Current Path : /sys/dev/ath/ath_hal/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ath/ath_hal/ah.h |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ah.h 225444 2011-09-08 01:23:05Z adrian $ */ #ifndef _ATH_AH_H_ #define _ATH_AH_H_ /* * Atheros Hardware Access Layer * * Clients of the HAL call ath_hal_attach to obtain a reference to an ath_hal * structure for use with the device. Hardware-related operations that * follow must call back into the HAL through interface, supplying the * reference as the first parameter. */ #include "ah_osdep.h" /* * The maximum number of TX/RX chains supported. * This is intended to be used by various statistics gathering operations * (NF, RSSI, EVM). */ #define AH_MIMO_MAX_CHAINS 3 #define AH_MIMO_MAX_EVM_PILOTS 6 /* * __ahdecl is analogous to _cdecl; it defines the calling * convention used within the HAL. For most systems this * can just default to be empty and the compiler will (should) * use _cdecl. For systems where _cdecl is not compatible this * must be defined. See linux/ah_osdep.h for an example. */ #ifndef __ahdecl #define __ahdecl #endif /* * Status codes that may be returned by the HAL. Note that * interfaces that return a status code set it only when an * error occurs--i.e. you cannot check it for success. */ typedef enum { HAL_OK = 0, /* No error */ HAL_ENXIO = 1, /* No hardware present */ HAL_ENOMEM = 2, /* Memory allocation failed */ HAL_EIO = 3, /* Hardware didn't respond as expected */ HAL_EEMAGIC = 4, /* EEPROM magic number invalid */ HAL_EEVERSION = 5, /* EEPROM version invalid */ HAL_EELOCKED = 6, /* EEPROM unreadable */ HAL_EEBADSUM = 7, /* EEPROM checksum invalid */ HAL_EEREAD = 8, /* EEPROM read problem */ HAL_EEBADMAC = 9, /* EEPROM mac address invalid */ HAL_EESIZE = 10, /* EEPROM size not supported */ HAL_EEWRITE = 11, /* Attempt to change write-locked EEPROM */ HAL_EINVAL = 12, /* Invalid parameter to function */ HAL_ENOTSUPP = 13, /* Hardware revision not supported */ HAL_ESELFTEST = 14, /* Hardware self-test failed */ HAL_EINPROGRESS = 15, /* Operation incomplete */ HAL_EEBADREG = 16, /* EEPROM invalid regulatory contents */ HAL_EEBADCC = 17, /* EEPROM invalid country code */ } HAL_STATUS; typedef enum { AH_FALSE = 0, /* NB: lots of code assumes false is zero */ AH_TRUE = 1, } HAL_BOOL; typedef enum { HAL_CAP_REG_DMN = 0, /* current regulatory domain */ HAL_CAP_CIPHER = 1, /* hardware supports cipher */ HAL_CAP_TKIP_MIC = 2, /* handle TKIP MIC in hardware */ HAL_CAP_TKIP_SPLIT = 3, /* hardware TKIP uses split keys */ HAL_CAP_PHYCOUNTERS = 4, /* hardware PHY error counters */ HAL_CAP_DIVERSITY = 5, /* hardware supports fast diversity */ HAL_CAP_KEYCACHE_SIZE = 6, /* number of entries in key cache */ HAL_CAP_NUM_TXQUEUES = 7, /* number of hardware xmit queues */ HAL_CAP_VEOL = 9, /* hardware supports virtual EOL */ HAL_CAP_PSPOLL = 10, /* hardware has working PS-Poll support */ HAL_CAP_DIAG = 11, /* hardware diagnostic support */ HAL_CAP_COMPRESSION = 12, /* hardware supports compression */ HAL_CAP_BURST = 13, /* hardware supports packet bursting */ HAL_CAP_FASTFRAME = 14, /* hardware supoprts fast frames */ HAL_CAP_TXPOW = 15, /* global tx power limit */ HAL_CAP_TPC = 16, /* per-packet tx power control */ HAL_CAP_PHYDIAG = 17, /* hardware phy error diagnostic */ HAL_CAP_BSSIDMASK = 18, /* hardware supports bssid mask */ HAL_CAP_MCAST_KEYSRCH = 19, /* hardware has multicast key search */ HAL_CAP_TSF_ADJUST = 20, /* hardware has beacon tsf adjust */ /* 21 was HAL_CAP_XR */ HAL_CAP_WME_TKIPMIC = 22, /* hardware can support TKIP MIC when WMM is turned on */ /* 23 was HAL_CAP_CHAN_HALFRATE */ /* 24 was HAL_CAP_CHAN_QUARTERRATE */ HAL_CAP_RFSILENT = 25, /* hardware has rfsilent support */ HAL_CAP_TPC_ACK = 26, /* ack txpower with per-packet tpc */ HAL_CAP_TPC_CTS = 27, /* cts txpower with per-packet tpc */ HAL_CAP_11D = 28, /* 11d beacon support for changing cc */ HAL_CAP_HT = 30, /* hardware can support HT */ HAL_CAP_GTXTO = 31, /* hardware supports global tx timeout */ HAL_CAP_FAST_CC = 32, /* hardware supports fast channel change */ HAL_CAP_TX_CHAINMASK = 33, /* mask of TX chains supported */ HAL_CAP_RX_CHAINMASK = 34, /* mask of RX chains supported */ HAL_CAP_NUM_GPIO_PINS = 36, /* number of GPIO pins */ HAL_CAP_CST = 38, /* hardware supports carrier sense timeout */ HAL_CAP_RTS_AGGR_LIMIT = 42, /* aggregation limit with RTS */ HAL_CAP_4ADDR_AGGR = 43, /* hardware is capable of 4addr aggregation */ HAL_CAP_DFS_DMN = 44, /* current DFS domain */ HAL_CAP_EXT_CHAN_DFS = 45, /* DFS support for extension channel */ HAL_CAP_COMBINED_RADAR_RSSI = 46, /* Is combined RSSI for radar accurate */ HAL_CAP_AUTO_SLEEP = 48, /* hardware can go to network sleep automatically after waking up to receive TIM */ HAL_CAP_MBSSID_AGGR_SUPPORT = 49, /* Support for mBSSID Aggregation */ HAL_CAP_SPLIT_4KB_TRANS = 50, /* hardware supports descriptors straddling a 4k page boundary */ HAL_CAP_REG_FLAG = 51, /* Regulatory domain flags */ HAL_CAP_BT_COEX = 60, /* hardware is capable of bluetooth coexistence */ HAL_CAP_HT20_SGI = 96, /* hardware supports HT20 short GI */ HAL_CAP_RXTSTAMP_PREC = 100, /* rx desc tstamp precision (bits) */ HAL_CAP_ENHANCED_DFS_SUPPORT = 117, /* hardware supports enhanced DFS */ /* The