Current Path : /sys/dev/ath/ath_hal/ar5312/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ath/ath_hal/ar5312/ar5312_reset.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5312/ar5312_reset.c 187831 2009-01-28 18:00:22Z sam $ */ #include "opt_ah.h" #ifdef AH_SUPPORT_AR5312 #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ar5312/ar5312.h" #include "ar5312/ar5312reg.h" #include "ar5312/ar5312phy.h" #include "ah_eeprom_v3.h" /* Additional Time delay to wait after activiting the Base band */ #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ #define PLL_SETTLE_DELAY 300 /* 300 usec */ extern int16_t ar5212GetNf(struct ath_hal *, const struct ieee80211_channel *); extern void ar5212SetRateDurationTable(struct ath_hal *, const struct ieee80211_channel *); extern HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t *rfXpdGain); extern void ar5212SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); extern HAL_BOOL ar5212SetBoardValues(struct ath_hal *, const struct ieee80211_channel *); extern void ar5212SetIFSTiming(struct ath_hal *, const struct ieee80211_channel *); extern HAL_BOOL ar5212IsSpurChannel(struct ath_hal *, const struct ieee80211_channel *); extern HAL_BOOL ar5212ChannelChange(struct ath_hal *, const struct ieee80211_channel *); static HAL_BOOL ar5312SetResetReg(struct ath_hal *, uint32_t resetMask); static int write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia, HAL_BOOL bChannelChange, int writes) { #define IS_NO_RESET_TIMER_ADDR(x) \ ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \ (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3))) #define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)] int i; /* Write Common Array Parameters */ for (i = 0; i < ia->rows; i++) { uint32_t reg = V(i, 0); /* XXX timer/beacon setup registers? */ /* On channel change, don't reset the PCU registers */ if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) { OS_REG_WRITE(ah, reg, V(i, 1)); DMA_YIELD(writes); } } return writes; #undef IS_NO_RESET_TIMER_ADDR #undef V } /* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration * * bChannelChange is used to preserve DMA/PCU registers across * a HW Reset during channel change. */ HAL_BOOL ar5312Reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan, HAL_BOOL bChannelChange, HAL_STATUS *status) { #define N(a) (sizeof (a) / sizeof (a[0])) #define FAIL(_code) do { ecode = _code; goto bad; } while (0) struct ath_hal_5212 *ahp = AH5212(ah); HAL_CHANNEL_INTERNAL *ichan; const HAL_EEPROM *ee; uint32_t saveFrameSeqCount, saveDefAntenna; uint32_t macStaId1, synthDelay, txFrm2TxDStart; uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL]; int16_t cckOfdmPwrDelta = 0; u_int modesIndex, freqIndex; HAL_STATUS ecode; int i, regWrites = 0; uint32_t testReg; uint32_t saveLedState = 0; HALASSERT(ah->ah_magic == AR5212_MAGIC); ee = AH_PRIVATE(ah)->ah_eeprom; OS_MARK(ah, AH_MARK_RESET, bChannelChange); /* * Map public channel to private. */ ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->ic_freq, chan->ic_flags); FAIL(HAL_EINVAL); } switch (opmode) { case HAL_M_STA: case HAL_M_IBSS: case HAL_M_HOSTAP: case HAL_M_MONITOR: break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", __func__, opmode); FAIL(HAL_EINVAL); break; } HALASSERT(ahp->ah_eeversion >= AR_EEPROM_VER3); /* Preserve certain DMA hardware registers on a channel change */ if (bChannelChange) { /* * On Venice, the TSF is almost preserved across a reset; * it requires the doubling writes to the RESET_TSF * bit in the AR_BEACON register; it also has the quirk * of the TSF going back in time on the station (station * latches onto the last beacon's tsf during a reset 50% * of the times); the latter is not a problem for adhoc * stations since as long as the TSF is behind, it will * get resynchronized on receiving the next beacon; the * TSF going backwards in time could be a problem for the * sleep operation (supported on infrastructure stations * only) - the best and most general fix for this situation * is to resynchronize the various sleep/beacon timers on * the receipt of the next beacon i.e. when the TSF itself * gets resynchronized to the AP's TSF - power save is * needed to be temporarily disabled until that time * * Need to save the sequence number to restore it after * the reset! */ saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM); } else saveFrameSeqCount = 0; /* NB: silence compiler */ /* If the channel change is across the same mode - perform a fast channel change */ if ((IS_2413(ah) || IS_5413(ah))) { /* * Channel change can only be used when: * -channel change requested - so it's not the