Current Path : /sys/dev/ath/ath_hal/ar5210/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ath/ath_hal/ar5210/ar5210_misc.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2004 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5210/ar5210_misc.c 217684 2011-01-21 05:21:00Z adrian $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5210/ar5210.h" #include "ar5210/ar5210reg.h" #include "ar5210/ar5210phy.h" #include "ah_eeprom_v1.h" #define AR_NUM_GPIO 6 /* 6 GPIO bits */ #define AR_GPIOD_MASK 0x2f /* 6-bit mask */ void ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac) { struct ath_hal_5210 *ahp = AH5210(ah); OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN); } HAL_BOOL ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac) { struct ath_hal_5210 *ahp = AH5210(ah); OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN); return AH_TRUE; } void ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask) { static const uint8_t ones[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN); } HAL_BOOL ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask) { return AH_FALSE; } /* * Read 16 bits of data from the specified EEPROM offset. */ HAL_BOOL ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data) { (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */ if (!ath_hal_wait(ah, AR_EP_STA, AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n", __func__, AR_EP_AIR(off)); return AH_FALSE; } *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff; return AH_TRUE; } #ifdef AH_SUPPORT_WRITE_EEPROM /* * Write 16 bits of data to the specified EEPROM offset. */ HAL_BOOL ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data) { return AH_FALSE; } #endif /* AH_SUPPORT_WRITE_EEPROM */ /* * Attempt to change the cards operating regulatory domain to the given value */ HAL_BOOL ar5210SetRegulatoryDomain(struct ath_hal *ah, uint16_t regDomain, HAL_STATUS *status) { HAL_STATUS ecode; if (AH_PRIVATE(ah)->ah_currentRD == regDomain) { ecode = HAL_EINVAL; goto bad; } /* * Check if EEPROM is configured to allow this; must * be a proper version and the protection bits must * permit re-writing that segment of the EEPROM. */ if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) { ecode = HAL_EEWRITE; goto bad; } ecode = HAL_EIO; /* disallow all writes */ bad: if (status) *status = ecode; return AH_FALSE; } /* * Return the wireless modes (a,b,g,t) supported by hardware. * * This value is what is actually supported by the hardware * and is unaffected by regulatory/country code settings. * */ u_int ar5210GetWirelessModes(struct ath_hal *ah) { /* XXX could enable turbo mode but can't do all rates */ return HAL_MODE_11A; } /* * Called if RfKill is supported (according to EEPROM). Set the interrupt and * GPIO values so the ISR and can disable RF on a switch signal */ void ar5210EnableRfKill(struct ath_hal *ah) { uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent; int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL); int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY); /* * If radio disable switch connection to GPIO bit 0 is enabled * program GPIO interrupt. * If rfkill bit on eeprom is 1, setupeeprommap routine has already * verified that it is a later version of eeprom, it has a place for * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware * connection is present. */ ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity)); } /* * Configure GPIO Output lines */ HAL_BOOL ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type) { HALASSERT(gpio < AR_NUM_GPIO); OS_REG_WRITE(ah, AR_GPIOCR, (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) | AR_GPIOCR_OUT1(gpio)); return AH_TRUE; } /* * Configure GPIO Input lines */ HAL_BOOL ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio) { HALASSERT(gpio < AR_NUM_GPIO); OS_REG_WRITE(ah, AR_GPIOCR, (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio)) | AR_GPIOCR_IN(gpio)); return AH_TRUE; } /* * Once configured for I/O - set output lines */ HAL_BOOL ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val) { uint32_t reg; HALASSERT(gpio < AR_NUM_GPIO); reg = OS_REG_READ(ah, AR_GPIODO); reg &= ~(1 << gpio); reg |= (val&1) << gpio; OS_REG_WRITE(ah, AR_GPIODO, reg); return AH_TRUE; } /* * Once configured for I/O - get input lines */ uint32_t ar5210GpioGet(struct ath_hal *ah, uint32_t gpio) { if (gpio < AR_NUM_GPIO) { uint32_t val = OS_REG_READ(ah, AR_GPIODI); val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1; return val; } else { return 0xffffffff; } } /* * Set the GPIO 0 Interrupt */ void ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel) { uint32_t