following are private to the FreeBSD HAL (224 onward) */ HAL_CAP_INTMIT = 229, /* interference mitigation */ HAL_CAP_RXORN_FATAL = 230, /* HAL_INT_RXORN treated as fatal */ HAL_CAP_BB_HANG = 235, /* can baseband hang */ HAL_CAP_MAC_HANG = 236, /* can MAC hang */ HAL_CAP_INTRMASK = 237, /* bitmask of supported interrupts */ HAL_CAP_BSSIDMATCH = 238, /* hardware has disable bssid match */ HAL_CAP_STREAMS = 239, /* how many 802.11n spatial streams are available */ HAL_CAP_RXDESC_SELFLINK = 242, /* support a self-linked tail RX descriptor */ HAL_CAP_LONG_RXDESC_TSF = 243, /* hardware supports 32bit TSF in RX descriptor */ } HAL_CAPABILITY_TYPE; /* * "States" for setting the LED. These correspond to * the possible 802.11 operational states and there may * be a many-to-one mapping between these states and the * actual hardware state for the LED's (i.e. the hardware * may have fewer states). */ typedef enum { HAL_LED_INIT = 0, HAL_LED_SCAN = 1, HAL_LED_AUTH = 2, HAL_LED_ASSOC = 3, HAL_LED_RUN = 4 } HAL_LED_STATE; /* * Transmit queue types/numbers. These are used to tag * each transmit queue in the hardware and to identify a set * of transmit queues for operations such as start/stop dma. */ typedef enum { HAL_TX_QUEUE_INACTIVE = 0, /* queue is inactive/unused */ HAL_TX_QUEUE_DATA = 1, /* data xmit q's */ HAL_TX_QUEUE_BEACON = 2, /* beacon xmit q */ HAL_TX_QUEUE_CAB = 3, /* "crap after beacon" xmit q */ HAL_TX_QUEUE_UAPSD = 4, /* u-apsd power save xmit q */ HAL_TX_QUEUE_PSPOLL = 5, /* power save poll xmit q */ } HAL_TX_QUEUE; #define HAL_NUM_TX_QUEUES 10 /* max possible # of queues */ /* * Transmit queue subtype. These map directly to * WME Access Categories (except for UPSD). Refer * to Table 5 of the WME spec. */ typedef enum { HAL_WME_AC_BK = 0, /* background access category */ HAL_WME_AC_BE = 1, /* best effort access category*/ HAL_WME_AC_VI = 2, /* video access category */ HAL_WME_AC_VO = 3, /* voice access category */ HAL_WME_UPSD = 4, /* uplink power save */ } HAL_TX_QUEUE_SUBTYPE; /* * Transmit queue flags that control various * operational parameters. */ typedef enum { /* * Per queue interrupt enables. When set the associated * interrupt may be delivered for packets sent through * the queue. Without these enabled no interrupts will * be delivered for transmits through the queue. */ HAL_TXQ_TXOKINT_ENABLE = 0x0001, /* enable TXOK interrupt */ HAL_TXQ_TXERRINT_ENABLE = 0x0001, /* enable TXERR interrupt */ HAL_TXQ_TXDESCINT_ENABLE = 0x0002, /* enable TXDESC interrupt */ HAL_TXQ_TXEOLINT_ENABLE = 0x0004, /* enable TXEOL interrupt */ HAL_TXQ_TXURNINT_ENABLE = 0x0008, /* enable TXURN interrupt */ /* * Enable hardware compression for packets sent through * the queue. The compression buffer must be setup and * packets must have a key entry marked in the tx descriptor. */ HAL_TXQ_COMPRESSION_ENABLE = 0x0010, /* enable h/w compression */ /* * Disable queue when veol is hit or ready time expires. * By default the queue is disabled only on reaching the * physical end of queue (i.e. a null link ptr in the * descriptor chain). */ HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE = 0x0020, /* * Schedule frames on delivery of a DBA (DMA Beacon Alert) * event. Frames will be transmitted only when this timer * fires, e.g to transmit a beacon in ap or adhoc modes. */ HAL_TXQ_DBA_GATED = 0x0040, /* schedule based on DBA */ /* * Each transmit queue has a counter that is incremented * each time the queue is enabled and decremented when * the list of frames to transmit is traversed (or when * the ready time for the queue expires). This counter * must be non-zero for frames to be scheduled for * transmission. The following controls disable bumping * this counter under certain conditions. Typically this * is used to gate frames based on the contents of another * queue (e.g. CAB traffic may only follow a beacon frame). * These are meaningful only when frames are scheduled * with a non-ASAP policy (e.g. DBA-gated). */ HAL_TXQ_CBR_DIS_QEMPTY = 0x0080, /* disable on this q empty */ HAL_TXQ_CBR_DIS_BEMPTY = 0x0100, /* disable on beacon q empty */ /* * Fragment burst backoff policy. Normally the no backoff * is done after a successful transmission, the next fragment * is sent at SIFS. If this flag is set backoff is done * after each fragment, regardless whether it was ack'd or * not, after the backoff count reaches zero a normal channel * access procedure is done before the next transmit (i.e. * wait AIFS instead of SIFS). */ HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE = 0x00800000, /* * Disable post-tx backoff following each frame. */ HAL_TXQ_BACKOFF_DISABLE = 0x00010000, /* disable post backoff */ /* * DCU arbiter lockout control. This controls how * lower priority tx queues are handled with respect to * to a specific queue when multiple queues have frames * to send. No lockout means lower priority queues arbitrate * concurrently with this queue. Intra-frame lockout * means lower priority queues are locked out until the * current frame transmits (e.g. including backoffs and bursting). * Global lockout means nothing lower can arbitrary so * long as there is traffic activity on this queue (frames, * backoff, etc). */ HAL_TXQ_ARB_LOCKOUT_INTRA = 0x00020000, /* intra-frame