initial reset. * -it's not a change to the current channel - often called when switching modes * on a channel * -the modes of the previous and requested channel are the same - some ugly code for XR */ if (bChannelChange && AH_PRIVATE(ah)->ah_curchan != AH_NULL && (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) && ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) == (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) { if (ar5212ChannelChange(ah, chan)) /* If ChannelChange completed - skip the rest of reset */ return AH_TRUE; } } /* * Preserve the antenna on a channel change */ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) /* XXX magic constants */ saveDefAntenna = 1; /* Save hardware flag before chip reset clears the register */ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); /* Save led state from pci config register */ if (!IS_5315(ah)) saveLedState = OS_REG_READ(ah, AR5312_PCICFG) & (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK | AR_PCICFG_LEDSLOW); ar5312RestoreClock(ah, opmode); /* move to refclk operation */ /* * Adjust gain parameters before reset if * there's an outstanding gain updated. */ (void) ar5212GetRfgain(ah); if (!ar5312ChipReset(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); FAIL(HAL_EIO); } /* Setup the indices for the next set of register array writes */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { freqIndex = 2; modesIndex = IEEE80211_IS_CHAN_108G(chan) ? 5 : IEEE80211_IS_CHAN_G(chan) ? 4 : 3; } else { freqIndex = 1; modesIndex = IEEE80211_IS_CHAN_ST(chan) ? 2 : 1; } OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); /* Set correct Baseband to analog shift setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0); regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange, regWrites); ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) ar5212SetIFSTiming(ah, chan); /* Overwrite INI values for revised chipsets */ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) { /* ADC_CTL */ OS_REG_WRITE(ah, AR_PHY_ADC_CTL, SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) | SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) | AR_PHY_ADC_CTL_OFF_PWDDAC | AR_PHY_ADC_CTL_OFF_PWDADC); /* TX_PWR_ADJ */ if (chan->channel == 2484) { cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta - ee->ee_scaledCh14FilterCckDelta); } else { cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta); } if (IEEE80211_IS_CHAN_G(chan)) { OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, SM((ee->ee_cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) | SM((cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX)); } else { OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0); } /* Add barker RSSI thresh enable as disabled */ OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR); OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK, AR_PHY_DAG_CTRLCCK_RSSI_THR, 2); /* Set the mute mask to the correct default */ OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F); } if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) { /* Clear reg to alllow RX_CLEAR line debug */ OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0); } if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) { #ifdef notyet /* Enable burst prefetch for the data queues */ OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... ); /* Enable double-buffering */ OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS); #endif } if (IS_5312_2_X(ah)) { /* ADC_CTRL */ OS_REG_WRITE(ah, AR_PHY_SIGMA_DELTA, SM(2, AR_PHY_SIGMA_DELTA_ADC_SEL) | SM(4, AR_PHY_SIGMA_DELTA_FILT2) | SM(0x16, AR_PHY_SIGMA_DELTA_FILT1) | SM(0, AR_PHY_SIGMA_DELTA_ADC_CLIP)); if (IEEE80211_IS_CHAN_2GHZ(chan)) OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR_PHY_RXGAIN_TXRX_RF_MAX, 0x0F); /* CCK Short parameter adjustment in 11B mode */ if (IEEE80211_IS_CHAN_B(chan)) OS_REG_RMW_FIELD(ah, AR_PHY_CCK_RXCTRL4, AR_PHY_CCK_RXCTRL4_FREQ_EST_SHORT, 12); /* Set ADC/DAC select values */ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x04); /* Increase 11A AGC Settling */ if (IEEE80211_IS_CHAN_A(chan)) OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_AGC, 32); } else { /* Set ADC/DAC select values */ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e); } /* Setup the transmit power values. */ if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error init'ing transmit power\n", __func__); FAIL(HAL_EIO); } /* Write the analog registers */ if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n", __func__); FAIL(HAL_EIO); } /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ if (IEEE80211_IS_CHAN_OFDM(chan)) { if (IS_5413(ah) || AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3) ar5212SetSpurMitigation(ah, chan); ar5212SetDeltaSlope(ah, chan); } /* Setup board specific options for EEPROM version 3 */ if (!ar5212SetBoardValues(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error setting board options\n", __func__); FAIL(HAL_EIO); } /* Restore certain DMA hardware registers on a channel change */ if (bChannelChange) OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | ahp->ah_staId1Defaults ); ar5212SetOperatingMode(ah, opmode); /* Set Venice BSSID mask according to current state */ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); /* Restore previous led state */ if (!IS_5315(ah)) OS_REG_WRITE(ah, AR5312_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState); /* Restore previous antenna */ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); /* then our BSSID */ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); /* Restore bmiss rssi & count thresholds */ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ if (!ar5212SetChannel(ah, chan)) FAIL(HAL_EIO); OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); ar5212SetRateDurationTable(ah, chan); /* Set Tx frame start to tx data start delay */ if (IS_RAD5112_ANY(ah) && (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) { txFrm2TxDStart = IEEE80211_IS_CHAN_HALF(chan) ? TX_FRAME_D_START_HALF_RATE: TX_FRAME_D_START_QUARTER_RATE; OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL, AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart); } /* * Setup fast diversity. * Fast diversity can be enabled or disabled via regadd.txt. * Default is enabled. * For reference, * Disable: reg val * 0x00009860 0x00009d18 (if 11a / 11g, else no change) * 0x00009970 0x192bb514 * 0x0000a208 0xd03e4648 * * Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change) * 0x00009970 0x192fb514 * 0x0000a208 0xd03e6788 */ /* XXX Setup pre PHY ENABLE EAR additions */ /* flush SCAL reg */ if (IS_5312_2_X(ah)) { (void) OS_REG_READ(ah, AR_PHY_SLEEP_SCAL); } /* * Wait for the frequency synth to settle (synth goes on * via AR_PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IEEE80211_IS_CHAN_B(chan)) { synthDelay = (4 * synthDelay) / 22; } else { synthDelay /= 10; } /* Activate the PHY (includes baseband activate and synthesizer on) */ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * There is an issue if the AP starts the calibration before * the base band timeout completes. This could result in the * rx_clear false triggering. As a workaround we add delay an * extra BASE_ACTIVATE_DELAY usecs to ensure this condition * does not happen. */ if (IEEE80211_IS_CHAN_HALF(chan)) { OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); } else { OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); } /* * The udelay method is not reliable with notebooks. * Need to check to see if the baseband is ready */ testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL); /* Selects the Tx hold */ OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD); i = 0; while ((i++ < 20) && (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200); OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg); /* Calibrate the AGC and start a NF calculation */ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL | AR_PHY_AGC_CONTROL_NF); if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) { /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, INIT_IQCAL_LOG_COUNT_MAX); OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_DO_IQCAL); ahp->ah_bIQCalibration = IQ_CAL_RUNNING; } else ahp->ah_bIQCalibration = IQ_CAL_INACTIVE; /* Setup compression registers */ ar5212SetCompRegs(ah); /* Set 1:1 QCU to DCU mapping for all queues */ for (i = 0; i < AR_NUM_DCU; i++) OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); ahp->ah_intrTxqs = 0; for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) ar5212ResetTxQueue(ah, i); /* * Setup interrupt handling. Note that ar5212ResetTxQueue * manipulates the secondary IMR's as queues are enabled * and disabled. This is done with RMW ops to insure the * settings we make here are preserved. */ ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_HIUERR ; if (opmode == HAL_M_HOSTAP) ahp->ah_maskReg |= AR_IMR_MIB; OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); /* Enable bus errors that are OR'd to set the HIUERR bit */ OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR); if (AH_PRIVATE(ah)->ah_rfkillEnabled) ar5212EnableRfKill(ah); if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset calibration failed to complete in 1ms;" " noisy environment?