Current Path : /sys/crypto/rijndael/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/crypto/rijndael/rijndael-api-fst.c |
/* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */ /* * rijndael-api-fst.c v2.3 April '2000 * * Optimised ANSI C code * * authors: v1.0: Antoon Bosselaers * v2.0: Vincent Rijmen * v2.1: Vincent Rijmen * v2.2: Vincent Rijmen * v2.3: Paulo Barreto * v2.4: Vincent Rijmen * * This code is placed in the public domain. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/crypto/rijndael/rijndael-api-fst.c 143420 2005-03-11 16:26:10Z ume $"); #include <sys/param.h> #ifdef _KERNEL #include <sys/systm.h> #else #include <string.h> #endif #include <crypto/rijndael/rijndael_local.h> #include <crypto/rijndael/rijndael-api-fst.h> #ifndef TRUE #define TRUE 1 #endif typedef u_int8_t BYTE; int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) { u_int8_t cipherKey[RIJNDAEL_MAXKB]; if (key == NULL) { return BAD_KEY_INSTANCE; } if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) { key->direction = direction; } else { return BAD_KEY_DIR; } if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { key->keyLen = keyLen; } else { return BAD_KEY_MAT; } if (keyMaterial != NULL) { memcpy(key->keyMaterial, keyMaterial, keyLen/8); } /* initialize key schedule: */ memcpy(cipherKey, key->keyMaterial, keyLen/8); if (direction == DIR_ENCRYPT) { key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen); } else { key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen); } rijndaelKeySetupEnc(key->ek, cipherKey, keyLen); return TRUE; } int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) { if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) { cipher->mode = mode; } else { return BAD_CIPHER_MODE; } if (IV != NULL) { memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE); } else { memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE); } return TRUE; } int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, numBlocks; u_int8_t block[16], iv[4][4]; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: #if 1 /*STRICT_ALIGN*/ memcpy(block, cipher->IV, 16); memcpy(iv, input, 16); ((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0]; ((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1]; ((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2]; ((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3]; #else ((u_int32_t*)block)[0] = ((u_int32_t*)cipher->IV)[0] ^ ((u_int32_t*)input)[0]; ((u_int32_t*)block)[1] = ((u_int32_t*)cipher->IV)[1] ^ ((u_int32_t*)input)[1]; ((u_int32_t*)block)[2] = ((u_int32_t*)cipher->IV)[2] ^ ((u_int32_t*)input)[2]; ((u_int32_t*)block)[3] = ((u_int32_t*)cipher->IV)[3] ^ ((u_int32_t*)input)[3]; #endif rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); input += 16; for (i = numBlocks - 1; i > 0; i--) { #if 1 /*STRICT_ALIGN*/ memcpy(block, outBuffer, 16); memcpy(iv, input, 16); ((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0]; ((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1]; ((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2]; ((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3]; #else ((u_int32_t*)block)[0] = ((u_int32_t*)outBuffer)[0] ^ ((u_int32_t*)input)[0]; ((u_int32_t*)block)[1] = ((u_int32_t*)outBuffer)[1] ^ ((u_int32_t*)input)[1]; ((u_int32_t*)block)[2] = ((u_int32_t*)outBuffer)[2] ^ ((u_int32_t*)input)[2]; ((u_int32_t*)block)[3] = ((u_int32_t*)outBuffer)[3] ^ ((u_int32_t*)input)[3]; #endif outBuffer += 16; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); input += 16; } break; case MODE_CFB1: #if 1 /*STRICT_ALIGN*/ memcpy(iv, cipher->IV, 16); #else /* !STRICT_ALIGN */ *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV )); *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4)); *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8)); *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12)); #endif /* ?STRICT_ALIGN */ for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { *((u_int32_t*) block ) = *((u_int32_t*)iv[0]); *((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]); *((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]); *((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]); rijndaelEncrypt(key->ek, key->Nr, block, block); outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7); iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7); iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7); iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7); iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7); iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7); iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7); iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7); iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7); iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7); iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7); iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7); iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7); iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7); iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7); iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7); iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } /** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param input data to be encrypted (octet sequence) * @param inputOctets input length in octets (not bits) * @param outBuffer encrypted output data * * @return length in