lockout */ HAL_TXQ_ARB_LOCKOUT_GLOBAL = 0x00040000, /* full lockout s */ HAL_TXQ_IGNORE_VIRTCOL = 0x00080000, /* ignore virt collisions */ HAL_TXQ_SEQNUM_INC_DIS = 0x00100000, /* disable seqnum increment */ } HAL_TX_QUEUE_FLAGS; typedef struct { uint32_t tqi_ver; /* hal TXQ version */ HAL_TX_QUEUE_SUBTYPE tqi_subtype; /* subtype if applicable */ HAL_TX_QUEUE_FLAGS tqi_qflags; /* flags (see above) */ uint32_t tqi_priority; /* (not used) */ uint32_t tqi_aifs; /* aifs */ uint32_t tqi_cwmin; /* cwMin */ uint32_t tqi_cwmax; /* cwMax */ uint16_t tqi_shretry; /* rts retry limit */ uint16_t tqi_lgretry; /* long retry limit (not used)*/ uint32_t tqi_cbrPeriod; /* CBR period (us) */ uint32_t tqi_cbrOverflowLimit; /* threshold for CBROVF int */ uint32_t tqi_burstTime; /* max burst duration (us) */ uint32_t tqi_readyTime; /* frame schedule time (us) */ uint32_t tqi_compBuf; /* comp buffer phys addr */ } HAL_TXQ_INFO; #define HAL_TQI_NONVAL 0xffff /* token to use for aifs, cwmin, cwmax */ #define HAL_TXQ_USEDEFAULT ((uint32_t) -1) /* compression definitions */ #define HAL_COMP_BUF_MAX_SIZE 9216 /* 9K */ #define HAL_COMP_BUF_ALIGN_SIZE 512 /* * Transmit packet types. This belongs in ah_desc.h, but * is here so we can give a proper type to various parameters * (and not require everyone include the file). * * NB: These values are intentionally assigned for * direct use when setting up h/w descriptors. */ typedef enum { HAL_PKT_TYPE_NORMAL = 0, HAL_PKT_TYPE_ATIM = 1, HAL_PKT_TYPE_PSPOLL = 2, HAL_PKT_TYPE_BEACON = 3, HAL_PKT_TYPE_PROBE_RESP = 4, HAL_PKT_TYPE_CHIRP = 5, HAL_PKT_TYPE_GRP_POLL = 6, HAL_PKT_TYPE_AMPDU = 7, } HAL_PKT_TYPE; /* Rx Filter Frame Types */ typedef enum { /* * These bits correspond to AR_RX_FILTER for all chips. * Not all bits are supported by all chips. */ HAL_RX_FILTER_UCAST = 0x00000001, /* Allow unicast frames */ HAL_RX_FILTER_MCAST = 0x00000002, /* Allow multicast frames */ HAL_RX_FILTER_BCAST = 0x00000004, /* Allow broadcast frames */ HAL_RX_FILTER_CONTROL = 0x00000008, /* Allow control frames */ HAL_RX_FILTER_BEACON = 0x00000010, /* Allow beacon frames */ HAL_RX_FILTER_PROM = 0x00000020, /* Promiscuous mode */ HAL_RX_FILTER_PROBEREQ = 0x00000080, /* Allow probe request frames */ HAL_RX_FILTER_PHYERR = 0x00000100, /* Allow phy errors */ HAL_RX_FILTER_COMPBAR = 0x00000400, /* Allow compressed BAR */ HAL_RX_FILTER_COMP_BA = 0x00000800, /* Allow compressed blockack */ HAL_RX_FILTER_PHYRADAR = 0x00002000, /* Allow phy radar errors */ HAL_RX_FILTER_PSPOLL = 0x00004000, /* Allow PS-POLL frames */ HAL_RX_FILTER_MCAST_BCAST_ALL = 0x00008000, /* Allow all mcast/bcast frames */ /* * Magic RX filter flags that aren't targetting hardware bits * but instead the HAL sets individual bits - eg PHYERR will result * in OFDM/CCK timing error frames being received. */ HAL_RX_FILTER_BSSID = 0x40000000, /* Disable BSSID match */ } HAL_RX_FILTER; typedef enum { HAL_PM_AWAKE = 0, HAL_PM_FULL_SLEEP = 1, HAL_PM_NETWORK_SLEEP = 2, HAL_PM_UNDEFINED = 3 } HAL_POWER_MODE; /* * NOTE WELL: * These are mapped to take advantage of the common locations for many of * the bits on all of the currently supported MAC chips. This is to make * the ISR as efficient as possible, while still abstracting HW differences. * When new hardware breaks this commonality this enumerated type, as well * as the HAL functions using it, must be modified. All values are directly * mapped unless commented otherwise. */ typedef enum { HAL_INT_RX = 0x00000001, /* Non-common mapping */ HAL_INT_RXDESC = 0x00000002, HAL_INT_RXNOFRM = 0x00000008, HAL_INT_RXEOL = 0x00000010, HAL_INT_RXORN = 0x00000020, HAL_INT_TX = 0x00000040, /* Non-common mapping */ HAL_INT_TXDESC = 0x00000080, HAL_INT_TIM_TIMER= 0x00000100, HAL_INT_TXURN = 0x00000800, HAL_INT_MIB = 0x00001000, HAL_INT_RXPHY = 0x00004000, HAL_INT_RXKCM = 0x00008000, HAL_INT_SWBA = 0x00010000, HAL_INT_BMISS = 0x00040000, HAL_INT_BNR = 0x00100000, HAL_INT_TIM = 0x00200000, /* Non-common mapping */ HAL_INT_DTIM = 0x00400000, /* Non-common mapping */ HAL_INT_DTIMSYNC= 0x00800000, /* Non-common mapping */ HAL_INT_GPIO = 0x01000000, HAL_INT_CABEND = 0x02000000, /* Non-common mapping */ HAL_INT_TSFOOR = 0x04000000, /* Non-common mapping */ HAL_INT_TBTT = 0x08000000, /* Non-common mapping */ HAL_INT_CST = 0x10000000, /* Non-common mapping */ HAL_INT_GTT = 0x20000000, /* Non-common mapping */ HAL_INT_FATAL = 0x40000000, /* Non-common mapping */ #define HAL_INT_GLOBAL 0x80000000 /* Set/clear IER */ HAL_INT_BMISC = HAL_INT_TIM | HAL_INT_DTIM | HAL_INT_DTIMSYNC | HAL_INT_CABEND | HAL_INT_TBTT, /* Interrupt bits that map directly to ISR/IMR bits */ HAL_INT_COMMON = HAL_INT_RXNOFRM | HAL_INT_RXDESC | HAL_INT_RXEOL | HAL_INT_RXORN | HAL_INT_TXDESC | HAL_INT_TXURN | HAL_INT_MIB | HAL_INT_RXPHY | HAL_INT_RXKCM | HAL_INT_SWBA | HAL_INT_BMISS | HAL_INT_BNR | HAL_INT_GPIO, } HAL_INT; typedef enum { HAL_GPIO_MUX_OUTPUT = 0, HAL_GPIO_MUX_PCIE_ATTENTION_LED = 1, HAL_GPIO_MUX_PCIE_POWER_LED = 2, HAL_GPIO_MUX_TX_FRAME = 3, HAL_GPIO_MUX_RX_CLEAR_EXTERNAL = 4, HAL_GPIO_MUX_MAC_NETWORK_LED = 5, HAL_GPIO_MUX_MAC_POWER_LED = 6 } HAL_GPIO_MUX_TYPE; typedef enum { HAL_GPIO_INTR_LOW = 0, HAL_GPIO_INTR_HIGH = 1, HAL_GPIO_INTR_DISABLE = 2 } HAL_GPIO_INTR_TYPE; typedef enum { HAL_RFGAIN_INACTIVE = 0, HAL_RFGAIN_READ_REQUESTED = 1, HAL_RFGAIN_NEED_CHANGE = 2 } HAL_RFGAIN; typedef uint16_t HAL_CTRY_CODE; /* country code */ typedef uint16_t HAL_REG_DOMAIN; /* regulatory domain code */ #define HAL_ANTENNA_MIN_MODE 0 #define HAL_ANTENNA_FIXED_A 1 #define HAL_ANTENNA_FIXED_B 2 #define HAL_ANTENNA_MAX_MODE 3 typedef struct { uint32_t ackrcv_bad; uint32_t rts_bad; uint32_t rts_good; uint32_t fcs_bad; uint32_t beacons; } HAL_MIB_STATS; enum { HAL_MODE_11A = 0x001, /* 11a channels */ HAL_MODE_TURBO = 0x002, /* 11a turbo-only channels */ HAL_MODE_11B = 0x004, /* 11b channels */ HAL_MODE_PUREG = 0x008, /* 11g channels (OFDM only) */ #ifdef notdef HAL_MODE_11G = 0x010, /* 11g channels (OFDM/CCK) */ #else HAL_MODE_11G = 0x008, /* XXX historical */ #endif HAL_MODE_108G = 0x020, /* 11g+Turbo channels */ HAL_MODE_108A = 0x040, /* 11a+Turbo channels */ HAL_MODE_11A_HALF_RATE = 0x200, /* 11a half width channels */ HAL_MODE_11A_QUARTER_RATE = 0x400, /* 11a quarter width channels */ HAL_MODE_11G_HALF_RATE = 0x800, /* 11g half width channels */ HAL_MODE_11G_QUARTER_RATE = 0x1000, /* 11g quarter width channels */ HAL_MODE_11NG_HT20 = 0x008000, HAL_MODE_11NA_HT20 = 0x010000, HAL_MODE_11NG_HT40PLUS = 0x020000, HAL_MODE_11NG_HT40MINUS = 0x040000, HAL_MODE_11NA_HT40PLUS = 0x080000, HAL_MODE_11NA_HT40MINUS = 0x100000, HAL_MODE_ALL = 0xffffff }; typedef struct { int rateCount; /* NB: for proper padding */ uint8_t rateCodeToIndex[144]; /* back mapping */ struct { uint8_t valid; /* valid for rate control use */ uint8_t phy; /* CCK/OFDM/XR */ uint32_t rateKbps; /* transfer rate in kbs */ uint8_t rateCode; /* rate for h/w descriptors */ uint8_t shortPreamble; /* mask for enabling short * preamble in CCK rate code */ uint8_t dot11Rate; /* value for supported rates * info element of MLME */ uint8_t controlRate; /* index of next lower basic * rate; used for dur. calcs */ uint16_t lpAckDuration; /* long preamble ACK duration */ uint16_t spAckDuration; /* short preamble ACK duration*/ } info[32]; } HAL_RATE_TABLE; typedef struct { u_int rs_count; /* number of valid entries */ uint8_t rs_rates[32]; /* rates */ } HAL_RATE_SET; /* * 802.11n specific structures and enums */ typedef enum { HAL_CHAINTYPE_TX = 1, /* Tx chain type */ HAL_CHAINTYPE_RX = 2, /* RX chain type */ } HAL_CHAIN_TYPE; typedef struct { u_int Tries; u_int Rate; u_int PktDuration; u_int ChSel; u_int RateFlags; #define HAL_RATESERIES_RTS_CTS 0x0001 /* use rts/cts w/this series */ #define HAL_RATESERIES_2040 0x0002 /* use ext channel for series */ #define HAL_RATESERIES_HALFGI 0x0004 /* use half-gi for series */ } HAL_11N_RATE_SERIES; typedef enum { HAL_HT_MACMODE_20 = 0, /* 20 MHz operation */ HAL_HT_MACMODE_2040 = 1, /* 20/40 MHz operation */ } HAL_HT_MACMODE; typedef enum { HAL_HT_PHYMODE_20 = 0, /* 20 MHz operation */ HAL_HT_PHYMODE_2040 = 1, /* 20/40 MHz operation */ } HAL_HT_PHYMODE; typedef enum { HAL_HT_EXTPROTSPACING_20 = 0, /* 20 MHz spacing */ HAL_HT_EXTPROTSPACING_25 = 1, /* 25 MHz spacing */ } HAL_HT_EXTPROTSPACING; typedef enum { HAL_RX_CLEAR_CTL_LOW = 0x1, /* force control channel to appear busy */ HAL_RX_CLEAR_EXT_LOW = 0x2, /* force extension channel to appear busy */ } HAL_HT_RXCLEAR; /* * Antenna switch control. By default antenna selection * enables multiple (2) antenna use. To force use of the * A or B antenna only specify a fixed setting. Fixing * the antenna will also disable any diversity support. */ typedef enum { HAL_ANT_VARIABLE = 0, /* variable by programming */ HAL_ANT_FIXED_A = 1, /* fixed antenna A */ HAL_ANT_FIXED_B = 2, /* fixed antenna B */ } HAL_ANT_SETTING; typedef enum { HAL_M_STA = 1, /* infrastructure station */ HAL_M_IBSS = 0, /* IBSS (adhoc) station */ HAL_M_HOSTAP = 6, /* Software Access Point */ HAL_M_MONITOR = 8 /* Monitor mode */ } HAL_OPMODE; typedef struct { uint8_t kv_type; /* one of HAL_CIPHER */ uint8_t kv_pad; uint16_t kv_len; /* length in bits */ uint8_t kv_val[16]; /* enough for 128-bit keys */ uint8_t kv_mic[8]; /* TKIP MIC key */ uint8_t kv_txmic[8]; /* TKIP TX MIC key (optional) */ } HAL_KEYVAL; typedef enum { HAL_CIPHER_WEP = 0, HAL_CIPHER_AES_OCB = 1, HAL_CIPHER_AES_CCM = 2, HAL_CIPHER_CKIP = 3, HAL_CIPHER_TKIP = 4, HAL_CIPHER_CLR = 5, /* no encryption */ HAL_CIPHER_MIC = 127 /* TKIP-MIC, not a cipher */ } HAL_CIPHER; enum { HAL_SLOT_TIME_6 = 6, /* NB: for turbo mode */ HAL_SLOT_TIME_9 = 9, HAL_SLOT_TIME_20 = 20, }; /* * Per-station beacon timer state. Note that the specified * beacon interval (given in TU's) can also include flags * to force a TSF reset and to enable the beacon xmit logic. * If bs_cfpmaxduration is non-zero the hardware is setup to * coexist with a PCF-capable AP. */ typedef struct { uint32_t bs_nexttbtt; /* next beacon in TU */ uint32_t bs_nextdtim; /* next DTIM in TU */ uint32_t bs_intval; /* beacon interval+flags */ #define HAL_BEACON_PERIOD 0x0000ffff /* beacon interval period */ #define HAL_BEACON_ENA 0x00800000 /* beacon xmit enable */ #define HAL_BEACON_RESET_TSF 0x01000000 /* clear TSF */ uint32_t bs_dtimperiod; uint16_t bs_cfpperiod; /* CFP period in TU */ uint16_t bs_cfpmaxduration; /* max CFP duration in TU */ uint32_t bs_cfpnext; /* next CFP in TU */ uint16_t bs_timoffset; /* byte offset to TIM bitmap */ uint16_t