\n", __func__); } /* * Set clocks back to 32kHz if they had been using refClk, then * use an external 32kHz crystal when sleeping, if one exists. */ ar5312SetupClock(ah, opmode); /* * Writing to AR_BEACON will start timers. Hence it should * be the last register to be written. Do not reset tsf, do * not enable beacons at this point, but preserve other values * like beaconInterval. */ OS_REG_WRITE(ah, AR_BEACON, (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF))); /* XXX Setup post reset EAR additions */ /* QoS support */ if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE || (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE && AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) { OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ } /* Turn on NOACK Support for QoS packets */ OS_REG_WRITE(ah, AR_NOACK, SM(2, AR_NOACK_2BIT_VALUE) | SM(5, AR_NOACK_BIT_OFFSET) | SM(0, AR_NOACK_BYTE_OFFSET)); /* Restore user-specified settings */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode); if (ahp->ah_slottime != (u_int) -1) ar5212SetSlotTime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u_int) -1) ar5212SetAckTimeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u_int) -1) ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); if (ahp->ah_sifstime != (u_int) -1) ar5212SetSifsTime(ah, ahp->ah_sifstime); if (AH_PRIVATE(ah)->ah_diagreg != 0) OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); OS_MARK(ah, AH_MARK_RESET_DONE, 0); return AH_TRUE; bad: OS_MARK(ah, AH_MARK_RESET_DONE, ecode); if (status != AH_NULL) *status = ecode; return AH_FALSE; #undef FAIL #undef N } /* * Places the PHY and Radio chips into reset. A full reset * must be called to leave this state. The PCI/MAC/PCU are * not placed into reset as we must receive interrupt to * re-enable the hardware. */ HAL_BOOL ar5312PhyDisable(struct ath_hal *ah) { return ar5312SetResetReg(ah, AR_RC_BB); } /* * Places all of hardware into reset */ HAL_BOOL ar5312Disable(struct ath_hal *ah) { if (!ar5312SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* * Reset the HW - PCI must be reset after the rest of the * device has been reset. */ return ar5312SetResetReg(ah, AR_RC_MAC | AR_RC_BB); } /* * Places the hardware into reset and then pulls it out of reset * * TODO: Only write the PLL if we're changing to or from CCK mode * * WARNING: The order of the PLL and mode registers must be correct. */ HAL_BOOL ar5312ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) { OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); /* * Reset the HW */ if (!ar5312SetResetReg(ah, AR_RC_MAC | AR_RC_BB)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n", __func__); return AH_FALSE; } /* Bring out of sleep mode (AGAIN) */ if (!ar5312SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetPowerMode failed\n", __func__); return AH_FALSE; } /* Clear warm reset register */ if (!ar5312SetResetReg(ah, 0)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5312SetResetReg failed\n", __func__); return AH_FALSE; } /* * Perform warm reset before the mode/PLL/turbo registers * are changed in order to deactivate the radio. Mode changes * with an active radio can result in corrupted shifts to the * radio device. */ /* * Set CCK and Turbo modes correctly. */ if (chan != AH_NULL) { /* NB: can be null during attach */ uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo; if (IS_RAD5112_ANY(ah)) { rfMode = AR_PHY_MODE_AR5112; if (!IS_5315(ah)) { if (IEEE80211_IS_CHAN_CCK(chan)) { phyPLL = AR_PHY_PLL_CTL_44_5312; } else { if (IEEE80211_IS_CHAN_HALF(chan)) { phyPLL = AR_PHY_PLL_CTL_40_5312_HALF; } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { phyPLL = AR_PHY_PLL_CTL_40_5312_QUARTER; } else { phyPLL = AR_PHY_PLL_CTL_40_5312; } } } else { if (IEEE80211_IS_CHAN_CCK(chan)) phyPLL = AR_PHY_PLL_CTL_44_5112; else phyPLL = AR_PHY_PLL_CTL_40_5112; if (IEEE80211_IS_CHAN_HALF(chan)) phyPLL |= AR_PHY_PLL_CTL_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) phyPLL |= AR_PHY_PLL_CTL_QUARTER; } } else { rfMode = AR_PHY_MODE_AR5111; if (IEEE80211_IS_CHAN_CCK(chan)) phyPLL = AR_PHY_PLL_CTL_44; else phyPLL = AR_PHY_PLL_CTL_40; if (IEEE80211_IS_CHAN_HALF(chan)) phyPLL = AR_PHY_PLL_CTL_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) phyPLL = AR_PHY_PLL_CTL_QUARTER; } if (IEEE80211_IS_CHAN_G(chan)) rfMode |= AR_PHY_MODE_DYNAMIC; else if (IEEE80211_IS_CHAN_OFDM(chan)) rfMode |= AR_PHY_MODE_OFDM; else rfMode |= AR_PHY_MODE_CCK; if (IEEE80211_IS_CHAN_5GHZ(chan)) rfMode |= AR_PHY_MODE_RF5GHZ; else rfMode |= AR_PHY_MODE_RF2GHZ; turbo = IEEE80211_IS_CHAN_TURBO(chan) ? (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0; curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL); /* * PLL, Mode, and Turbo values must be written in the correct * order to ensure: * - The PLL cannot be set to 44 unless the CCK or DYNAMIC * mode bit is set * - Turbo cannot be set at the same time as CCK or DYNAMIC */ if (IEEE80211_IS_CHAN_CCK(chan)) { OS_REG_WRITE(ah, AR_PHY_TURBO, turbo); OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); if (curPhyPLL != phyPLL) { OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL); /* Wait for the PLL to settle */ OS_DELAY(PLL_SETTLE_DELAY); } } else { if (curPhyPLL != phyPLL) { OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL); /* Wait for the PLL to settle */ OS_DELAY(PLL_SETTLE_DELAY); } OS_REG_WRITE(ah, AR_PHY_TURBO, turbo); OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); } } return AH_TRUE; } /* * Write the given reset bit mask into the reset register */ static HAL_BOOL ar5312SetResetReg(struct ath_hal *ah, uint32_t resetMask) { uint32_t mask = resetMask ? resetMask : ~0; HAL_BOOL rt; if ((rt = ar5312MacReset(ah, mask)) == AH_FALSE) { return rt; } if ((resetMask & AR_RC_MAC) == 0) { if (isBigEndian()) { /* * Set CFG, little-endian for register * and descriptor accesses. */ #ifdef AH_NEED_DESC_SWAP mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; #else mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD; #endif OS_REG_WRITE(ah, AR_CFG, mask); } else OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); } return rt; } /* * ar5312MacReset resets (and then un-resets) the specified * wireless components. * Note: The RCMask cannot be zero on entering from ar5312SetResetReg. */ HAL_BOOL ar5312MacReset(struct ath_hal *ah, unsigned int RCMask) { int wlanNum = AR5312_UNIT(ah); uint32_t resetBB, resetBits, regMask; uint32_t reg; if (RCMask == 0) return(AH_FALSE); #if ( AH_SUPPORT_2316 || AH_SUPPORT_2317 ) if (IS_5315(ah)) { switch(wlanNum) { case 0: resetBB = AR5315_RC_BB0_CRES | AR5315_RC_WBB0_RES; /* Warm and cold reset bits for wbb */ resetBits = AR5315_RC_WMAC0_RES; break; case 1: resetBB = AR5315_RC_BB1_CRES | AR5315_RC_WBB1_RES; /* Warm and cold reset bits for wbb */ resetBits = AR5315_RC_WMAC1_RES; break; default: return(AH_FALSE); } regMask = ~(resetBB | resetBits); /* read before */ reg = OS_REG_READ(ah, (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh) + AR5315_RESET)); if (RCMask == AR_RC_BB) { /* Put baseband in reset */ reg |= resetBB; /* Cold and warm reset the baseband bits */ } else { /* * Reset the MAC and baseband. This is a bit different than * the PCI version, but holding in reset causes problems. */ reg &= regMask; reg |= (resetBits | resetBB) ; } OS_REG_WRITE(ah, (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5315_RESET), reg); /* read after */ OS_REG_READ(ah, (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh) +AR5315_RESET)); OS_DELAY(100); /* Bring MAC and baseband out of reset */ reg &= regMask; /* read before */ OS_REG_READ(ah, (AR5315_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5315_RESET)); OS_REG_WRITE(ah, (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5315_RESET), reg); /* read after */ OS_REG_READ(ah, (AR5315_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5315_RESET)); } else #endif { switch(wlanNum) { case 0: resetBB = AR5312_RC_BB0_CRES | AR5312_RC_WBB0_RES; /* Warm and cold reset bits for wbb */ resetBits = AR5312_RC_WMAC0_RES; break; case 1: resetBB = AR5312_RC_BB1_CRES | AR5312_RC_WBB1_RES; /* Warm and cold reset bits for wbb */ resetBits = AR5312_RC_WMAC1_RES; break; default: return(AH_FALSE); } regMask = ~(resetBB | resetBits); /* read before */ reg = OS_REG_READ(ah, (AR5312_RSTIMER_BASE - ((uint32_t) ah->ah_sh) + AR5312_RESET)); if (RCMask == AR_RC_BB) { /* Put baseband in reset */ reg |= resetBB; /* Cold and warm reset the baseband bits */ } else { /* * Reset the MAC and baseband. This is a bit different than * the PCI version, but holding in reset causes problems. */ reg &= regMask; reg |= (resetBits | resetBB) ; } OS_REG_WRITE(ah, (AR5312_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5312_RESET), reg); /* read after */ OS_REG_READ(ah, (AR5312_RSTIMER_BASE - ((uint32_t) ah->ah_sh) +AR5312_RESET)); OS_DELAY(100); /* Bring MAC and baseband out of reset */ reg &= regMask; /* read before */ OS_REG_READ(ah, (AR5312_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5312_RESET)); OS_REG_WRITE(ah, (AR5312_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5312_RESET), reg); /* read after */ OS_REG_READ(ah, (AR5312_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5312_RESET)); } return(AH_TRUE); } #endif /* AH_SUPPORT_AR5312 */