val = OS_REG_READ(ah, AR_GPIOCR); /* Clear the bits that we will modify. */ val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA | AR_GPIOCR_ALL(gpio)); val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA; if (ilevel) val |= AR_GPIOCR_INT_SELH; /* Don't need to change anything for low level interrupt. */ OS_REG_WRITE(ah, AR_GPIOCR, val); /* Change the interrupt mask. */ ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO); } /* * Change the LED blinking pattern to correspond to the connectivity */ void ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state) { uint32_t val; val = OS_REG_READ(ah, AR_PCICFG); switch (state) { case HAL_LED_INIT: val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT); break; case HAL_LED_RUN: /* normal blink when connected */ val &= ~AR_PCICFG_LED_PEND; val |= AR_PCICFG_LED_ACT; break; default: val |= AR_PCICFG_LED_PEND; val &= ~AR_PCICFG_LED_ACT; break; } OS_REG_WRITE(ah, AR_PCICFG, val); } /* * Return 1 or 2 for the corresponding antenna that is in use */ u_int ar5210GetDefAntenna(struct ath_hal *ah) { uint32_t val = OS_REG_READ(ah, AR_STA_ID1); return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1); } void ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna) { uint32_t val = OS_REG_READ(ah, AR_STA_ID1); if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) { /* * Antenna change requested, force a toggle of the default. */ OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA); } } HAL_ANT_SETTING ar5210GetAntennaSwitch(struct ath_hal *ah) { return HAL_ANT_VARIABLE; } HAL_BOOL ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) { /* XXX not sure how to fix antenna */ return (settings == HAL_ANT_VARIABLE); } /* * Change association related fields programmed into the hardware. * Writing a valid BSSID to the hardware effectively enables the hardware * to synchronize its TSF to the correct beacons and receive frames coming * from that BSSID. It is called by the SME JOIN operation. */ void ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId) { struct ath_hal_5210 *ahp = AH5210(ah); /* XXX save bssid for possible re-use on reset */ OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN); OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) | ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S)); if (assocId == 0) OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); else OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL); } /* * Get the current hardware tsf for stamlme. */ uint64_t ar5210GetTsf64(struct ath_hal *ah) { uint32_t low1, low2, u32; /* sync multi-word read */ low1 = OS_REG_READ(ah, AR_TSF_L32); u32 = OS_REG_READ(ah, AR_TSF_U32); low2 = OS_REG_READ(ah, AR_TSF_L32); if (low2 < low1) { /* roll over */ /* * If we are not preempted this will work. If we are * then we re-reading AR_TSF_U32 does no good as the * low bits will be meaningless. Likewise reading * L32, U32, U32, then comparing the last two reads * to check for rollover doesn't help if preempted--so * we take this approach as it costs one less PCI * read which can be noticeable when doing things * like timestamping packets in monitor mode. */ u32++; } return (((uint64_t) u32) << 32) | ((uint64_t) low2); } /* * Get the current hardware tsf for stamlme. */ uint32_t ar5210GetTsf32(struct ath_hal *ah) { return OS_REG_READ(ah, AR_TSF_L32); } /* * Reset the current hardware tsf for stamlme */ void ar5210ResetTsf(struct ath_hal *ah) { uint32_t val = OS_REG_READ(ah, AR_BEACON); OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF); } /* * Grab a semi-random value from hardware registers - may not * change often */ uint32_t ar5210GetRandomSeed(struct ath_hal *ah) { uint32_t nf; nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff; if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); return (OS_REG_READ(ah, AR_TSF_U32) ^ OS_REG_READ(ah, AR_TSF_L32) ^ nf); } /* * Detect if our card is present */ HAL_BOOL ar5210DetectCardPresent(struct ath_hal *ah) { /* * Read the Silicon Revision register and compare that * to what we read at attach time. If the same, we say * a card/device is present. */ return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff)); } /* * Update MIB Counters */ void ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats) { stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL); stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL); stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL); stats->rts_good += OS_REG_READ(ah, AR_RTS_OK); stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT); } HAL_BOOL ar5210SetSifsTime(struct