Current Path : /sys/dev/ath/ath_hal/ar5212/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ath/ath_hal/ar5212/ar5212_keycache.c |
/* * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5212/ar5212_keycache.c 218483 2011-02-09 15:23:16Z adrian $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ar5212/ar5212.h" #include "ar5212/ar5212reg.h" #include "ar5212/ar5212desc.h" /* * Note: The key cache hardware requires that each double-word * pair be written in even/odd order (since the destination is * a 64-bit register). Don't reorder the writes in this code * w/o considering this! */ #define KEY_XOR 0xaa #define IS_MIC_ENABLED(ah) \ (AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE) /* * Return the size of the hardware key cache. */ uint32_t ar5212GetKeyCacheSize(struct ath_hal *ah) { return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize; } /* * Return true if the specific key cache entry is valid. */ HAL_BOOL ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry) { if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) { uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (val & AR_KEYTABLE_VALID) return AH_TRUE; } return AH_FALSE; } /* * Clear the specified key cache entry and any associated MIC entry. */ HAL_BOOL ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry) { uint32_t keyType; if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n", __func__, entry); return AH_FALSE; } keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry)); /* XXX why not clear key type/valid bit first? */ OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) { uint16_t micentry = entry+64; /* MIC goes at slot+64 */ HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize); OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); /* NB: key type and MAC are known to be ok */ } return AH_TRUE; } /* * Sets the mac part of the specified key cache entry (and any * associated MIC entry) and mark them valid. * * Since mac[0] is shifted off and not presented to the hardware, * it does double duty as a "don't use for unicast, use for multicast * matching" flag. This interface should later be extended to * explicitly do that rather than overloading a bit in the MAC * address. */ HAL_BOOL ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac) { uint32_t macHi, macLo; uint32_t unicast_flag = AR_KEYTABLE_VALID; if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n", __func__, entry); return AH_FALSE; } /* * Set MAC address -- shifted right by 1. MacLo is * the 4 MSBs, and MacHi is the 2 LSBs. */ if (mac != AH_NULL) { /* * AR_KEYTABLE_VALID indicates that the address is a unicast * address, which must match the transmitter address for * decrypting frames. * Not setting this bit allows the hardware to use the key * for multicast frame decryption. */ if (mac[0] & 0x01) unicast_flag = 0; macHi = (mac[5] << 8) | mac[4]; macLo = (mac[3] << 24)| (mac[2] << 16) | (mac[1] << 8) | mac[0]; macLo >>= 1; macLo |= (macHi & 1) << 31; /* carry */ macHi >>= 1; } else { macLo = macHi = 0; } OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag); return AH_TRUE; } /* * Sets the contents of the specified key cache entry * and any associated MIC entry. */ HAL_BOOL ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry, const HAL_KEYVAL *k, const uint8_t *mac, int xorKey) { struct ath_hal_5212 *ahp = AH5212(ah); const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps; uint32_t key0, key1, key2, key3, key4; uint32_t keyType; uint32_t xorMask = xorKey ? (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0; if (entry >= pCap->halKeyCacheSize) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n", __func__, entry); return AH_FALSE; } switch (k->kv_type) { case HAL_CIPHER_AES_OCB: keyType = AR_KEYTABLE_TYPE_AES; break; case HAL_CIPHER_AES_CCM: if (!pCap->halCipherAesCcmSupport) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AES-CCM not supported by mac rev 0x%x\n", __func__, AH_PRIVATE(ah)->ah_macRev); return AH_FALSE; } keyType = AR_KEYTABLE_TYPE_CCM; break; case HAL_CIPHER_TKIP: keyType = AR_KEYTABLE_TYPE_TKIP; if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u inappropriate for TKIP\n", __func__, entry); return AH_FALSE; } break; case HAL_CIPHER_WEP: if (k->kv_len < 40 / NBBY) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: WEP key length %u too small\n", __func__, k->kv_len); return AH_FALSE; } if (k->kv_len <= 40 / NBBY) keyType = AR_KEYTABLE_TYPE_40; else if (k->kv_len <= 104 / NBBY) keyType = AR_KEYTABLE_TYPE_104; else keyType = AR_KEYTABLE_TYPE_128; break; case HAL_CIPHER_CLR: keyType = AR_KEYTABLE_TYPE_CLR; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n", __func__, k->kv_type); return AH_FALSE; } key0 = LE_READ_4(k->kv_val+0) ^ xorMask; key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff; key2 = LE_READ_4(k->kv_val+6) ^ xorMask; key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff; key4 = LE_READ_4(k->kv_val+12) ^ xorMask; if (k->kv_len <= 104 / NBBY) key4 &= 0xff; /* * Note: key cache hardware requires that each double-word * pair be written in even/odd order (since the destination is * a 64-bit register). Don't reorder these writes w/o * considering this! */ if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) { uint16_t micentry = entry+64; /* MIC goes at slot+64 */ uint32_t mic0, mic1, mic2, mic3, mic4; /* * Invalidate the encrypt/decrypt key until the MIC * key is installed so pending rx frames will fail * with decrypt errors rather than a MIC error. */ OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ar5212SetKeyCacheEntryMac(ah, entry, mac); /* * Write MIC entry according to new or old key layout. * The MISC_MODE register is assumed already set so * these writes will be handled properly (happens on * attach and at every reset). */ /* RX mic */ mic0 = LE_READ_4(k->kv_mic+0); mic2 = LE_READ_4(k->kv_mic+4); if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) { /* * Both RX and TX mic values can be combined into * one cache slot entry: * 8*N + 800 31:0 RX Michael key 0 * 8*N + 804 15:0 TX Michael key 0 [31:16] * 8*N + 808 31:0 RX Michael key 1 * 8*N + 80C 15:0 TX Michael key 0 [15:0] * 8*N + 810 31:0 TX Michael key 1 * 8*N + 814 15:0 reserved * 8*N + 818 31:0 reserved * 8*N + 81C 14:0 reserved * 15 key valid == 0 */ /* TX mic */ mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff; mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff; mic4 = LE_READ_4(k->kv_txmic+4); } else { mic1 = mic3 = mic4 = 0; } OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); /* NB: MIC key is not marked valid and has no MAC address */ OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); /* correct intentionally corrupted key */ OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); } else { OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ar5212SetKeyCacheEntryMac(ah, entry, mac); } return AH_TRUE; }