bs_bmissthreshold; /* beacon miss threshold */ uint32_t bs_sleepduration; /* max sleep duration */ } HAL_BEACON_STATE; /* * Like HAL_BEACON_STATE but for non-station mode setup. * NB: see above flag definitions for bt_intval. */ typedef struct { uint32_t bt_intval; /* beacon interval+flags */ uint32_t bt_nexttbtt; /* next beacon in TU */ uint32_t bt_nextatim; /* next ATIM in TU */ uint32_t bt_nextdba; /* next DBA in 1/8th TU */ uint32_t bt_nextswba; /* next SWBA in 1/8th TU */ uint32_t bt_flags; /* timer enables */ #define HAL_BEACON_TBTT_EN 0x00000001 #define HAL_BEACON_DBA_EN 0x00000002 #define HAL_BEACON_SWBA_EN 0x00000004 } HAL_BEACON_TIMERS; /* * Per-node statistics maintained by the driver for use in * optimizing signal quality and other operational aspects. */ typedef struct { uint32_t ns_avgbrssi; /* average beacon rssi */ uint32_t ns_avgrssi; /* average data rssi */ uint32_t ns_avgtxrssi; /* average tx rssi */ } HAL_NODE_STATS; #define HAL_RSSI_EP_MULTIPLIER (1<<7) /* pow2 to optimize out * and / */ struct ath_desc; struct ath_tx_status; struct ath_rx_status; struct ieee80211_channel; /* * This is a channel survey sample entry. * * The AR5212 ANI routines fill these samples. The ANI code then uses it * when calculating listen time; it is also exported via a diagnostic * API. */ typedef struct { uint32_t seq_num; uint32_t tx_busy; uint32_t rx_busy; uint32_t chan_busy; uint32_t cycle_count; } HAL_SURVEY_SAMPLE; /* * This provides 3.2 seconds of sample space given an * ANI time of 1/10th of a second. This may not be enough! */ #define CHANNEL_SURVEY_SAMPLE_COUNT 32 typedef struct { HAL_SURVEY_SAMPLE samples[CHANNEL_SURVEY_SAMPLE_COUNT]; uint32_t cur_sample; /* current sample in sequence */ uint32_t cur_seq; /* current sequence number */ } HAL_CHANNEL_SURVEY; /* * ANI commands. * * These are used both internally and externally via the diagnostic * API. * * Note that this is NOT the ANI commands being used via the INTMIT * capability - that has a different mapping for some reason. */ typedef enum { HAL_ANI_PRESENT = 0, /* is ANI support present */ HAL_ANI_NOISE_IMMUNITY_LEVEL = 1, /* set level */ HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION = 2, /* enable/disable */ HAL_ANI_CCK_WEAK_SIGNAL_THR = 3, /* enable/disable */ HAL_ANI_FIRSTEP_LEVEL = 4, /* set level */ HAL_ANI_SPUR_IMMUNITY_LEVEL = 5, /* set level */ HAL_ANI_MODE = 6, /* 0 => manual, 1 => auto (XXX do not change) */ HAL_ANI_PHYERR_RESET = 7, /* reset phy error stats */ } HAL_ANI_CMD; /* * This is the layout of the ANI INTMIT capability. * * Notice that the command values differ to HAL_ANI_CMD. */ typedef enum { HAL_CAP_INTMIT_PRESENT = 0, HAL_CAP_INTMIT_ENABLE = 1, HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL = 2, HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL = 3, HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR = 4, HAL_CAP_INTMIT_FIRSTEP_LEVEL = 5, HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL = 6 } HAL_CAP_INTMIT_CMD; typedef struct { int32_t pe_firpwr; /* FIR pwr out threshold */ int32_t pe_rrssi; /* Radar rssi thresh */ int32_t pe_height; /* Pulse height thresh */ int32_t pe_prssi; /* Pulse rssi thresh */ int32_t pe_inband; /* Inband thresh */ /* The following params are only for AR5413 and later */ u_int32_t pe_relpwr; /* Relative power threshold in 0.5dB steps */ u_int32_t pe_relstep; /* Pulse Relative step threshold in 0.5dB steps */ u_int32_t pe_maxlen; /* Max length of radar sign in 0.8us units */ int32_t pe_usefir128; /* Use the average in-band power measured over 128 cycles */ int32_t pe_blockradar; /* * Enable to block radar check if pkt detect is done via OFDM * weak signal detect or pkt is detected immediately after tx * to rx transition */ int32_t pe_enmaxrssi; /* * Enable to use the max rssi instead of the last rssi during * fine gain changes for radar detection */ int32_t pe_extchannel; /* Enable DFS on ext channel */ int32_t pe_enabled; /* Whether radar detection is enabled */ } HAL_PHYERR_PARAM; #define HAL_PHYERR_PARAM_NOVAL 65535 #define HAL_PHYERR_PARAM_ENABLE 0x8000 /* Enable/Disable if applicable */ /* * DFS operating mode flags. */ typedef enum { HAL_DFS_UNINIT_DOMAIN = 0, /* Uninitialized dfs domain */ HAL_DFS_FCC_DOMAIN = 1, /* FCC3 dfs domain */ HAL_DFS_ETSI_DOMAIN = 2, /* ETSI dfs domain */ HAL_DFS_MKK4_DOMAIN = 3, /* Japan dfs domain */ } HAL_DFS_DOMAIN; /* * Flag for setting QUIET period */ typedef enum { HAL_QUIET_DISABLE = 0x0, HAL_QUIET_ENABLE = 0x1, HAL_QUIET_ADD_CURRENT_TSF = 0x2, /* add current TSF to next_start offset */ HAL_QUIET_ADD_SWBA_RESP_TIME = 0x4, /* add beacon response time to next_start offset */ } HAL_QUIET_FLAG; #define HAL_DFS_EVENT_PRICH 0x0000001 #define HAL_DFS_EVENT_EXTCH 0x0000002 #define HAL_DFS_EVENT_EXTEARLY 0x0000004 #define HAL_DFS_EVENT_ISDC 0x0000008 struct hal_dfs_event { uint64_t re_full_ts; /* 64-bit full timestamp from interrupt time */ uint32_t re_ts; /* Original 15 bit recv timestamp */ uint8_t re_rssi; /* rssi of radar event */ uint8_t re_dur; /* duration of radar pulse */ uint32_t re_flags; /* Flags (see above) */ }; typedef struct hal_dfs_event HAL_DFS_EVENT; typedef struct { int ah_debug; /* only used if AH_DEBUG is defined */ int ah_ar5416_biasadj; /* enable AR2133 