * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies * the new protection domain to associated with the memory region, * otherwise, this parameter is ignored. * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this * field specifies a list of physical buffers to use in the new * translation, otherwise, this parameter is ignored. * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this * field specifies the size of the phys_buf_array, otherwise, this * parameter is ignored. * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this * field specifies the new memory access rights, otherwise, this * parameter is ignored. * @iova_start: The offset of the region's starting I/O virtual address. */ int ib_rereg_phys_mr(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64 *iova_start); /** * ib_query_mr - Retrieves information about a specific memory region. * @mr: The memory region to retrieve information about. * @mr_attr: The attributes of the specified memory region. */ int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); /** * ib_dereg_mr - Deregisters a memory region and removes it from the * HCA translation table. * @mr: The memory region to deregister. */ int ib_dereg_mr(struct ib_mr *mr); /** * ib_alloc_mw - Allocates a memory window. * @pd: The protection domain associated with the memory window. */ struct ib_mw *ib_alloc_mw(struct ib_pd *pd); /** * ib_bind_mw - Posts a work request to the send queue of the specified * QP, which binds the memory window to the given address range and * remote access attributes. * @qp: QP to post the bind work request on. * @mw: The memory window to bind. * @mw_bind: Specifies information about the memory window, including * its address range, remote access rights, and associated memory region. */ static inline int ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind *mw_bind) { /* XXX reference counting in corresponding MR? */ return mw->device->bind_mw ? mw->device->bind_mw(qp, mw, mw_bind) : ENOSYS; } /** * ib_dealloc_mw - Deallocates a memory window. * @mw: The memory window to deallocate. */ int ib_dealloc_mw(struct ib_mw *mw); /** * ib_alloc_fmr - Allocates a unmapped fast memory region. * @pd: The protection domain associated with the unmapped region. * @mr_access_flags: Specifies the memory access rights. * @fmr_attr: Attributes of the unmapped region. * * A fast memory region must be mapped before it can be used as part of * a work request. */ struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr); /** * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. * @fmr: The fast memory region to associate with the pages. * @page_list: An array of physical pages to map to the fast memory region. * @list_len: The number of pages in page_list. * @iova: The I/O virtual address to use with the mapped region. */ static inline int ib_map_phys_fmr(struct ib_fmr *fmr, u64 *page_list, int list_len, u64 iova) { return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); } /** * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. * @fmr_list: A linked list of fast memory regions to unmap. */ int ib_unmap_fmr(struct ib_fmr_list_head *fmr_list); /** * ib_dealloc_fmr - Deallocates a fast memory region. * @fmr: The fast memory region to deallocate. */ int ib_dealloc_fmr(struct ib_fmr *fmr); /** * ib_attach_mcast - Attaches the specified QP to a multicast group. * @qp: QP to attach to the multicast group. The QP must be type * IB_QPT_UD. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. * * In order to send and receive multicast packets, subnet * administration must have created the multicast group and configured * the fabric appropriately. The port associated with the specified * QP must also be a member of the multicast group. */ int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); /** * ib_detach_mcast - Detaches the specified QP from a multicast group. * @qp: QP to detach from the multicast group. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. */ int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); #endif /* IB_VERBS_H */