octets (not bits) of the encrypted output buffer. */ int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u_int8_t block[16], *iv, *cp; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); if (padLen <= 0 || padLen > 16) return BAD_CIPHER_STATE; memcpy(block, input, 16 - padLen); for (cp = block + 16 - padLen; cp < block + 16; cp++) *cp = padLen; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; case MODE_CBC: iv = cipher->IV; for (i = numBlocks; i > 0; i--) { ((u_int32_t*)block)[0] = ((u_int32_t*)input)[0] ^ ((u_int32_t*)iv)[0]; ((u_int32_t*)block)[1] = ((u_int32_t*)input)[1] ^ ((u_int32_t*)iv)[1]; ((u_int32_t*)block)[2] = ((u_int32_t*)input)[2] ^ ((u_int32_t*)iv)[2]; ((u_int32_t*)block)[3] = ((u_int32_t*)input)[3] ^ ((u_int32_t*)iv)[3]; rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); iv = outBuffer; input += 16; outBuffer += 16; } padLen = 16 - (inputOctets - 16*numBlocks); if (padLen <= 0 || padLen > 16) return BAD_CIPHER_STATE; for (i = 0; i < 16 - padLen; i++) { block[i] = input[i] ^ iv[i]; } for (i = 16 - padLen; i < 16; i++) { block[i] = (BYTE)padLen ^ iv[i]; } rijndaelEncrypt(key->rk, key->Nr, block, outBuffer); break; default: return BAD_CIPHER_STATE; } return 16*(numBlocks + 1); } int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputLen, BYTE *outBuffer) { int i, k, numBlocks; u_int8_t block[16], iv[4][4]; if (cipher == NULL || key == NULL || (cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } break; case MODE_CBC: #if 1 /*STRICT_ALIGN */ memcpy(iv, cipher->IV, 16); #else *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV )); *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4)); *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8)); *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= *((u_int32_t*)iv[0]); ((u_int32_t*)block)[1] ^= *((u_int32_t*)iv[1]); ((u_int32_t*)block)[2] ^= *((u_int32_t*)iv[2]); ((u_int32_t*)block)[3] ^= *((u_int32_t*)iv[3]); #if 1 /*STRICT_ALIGN*/ memcpy(iv, input, 16); memcpy(outBuffer, block, 16); #else *((u_int32_t*)iv[0]) = ((u_int32_t*)input)[0]; ((u_int32_t*)outBuffer)[0] = ((u_int32_t*)block)[0]; *((u_int32_t*)iv[1]) = ((u_int32_t*)input)[1]; ((u_int32_t*)outBuffer)[1] = ((u_int32_t*)block)[1]; *((u_int32_t*)iv[2]) = ((u_int32_t*)input)[2]; ((u_int32_t*)outBuffer)[2] = ((u_int32_t*)block)[2]; *((u_int32_t*)iv[3]) = ((u_int32_t*)input)[3]; ((u_int32_t*)outBuffer)[3] = ((u_int32_t*)block)[3]; #endif input += 16; outBuffer += 16; } break; case MODE_CFB1: #if 1 /*STRICT_ALIGN */ memcpy(iv, cipher->IV, 16); #else *((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV)); *((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4)); *((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8)); *((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { *((u_int32_t*) block ) = *((u_int32_t*)iv[0]); *((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]); *((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]); *((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]); rijndaelEncrypt(key->ek, key->Nr, block, block); iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7); iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7); iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7); iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7); iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7); iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7); iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7); iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7); iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7); iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7); iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7); iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7); iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7); iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7); iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7); iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1); outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int inputOctets, BYTE *outBuffer) { int i, numBlocks, padLen; u_int8_t block[16]; u_int32_t iv[4]; if (cipher == NULL || key == NULL || key->direction == DIR_ENCRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputOctets <= 0) { return 0; /* nothing to do */ } if (inputOctets % 16 != 0) { return BAD_DATA; } numBlocks = inputOctets/16; switch (cipher->mode) { case MODE_ECB: /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, outBuffer); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); padLen = block[15]; if (padLen >= 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; case MODE_CBC: memcpy(iv, cipher->IV, 16); /* all blocks but last */ for (i = numBlocks - 1; i > 0; i--) { rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= iv[0]; ((u_int32_t*)block)[1] ^= iv[1]; ((u_int32_t*)block)[2] ^= iv[2]; ((u_int32_t*)block)[3] ^= iv[3]; memcpy(iv, input, 16); memcpy(outBuffer, block, 16); input += 16; outBuffer += 16; } /* last block */ rijndaelDecrypt(key->rk, key->Nr, input, block); ((u_int32_t*)block)[0] ^= iv[0]; ((u_int32_t*)block)[1] ^= iv[1]; ((u_int32_t*)block)[2] ^= iv[2]; ((u_int32_t*)block)[3] ^= iv[3]; padLen = block[15]; if (padLen <= 0 || padLen > 16) { return BAD_DATA; } for (i = 16 - padLen; i < 16; i++) { if (block[i] != padLen) { return BAD_DATA; } } memcpy(outBuffer, block, 16 - padLen); break; default: return BAD_CIPHER_STATE; } return 16*numBlocks - padLen; }