radio specific bias fiddling */ /* NB: these are deprecated; they exist for now for compatibility */ int ah_dma_beacon_response_time;/* in TU's */ int ah_sw_beacon_response_time; /* in TU's */ int ah_additional_swba_backoff; /* in TU's */ } HAL_OPS_CONFIG; /* * Hardware Access Layer (HAL) API. * * Clients of the HAL call ath_hal_attach to obtain a reference to an * ath_hal structure for use with the device. Hardware-related operations * that follow must call back into the HAL through interface, supplying * the reference as the first parameter. Note that before using the * reference returned by ath_hal_attach the caller should verify the * ABI version number. */ struct ath_hal { uint32_t ah_magic; /* consistency check magic number */ uint16_t ah_devid; /* PCI device ID */ uint16_t ah_subvendorid; /* PCI subvendor ID */ HAL_SOFTC ah_sc; /* back pointer to driver/os state */ HAL_BUS_TAG ah_st; /* params for register r+w */ HAL_BUS_HANDLE ah_sh; HAL_CTRY_CODE ah_countryCode; uint32_t ah_macVersion; /* MAC version id */ uint16_t ah_macRev; /* MAC revision */ uint16_t ah_phyRev; /* PHY revision */ /* NB: when only one radio is present the rev is in 5Ghz */ uint16_t ah_analog5GhzRev;/* 5GHz radio revision */ uint16_t ah_analog2GhzRev;/* 2GHz radio revision */ uint16_t *ah_eepromdata; /* eeprom buffer, if needed */ HAL_OPS_CONFIG ah_config; const HAL_RATE_TABLE *__ahdecl(*ah_getRateTable)(struct ath_hal *, u_int mode); void __ahdecl(*ah_detach)(struct ath_hal*); /* Reset functions */ HAL_BOOL __ahdecl(*ah_reset)(struct ath_hal *, HAL_OPMODE, struct ieee80211_channel *, HAL_BOOL bChannelChange, HAL_STATUS *status); HAL_BOOL __ahdecl(*ah_phyDisable)(struct ath_hal *); HAL_BOOL __ahdecl(*ah_disable)(struct ath_hal *); void __ahdecl(*ah_configPCIE)(struct ath_hal *, HAL_BOOL restore); void __ahdecl(*ah_disablePCIE)(struct ath_hal *); void __ahdecl(*ah_setPCUConfig)(struct ath_hal *); HAL_BOOL __ahdecl(*ah_perCalibration)(struct ath_hal*, struct ieee80211_channel *, HAL_BOOL *); HAL_BOOL __ahdecl(*ah_perCalibrationN)(struct ath_hal *, struct ieee80211_channel *, u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone); HAL_BOOL __ahdecl(*ah_resetCalValid)(struct ath_hal *, const struct ieee80211_channel *); HAL_BOOL __ahdecl(*ah_setTxPower)(struct ath_hal *, const struct ieee80211_channel *, uint16_t *); HAL_BOOL __ahdecl(*ah_setTxPowerLimit)(struct ath_hal *, uint32_t); HAL_BOOL __ahdecl(*ah_setBoardValues)(struct ath_hal *, const struct ieee80211_channel *); /* Transmit functions */ HAL_BOOL __ahdecl(*ah_updateTxTrigLevel)(struct ath_hal*, HAL_BOOL incTrigLevel); int __ahdecl(*ah_setupTxQueue)(struct ath_hal *, HAL_TX_QUEUE, const HAL_TXQ_INFO *qInfo); HAL_BOOL __ahdecl(*ah_setTxQueueProps)(struct ath_hal *, int q, const HAL_TXQ_INFO *qInfo); HAL_BOOL __ahdecl(*ah_getTxQueueProps)(struct ath_hal *, int q, HAL_TXQ_INFO *qInfo); HAL_BOOL __ahdecl(*ah_releaseTxQueue)(struct ath_hal *ah, u_int q); HAL_BOOL __ahdecl(*ah_resetTxQueue)(struct ath_hal *ah, u_int q); uint32_t __ahdecl(*ah_getTxDP)(struct ath_hal*, u_int); HAL_BOOL __ahdecl(*ah_setTxDP)(struct ath_hal*, u_int, uint32_t txdp); uint32_t __ahdecl(*ah_numTxPending)(struct ath_hal *, u_int q); HAL_BOOL __ahdecl(*ah_startTxDma)(struct ath_hal*, u_int); HAL_BOOL __ahdecl(*ah_stopTxDma)(struct ath_hal*, u_int); HAL_BOOL __ahdecl(*ah_setupTxDesc)(struct ath_hal *, struct ath_desc *, u_int pktLen, u_int hdrLen, HAL_PKT_TYPE type, u_int txPower, u_int txRate0, u_int txTries0, u_int keyIx, u_int antMode, u_int flags, u_int rtsctsRate, u_int rtsctsDuration, u_int compicvLen, u_int compivLen, u_int comp); HAL_BOOL __ahdecl(*ah_setupXTxDesc)(struct ath_hal *, struct ath_desc*, u_int txRate1, u_int txTries1, u_int txRate2, u_int txTries2, u_int txRate3, u_int txTries3); HAL_BOOL __ahdecl(*ah_fillTxDesc)(struct ath_hal *, struct ath_desc *, u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg, const struct ath_desc *); HAL_STATUS __ahdecl(*ah_procTxDesc)(struct ath_hal *, struct ath_desc *, struct ath_tx_status *); void __ahdecl(*ah_getTxIntrQueue)(struct ath_hal *, uint32_t *); void __ahdecl(*ah_reqTxIntrDesc)(struct ath_hal *, struct ath_desc*); HAL_BOOL __ahdecl(*ah_getTxCompletionRates)(struct ath_hal *, const struct ath_desc *ds, int *rates, int *tries); /* Receive Functions */ uint32_t __ahdecl(*ah_getRxDP)(struct ath_hal*); void __ahdecl(*ah_setRxDP)(struct ath_hal*, uint32_t rxdp); void __ahdecl(*ah_enableReceive)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_stopDmaReceive)(struct ath_hal*); void __ahdecl(*ah_startPcuReceive)(struct ath_hal*); void __ahdecl(*ah_stopPcuReceive)(struct ath_hal*); void __ahdecl(*ah_setMulticastFilter)(struct ath_hal*, uint32_t filter0, uint32_t filter1); HAL_BOOL __ahdecl(*ah_setMulticastFilterIndex)(struct ath_hal*, uint32_t index); HAL_BOOL __ahdecl(*ah_clrMulticastFilterIndex)(struct ath_hal*, uint32_t index); uint32_t __ahdecl(*ah_getRxFilter)(struct ath_hal*); void __ahdecl(*ah_setRxFilter)(struct ath_hal*, uint32_t); HAL_BOOL __ahdecl(*ah_setupRxDesc)(struct ath_hal *, struct ath_desc *, uint32_t size, u_int flags); HAL_STATUS __ahdecl(*ah_procRxDesc)(struct ath_hal *, struct ath_desc *, uint32_t phyAddr, struct ath_desc *next, uint64_t tsf, struct ath_rx_status *); void __ahdecl(*ah_rxMonitor)(struct ath_hal *, const HAL_NODE_STATS *, const struct ieee80211_channel *); void __ahdecl(*ah_aniPoll)(struct ath_hal *, const struct ieee80211_channel *); void __ahdecl(*ah_procMibEvent)(struct ath_hal *, const HAL_NODE_STATS *); void __ahdecl(*ah_rxAntCombDiversity)(struct ath_hal *, struct ath_rx_status *, unsigned long, int); /* Misc Functions */ HAL_STATUS __ahdecl(*ah_getCapability)(struct ath_hal *, HAL_CAPABILITY_TYPE, uint32_t capability, uint32_t *result); HAL_BOOL __ahdecl(*ah_setCapability)(struct ath_hal *, HAL_CAPABILITY_TYPE, uint32_t capability, uint32_t setting, HAL_STATUS *); HAL_BOOL __ahdecl(*ah_getDiagState)(struct ath_hal *, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize); void __ahdecl(*ah_getMacAddress)(struct ath_hal *, uint8_t *); HAL_BOOL __ahdecl(*ah_setMacAddress)(struct ath_hal *, const uint8_t*); void __ahdecl(*ah_getBssIdMask)(struct ath_hal *, uint8_t *); HAL_BOOL __ahdecl(*ah_setBssIdMask)(struct ath_hal *, const uint8_t*); HAL_BOOL __ahdecl(*ah_setRegulatoryDomain)(struct ath_hal*, uint16_t, HAL_STATUS *); void __ahdecl(*ah_setLedState)(struct ath_hal*, HAL_LED_STATE); void __ahdecl(*ah_writeAssocid)(struct ath_hal*, const uint8_t *bssid, uint16_t assocId); HAL_BOOL __ahdecl(*ah_gpioCfgOutput)(struct ath_hal *, uint32_t gpio, HAL_GPIO_MUX_TYPE); HAL_BOOL __ahdecl(*ah_gpioCfgInput)(struct ath_hal *, uint32_t gpio); uint32_t __ahdecl(*ah_gpioGet)(struct ath_hal *, uint32_t gpio); HAL_BOOL __ahdecl(*ah_gpioSet)(struct ath_hal *, uint32_t gpio, uint32_t val); void __ahdecl(*ah_gpioSetIntr)(struct ath_hal*, u_int, uint32_t); uint32_t __ahdecl(*ah_getTsf32)(struct ath_hal*); uint64_t __ahdecl(*ah_getTsf64)(struct ath_hal*); void __ahdecl(*ah_resetTsf)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_detectCardPresent)(struct ath_hal*); void __ahdecl(*ah_updateMibCounters)(struct ath_hal*, HAL_MIB_STATS*); HAL_RFGAIN __ahdecl(*ah_getRfGain)(struct ath_hal*); u_int __ahdecl(*ah_getDefAntenna)(struct ath_hal*); void __ahdecl(*ah_setDefAntenna)(struct ath_hal*, u_int); HAL_ANT_SETTING __ahdecl(*ah_getAntennaSwitch)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setAntennaSwitch)(struct ath_hal*, HAL_ANT_SETTING); HAL_BOOL __ahdecl(*ah_setSifsTime)(struct ath_hal*, u_int); u_int __ahdecl(*ah_getSifsTime)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setSlotTime)(struct ath_hal*, u_int); u_int __ahdecl(*ah_getSlotTime)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setAckTimeout)(struct ath_hal*, u_int); u_int __ahdecl(*ah_getAckTimeout)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setAckCTSRate)(struct ath_hal*, u_int); u_int __ahdecl(*ah_getAckCTSRate)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setCTSTimeout)(struct ath_hal*, u_int); u_int __ahdecl(*ah_getCTSTimeout)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_setDecompMask)(struct ath_hal*, uint16_t, int); void __ahdecl(*ah_setCoverageClass)(struct ath_hal*, uint8_t, int); HAL_STATUS __ahdecl(*ah_setQuiet)(struct ath_hal *ah, uint32_t period, uint32_t duration, uint32_t nextStart, HAL_QUIET_FLAG flag); /* DFS functions */ void __ahdecl(*ah_enableDfs)(struct ath_hal *ah, HAL_PHYERR_PARAM *pe); void __ahdecl(*ah_getDfsThresh)(struct ath_hal *ah, HAL_PHYERR_PARAM *pe); HAL_BOOL __ahdecl(*ah_procRadarEvent)(struct ath_hal *ah, struct ath_rx_status *rxs, uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event); HAL_BOOL __ahdecl(*ah_isFastClockEnabled)(struct ath_hal *ah); /* Key Cache Functions */ uint32_t __ahdecl(*ah_getKeyCacheSize)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_resetKeyCacheEntry)(struct ath_hal*, uint16_t); HAL_BOOL __ahdecl(*ah_isKeyCacheEntryValid)(struct ath_hal *, uint16_t); HAL_BOOL __ahdecl(*ah_setKeyCacheEntry)(struct ath_hal*, uint16_t, const HAL_KEYVAL *, const uint8_t *, int); HAL_BOOL __ahdecl(*ah_setKeyCacheEntryMac)(struct ath_hal*, uint16_t, const uint8_t *); /* Power Management Functions */ HAL_BOOL __ahdecl(*ah_setPowerMode)(struct ath_hal*, HAL_POWER_MODE mode, int setChip); HAL_POWER_MODE __ahdecl(*ah_getPowerMode)(struct ath_hal*); int16_t __ahdecl(*ah_getChanNoise)(struct ath_hal *, const struct ieee80211_channel *); /* Beacon Management Functions */ void __ahdecl(*ah_setBeaconTimers)(struct ath_hal*, const HAL_BEACON_TIMERS *); /* NB: deprecated, use ah_setBeaconTimers instead */ void __ahdecl(*ah_beaconInit)(struct ath_hal *, uint32_t nexttbtt, uint32_t intval); void __ahdecl(*ah_setStationBeaconTimers)(struct ath_hal*, const HAL_BEACON_STATE *); void __ahdecl(*ah_resetStationBeaconTimers)(struct ath_hal*); uint64_t __ahdecl(*ah_getNextTBTT)(struct ath_hal *); /* 802.11n Functions */ HAL_BOOL __ahdecl(*ah_chainTxDesc)(struct ath_hal *, struct ath_desc *, u_int, u_int, HAL_PKT_TYPE, u_int, HAL_CIPHER, uint8_t, u_int, HAL_BOOL, HAL_BOOL); HAL_BOOL __ahdecl(*ah_setupFirstTxDesc)(struct ath_hal *, struct ath_desc *, u_int, u_int, u_int, u_int, u_int, u_int, u_int, u_int); HAL_BOOL __ahdecl(*ah_setupLastTxDesc)(struct ath_hal *, struct ath_desc *, const struct ath_desc *); void __ahdecl(*ah_set11nRateScenario)(struct ath_hal *, struct ath_desc *, u_int, u_int, HAL_11N_RATE_SERIES [], u_int, u_int); void __ahdecl(*ah_set11nAggrMiddle)(struct ath_hal *, struct ath_desc *, u_int); void __ahdecl(*ah_clr11nAggr)(struct ath_hal *, struct ath_desc *); void __ahdecl(*ah_set11nBurstDuration)(struct ath_hal *, struct ath_desc *, u_int); uint32_t __ahdecl(*ah_get11nExtBusy)(struct ath_hal *); void __ahdecl(*ah_set11nMac2040)(struct ath_hal *, HAL_HT_MACMODE); HAL_HT_RXCLEAR __ahdecl(*ah_get11nRxClear)(struct ath_hal *ah); void __ahdecl(*ah_set11nRxClear)(struct ath_hal *, HAL_HT_RXCLEAR); /* Interrupt functions */ HAL_BOOL __ahdecl(*ah_isInterruptPending)(struct ath_hal*); HAL_BOOL __ahdecl(*ah_getPendingInterrupts)(struct ath_hal*, HAL_INT*); HAL_INT __ahdecl(*ah_getInterrupts)(struct ath_hal*); HAL_INT __ahdecl(*ah_setInterrupts)(struct ath_hal*, HAL_INT); }; /* * Check the PCI vendor ID and device ID against Atheros' values * and return a printable description for any Atheros hardware. * AH_NULL is returned if the ID's do not describe Atheros hardware. */ extern const char *__ahdecl ath_hal_probe(uint16_t vendorid, uint16_t devid); /* * Attach the HAL for use with the specified device. The device is * defined by the PCI device ID. The caller provides an opaque pointer * to an upper-layer data structure (HAL_SOFTC) that is stored in the * HAL state block for later use. Hardware register accesses are done * using the specified bus tag and handle. On successful return a * reference to a state block is returned that must be supplied in all * subsequent HAL calls. Storage associated with this reference is * dynamically allocated and must be freed by calling the ah_detach * method when the client is done. If the attach operation fails a * null (AH_NULL) reference will be returned and a status code will * be returned if the status parameter is non-zero. */ extern struct ath_hal * __ahdecl ath_hal_attach(uint16_t devid, HAL_SOFTC, HAL_BUS_TAG, HAL_BUS_HANDLE, uint16_t *eepromdata, HAL_STATUS* status); extern const char *ath_hal_mac_name(struct ath_hal *); extern const char *ath_hal_rf_name(struct ath_hal *); /* * Regulatory interfaces. Drivers should use ath_hal_init_channels to * request a set of channels for a particular country code and/or * regulatory domain. If CTRY_DEFAULT and SKU_NONE are specified then * this list is constructed according to the contents of the EEPROM. * ath_hal_getchannels acts similarly but does not alter the operating * state; this can be used to collect information for a particular * regulatory configuration. Finally ath_hal_set_channels installs a * channel list constructed outside the driver. The HAL will adopt the * channel list and setup internal state according to the specified * regulatory configuration (e.g. conformance test limits). * * For all interfaces the channel list is returned in the supplied array. * maxchans defines the maximum size of this array. nchans contains the * actual number of channels returned. If a problem occurred then a * status code != HAL_OK is returned. */ struct ieee80211_channel; /* * Return a list of channels according to the specified regulatory. */ extern HAL_STATUS __ahdecl ath_hal_getchannels(struct ath_hal *, struct ieee80211_channel *chans, u_int maxchans, int *nchans, u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn, HAL_BOOL enableExtendedChannels); /* * Return a list of channels and install it as the current operating * regulatory list. */ extern HAL_STATUS __ahdecl ath_hal_init_channels(struct ath_hal *, struct ieee80211_channel *chans, u_int maxchans, int *nchans, u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd, HAL_BOOL enableExtendedChannels); /* * Install the list of channels as the current operating regulatory * and setup related state according to the country code and sku. */ extern HAL_STATUS __ahdecl ath_hal_set_channels(struct ath_hal *, struct ieee80211_channel *chans, int nchans, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn); /* * Fetch the ctl/ext noise floor values reported by a MIMO * radio. Returns 1 for valid results, 0 for invalid channel. */ extern int __ahdecl ath_hal_get_mimo_chan_noise(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *nf_ctl, int16_t *nf_ext); /* * Calibrate noise floor data following a channel scan or similar. * This must be called prior retrieving noise floor data. */ extern void __ahdecl ath_hal_process_noisefloor(struct ath_hal *ah); /* * Return bit mask of wireless modes supported by the hardware. */ extern u_int __ahdecl ath_hal_getwirelessmodes(struct ath_hal*); /* * Calculate the packet TX time for a legacy or 11n frame */ extern uint32_t __ahdecl ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble); /* * Calculate the duration of an 11n frame. */ extern uint32_t __ahdecl ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams, HAL_BOOL isht40, HAL_BOOL isShortGI); /* * Calculate the transmit duration of a legacy frame. */ extern uint16_t __ahdecl ath_hal_computetxtime(struct ath_hal *, const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix, HAL_BOOL shortPreamble); /* * Adjust the TSF. */ extern void __ahdecl ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta); /* * Enable or disable CCA. */ void __ahdecl ath_hal_setcca(struct ath_hal *ah, int ena); /* * Get CCA setting. */ int __ahdecl ath_hal_getcca(struct ath_hal *ah); #endif /* _ATH_AH_H_ */