Current Path : /sys/dev/ath/ath_hal/ar5212/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ath/ath_hal/ar5212/ar5212_rfgain.c |
/* * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5212/ar5212_rfgain.c 188197 2009-02-05 21:13:31Z sam $ */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ar5212/ar5212.h" #include "ar5212/ar5212reg.h" #include "ar5212/ar5212phy.h" #include "ah_eeprom_v3.h" static const GAIN_OPTIMIZATION_LADDER gainLadder = { 9, /* numStepsInLadder */ 4, /* defaultStepNum */ { { {4, 1, 1, 1}, 6, "FG8"}, { {4, 0, 1, 1}, 4, "FG7"}, { {3, 1, 1, 1}, 3, "FG6"}, { {4, 0, 0, 1}, 1, "FG5"}, { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */ { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */ { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */ { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */ { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */ } }; static const GAIN_OPTIMIZATION_LADDER gainLadder5112 = { 8, /* numStepsInLadder */ 1, /* defaultStepNum */ { { {3, 0,0,0, 0,0,0}, 6, "FG7"}, /* most fixed gain */ { {2, 0,0,0, 0,0,0}, 0, "FG6"}, { {1, 0,0,0, 0,0,0}, -3, "FG5"}, { {0, 0,0,0, 0,0,0}, -6, "FG4"}, { {0, 1,1,0, 0,0,0}, -8, "FG3"}, { {0, 1,1,0, 1,1,0}, -10, "FG2"}, { {0, 1,0,1, 1,1,0}, -13, "FG1"}, { {0, 1,0,1, 1,0,1}, -16, "FG0"}, /* least fixed gain */ } }; /* * Initialize the gain structure to good values */ void ar5212InitializeGainValues(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); GAIN_VALUES *gv = &ahp->ah_gainValues; /* initialize gain optimization values */ if (IS_RAD5112_ANY(ah)) { gv->currStepNum = gainLadder5112.defaultStepNum; gv->currStep = &gainLadder5112.optStep[gainLadder5112.defaultStepNum]; gv->active = AH_TRUE; gv->loTrig = 20; gv->hiTrig = 85; } else { gv->currStepNum = gainLadder.defaultStepNum; gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum]; gv->active = AH_TRUE; gv->loTrig = 20; gv->hiTrig = 35; } } #define MAX_ANALOG_START 319 /* XXX */ /* * Find analog bits of given parameter data and return a reversed value */ static uint32_t ar5212GetRfField(uint32_t *rfBuf, uint32_t numBits, uint32_t firstBit, uint32_t column) { uint32_t reg32 = 0, mask, arrayEntry, lastBit; uint32_t bitPosition, bitsShifted; int32_t bitsLeft; HALASSERT(column <= 3); HALASSERT(numBits <= 32); HALASSERT(firstBit + numBits <= MAX_ANALOG_START); arrayEntry = (firstBit - 1) / 8; bitPosition = (firstBit - 1) % 8; bitsLeft = numBits; bitsShifted = 0; while (bitsLeft > 0) { lastBit = (bitPosition + bitsLeft > 8) ? (8) : (bitPosition + bitsLeft); mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) << (column * 8); reg32 |= (((rfBuf[arrayEntry] & mask) >> (column * 8)) >> bitPosition) << bitsShifted; bitsShifted += lastBit - bitPosition; bitsLeft -= (8 - bitPosition); bitPosition = 0; arrayEntry++; } reg32 = ath_hal_reverseBits(reg32, numBits); return reg32; } static HAL_BOOL ar5212InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv) { uint32_t gStep, g, mixOvr; uint32_t L1, L2, L3, L4; if (IS_RAD5112_ANY(ah)) { mixOvr = ar5212GetRfField(ar5212GetRfBank(ah, 7), 1, 36, 0); L1 = 0; L2 = 107; L3 = 0; L4 = 107; if (mixOvr == 1) { L2 = 83; L4 = 83; gv->hiTrig = 55; } } else { gStep = ar5212GetRfField(ar5212GetRfBank(ah, 7), 6, 37, 0); L1 = 0; L2 = (gStep == 0x3f) ? 50 : gStep + 4; L3 = (gStep != 0x3f) ? 0x40 : L1; L4 = L3 + 50; gv->loTrig = L1 + (gStep == 0x3f ? DYN_ADJ_LO_MARGIN : 0); /* never adjust if != 0x3f */ gv->hiTrig = L4 - (gStep == 0x3f ? DYN_ADJ_UP_MARGIN : -5); } g = gv->currGain; return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4)); } /* * Enable the probe gain check on the next packet */ void ar5212RequestRfgain(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); uint32_t probePowerIndex; /* Enable the gain readback probe */ probePowerIndex = ahp->ah_ofdmTxPower + ahp->ah_txPowerIndexOffset; OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE, SM(probePowerIndex, AR_PHY_PAPD_PROBE_POWERTX) | AR_PHY_PAPD_PROBE_NEXT_TX); ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED; } /* * Check to see if our readback gain level sits within the linear * region of our current variable attenuation window */ static HAL_BOOL ar5212IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv) { return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig); } /* * Move the rabbit ears in the correct direction. */ static int32_t ar5212AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv) { const GAIN_OPTIMIZATION_LADDER *gl; if (IS_RAD5112_ANY(ah)) gl = &gainLadder5112; else gl = &gainLadder; gv->currStep = &gl->optStep[gv->currStepNum]; if (gv->currGain >= gv->hiTrig) { if (gv->currStepNum == 0) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Max gain limit.