ath_hal *ah, u_int us) { struct ath_hal_5210 *ahp = AH5210(ah); if (us > ath_hal_mac_usec(ah, 0x7ff)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n", __func__, us); ahp->ah_sifstime = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS, ath_hal_mac_clks(ah, us)); ahp->ah_sifstime = us; return AH_TRUE; } } u_int ar5210GetSifsTime(struct ath_hal *ah) { u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff; return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } HAL_BOOL ar5210SetSlotTime(struct ath_hal *ah, u_int us) { struct ath_hal_5210 *ahp = AH5210(ah); if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n", __func__, us); ahp->ah_slottime = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us)); ahp->ah_slottime = us; return AH_TRUE; } } u_int ar5210GetSlotTime(struct ath_hal *ah) { u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff; return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } HAL_BOOL ar5210SetAckTimeout(struct ath_hal *ah, u_int us) { struct ath_hal_5210 *ahp = AH5210(ah); if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n", __func__, us); ahp->ah_acktimeout = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us)); ahp->ah_acktimeout = us; return AH_TRUE; } } u_int ar5210GetAckTimeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK); return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } u_int ar5210GetAckCTSRate(struct ath_hal *ah) { return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0); } HAL_BOOL ar5210SetAckCTSRate(struct ath_hal *ah, u_int high) { struct ath_hal_5210 *ahp = AH5210(ah); if (high) { OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB; } else { OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB); ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB; } return AH_TRUE; } HAL_BOOL ar5210SetCTSTimeout(struct ath_hal *ah, u_int us) { struct ath_hal_5210 *ahp = AH5210(ah); if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n", __func__, us); ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */ return AH_FALSE; } else { /* convert to system clocks */ OS_REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us)); ahp->ah_ctstimeout = us; return AH_TRUE; } } u_int ar5210GetCTSTimeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS); return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ } HAL_BOOL ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en) { /* nothing to do */ return AH_TRUE; } void ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now) { } /* * Control Adaptive Noise Immunity Parameters */ HAL_BOOL ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param) { return AH_FALSE; } void ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats, const struct ieee80211_channel *chan) { } void ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan) { } void ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats) { } #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC) HAL_STATUS ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t *result) { switch (type) { case HAL_CAP_CIPHER: /* cipher handled in hardware */ return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP); default: return ath_hal_getcapability(ah, type, capability, result); } } HAL_BOOL ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type, uint32_t capability, uint32_t setting, HAL_STATUS *status) { switch (type) { case HAL_CAP_DIAG: /* hardware diagnostic support */ /* * NB: could split this up into virtual capabilities, * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly * seems worth the additional complexity. */ #ifdef AH_DEBUG AH_PRIVATE(ah)->ah_diagreg = setting; #else AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */ #endif OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); return AH_TRUE; case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */ return AH_FALSE; /* NB: disallow */ default: return ath_hal_setcapability(ah, type, capability, setting, status); } } HAL_BOOL ar5210GetDiagState(struct ath_hal *ah, int request, const void *args, uint32_t argsize, void **result, uint32_t *resultsize) { #ifdef AH_PRIVATE_DIAG uint32_t pcicfg; HAL_BOOL ok; switch (request) { case HAL_DIAG_EEPROM: /* XXX */ break; case HAL_DIAG_EEREAD: if (argsize != sizeof(uint16_t)) return AH_FALSE; pcicfg = OS_REG_READ(ah, AR_PCICFG); OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL); ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result); OS_REG_WRITE(ah, AR_PCICFG, pcicfg); if (ok) *resultsize = sizeof(uint16_t); return ok; } #endif return ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize); }