\n", __func__); return -1; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Adding gain: currG=%d [%s] --> ", __func__, gv->currGain, gv->currStep->stepName); gv->targetGain = gv->currGain; while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) { gv->targetGain -= 2 * (gl->optStep[--(gv->currStepNum)].stepGain - gv->currStep->stepGain); gv->currStep = &gl->optStep[gv->currStepNum]; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", gv->targetGain, gv->currStep->stepName); return 1; } if (gv->currGain <= gv->loTrig) { if (gv->currStepNum == gl->numStepsInLadder-1) { HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Min gain limit.\n", __func__); return -2; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Deducting gain: currG=%d [%s] --> ", __func__, gv->currGain, gv->currStep->stepName); gv->targetGain = gv->currGain; while (gv->targetGain <= gv->loTrig && gv->currStepNum < (gl->numStepsInLadder - 1)) { gv->targetGain -= 2 * (gl->optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain); gv->currStep = &gl->optStep[gv->currStepNum]; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", gv->targetGain, gv->currStep->stepName); return 2; } return 0; /* caller didn't call needAdjGain first */ } /* * Read rf register to determine if gainF needs correction */ static uint32_t ar5212GetGainFCorrection(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); uint32_t correction; HALASSERT(IS_RADX112_REV2(ah)); correction = 0; if (ar5212GetRfField(ar5212GetRfBank(ah, 7), 1, 36, 0) == 1) { const GAIN_VALUES *gv = &ahp->ah_gainValues; uint32_t mixGain = gv->currStep->paramVal[0]; uint32_t gainStep = ar5212GetRfField(ar5212GetRfBank(ah, 7), 4, 32, 0); switch (mixGain) { case 0 : correction = 0; break; case 1 : correction = gainStep; break; case 2 : correction = 2 * gainStep - 5; break; case 3 : correction = 2 * gainStep; break; } } return correction; } /* * Exported call to check for a recent gain reading and return * the current state of the thermal calibration gain engine. */ HAL_RFGAIN ar5212GetRfgain(struct ath_hal *ah) { struct ath_hal_5212 *ahp = AH5212(ah); GAIN_VALUES *gv = &ahp->ah_gainValues; uint32_t rddata, probeType; /* NB: beware of touching the BB when PHY is powered down */ if (!gv->active || !ahp->ah_phyPowerOn) return HAL_RFGAIN_INACTIVE; if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) { /* Caller had asked to setup a new reading. Check it. */ rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE); if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) { /* bit got cleared, we have a new reading. */ gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S; probeType = MS(rddata, AR_PHY_PAPD_PROBE_TYPE); if (probeType == AR_PHY_PAPD_PROBE_TYPE_CCK) { const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; HALASSERT(IS_RAD5112_ANY(ah)); HALASSERT(ah->ah_magic == AR5212_MAGIC); if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) gv->currGain += ee->ee_cckOfdmGainDelta; else gv->currGain += PHY_PROBE_CCK_CORRECTION; } if (IS_RADX112_REV2(ah)) { uint32_t correct = ar5212GetGainFCorrection(ah); if (gv->currGain >= correct) gv->currGain -= correct; else gv->currGain = 0; } /* inactive by default */ ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; if (!ar5212InvalidGainReadback(ah, gv) && ar5212IsGainAdjustNeeded(ah, gv) && ar5212AdjustGain(ah, gv) > 0) { /* * Change needed. Copy ladder info * into eeprom info. */ ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE; /* for ap51 */ ahp->ah_cwCalRequire = AH_TRUE; /* Request IQ recalibration for temperature chang */ ahp->ah_bIQCalibration = IQ_CAL_INACTIVE; } } } return ahp->ah_rfgainState; }