Current Path : /sys/dev/drm2/i915/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/drm2/i915/i915_gem_execbuffer.c |
/* * Copyright © 2008,2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Chris Wilson <chris@chris-wilson.co.uk> * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/drm2/i915/i915_gem_execbuffer.c 236933 2012-06-11 21:44:24Z kib $"); #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> #include <dev/drm2/i915/i915_drm.h> #include <dev/drm2/i915/i915_drv.h> #include <dev/drm2/i915/intel_drv.h> #include <sys/limits.h> #include <sys/sf_buf.h> struct change_domains { uint32_t invalidate_domains; uint32_t flush_domains; uint32_t flush_rings; uint32_t flips; }; /* * Set the next domain for the specified object. This * may not actually perform the necessary flushing/invaliding though, * as that may want to be batched with other set_domain operations * * This is (we hope) the only really tricky part of gem. The goal * is fairly simple -- track which caches hold bits of the object * and make sure they remain coherent. A few concrete examples may * help to explain how it works. For shorthand, we use the notation * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the * a pair of read and write domain masks. * * Case 1: the batch buffer * * 1. Allocated * 2. Written by CPU * 3. Mapped to GTT * 4. Read by GPU * 5. Unmapped from GTT * 6. Freed * * Let's take these a step at a time * * 1. Allocated * Pages allocated from the kernel may still have * cache contents, so we set them to (CPU, CPU) always. * 2. Written by CPU (using pwrite) * The pwrite function calls set_domain (CPU, CPU) and * this function does nothing (as nothing changes) * 3. Mapped by GTT * This function asserts that the object is not * currently in any GPU-based read or write domains * 4. Read by GPU * i915_gem_execbuffer calls set_domain (COMMAND, 0). * As write_domain is zero, this function adds in the * current read domains (CPU+COMMAND, 0). * flush_domains is set to CPU. * invalidate_domains is set to COMMAND * clflush is run to get data out of the CPU caches * then i915_dev_set_domain calls i915_gem_flush to * emit an MI_FLUSH and drm_agp_chipset_flush * 5. Unmapped from GTT * i915_gem_object_unbind calls set_domain (CPU, CPU) * flush_domains and invalidate_domains end up both zero * so no flushing/invalidating happens * 6. Freed * yay, done * * Case 2: The shared render buffer * * 1. Allocated * 2. Mapped to GTT * 3. Read/written by GPU * 4. set_domain to (CPU,CPU) * 5. Read/written by CPU * 6. Read/written by GPU * * 1. Allocated * Same as last example, (CPU, CPU) * 2. Mapped to GTT * Nothing changes (assertions find that it is not in the GPU) * 3. Read/written by GPU * execbuffer calls set_domain (RENDER, RENDER) * flush_domains gets CPU * invalidate_domains gets GPU * clflush (obj) * MI_FLUSH and drm_agp_chipset_flush * 4. set_domain (CPU, CPU) * flush_domains gets GPU * invalidate_domains gets CPU * wait_rendering (obj) to make sure all drawing is complete. * This will include an MI_FLUSH to get the data from GPU * to memory * clflush (obj) to invalidate the CPU cache * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) * 5. Read/written by CPU * cache lines are loaded and dirtied * 6. Read written by GPU * Same as last GPU access * * Case 3: The constant buffer * * 1. Allocated * 2. Written by CPU * 3. Read by GPU * 4. Updated (written) by CPU again * 5. Read by GPU * * 1. Allocated * (CPU, CPU) * 2. Written by CPU * (CPU, CPU) * 3. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush * 4. Updated (written) by CPU again * (CPU, CPU) * flush_domains = 0 (no previous write domain) * invalidate_domains = 0 (no new read domains) * 5. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush */ static void i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring, struct change_domains *cd) { uint32_t invalidate_domains = 0, flush_domains = 0; /* * If the object isn't moving to a new write domain, * let the object stay in multiple read domains */ if (obj->base.pending_write_domain == 0) obj->base.pending_read_domains |= obj->base.read_domains; /* * Flush the current write domain if * the new read domains don't match. Invalidate * any read domains which differ from the old * write domain */ if (obj->base.write_domain && (((obj->base.write_domain != obj->base.pending_read_domains || obj->ring != ring)) || (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) { flush_domains |= obj->base.write_domain; invalidate_domains |= obj->base.pending_read_domains & ~obj->base.write_domain; } /* * Invalidate any read caches which may have * stale data. That is, any new read domains. */ invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains; if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) i915_gem_clflush_object(obj); if (obj->base.pending_write_domain) cd->flips |= atomic_read(&obj->pending_flip); /* The actual obj->write_domain will be updated with * pending_write_domain after we emit the accumulated flush for all * of our domain changes in execbuffers (which clears objects' * write_domains). So if we have a current write domain that we * aren't changing, set pending_write_domain to that. */ if (flush_domains == 0 && obj->base.pending_write_domain == 0) obj->base.pending_write_domain = obj->base.write_domain; cd->invalidate_domains |= invalidate_domains; cd->flush_domains |= flush_domains; if (flush_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= intel_ring_flag(obj->ring); if (invalidate_domains & I915_GEM_GPU_DOMAINS) cd->flush_rings |= intel_ring_flag(ring); } struct eb_objects { u_long hashmask; LIST_HEAD(, drm_i915_gem_object) *buckets; }; static struct eb_objects * eb_create(int size) { struct eb_objects *eb; eb = malloc(sizeof(*eb), DRM_I915_GEM, M_WAITOK | M_ZERO); eb->buckets = hashinit(size, DRM_I915_GEM, &eb->hashmask); return (eb); } static void eb_reset(struct eb_objects *eb) { int i; for (i = 0; i <= eb->hashmask; i++) LIST_INIT(&eb->buckets[i]); } static void eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj) { LIST_INSERT_HEAD(&eb->buckets[obj->exec_handle & eb->hashmask], obj, exec_node); } static struct drm_i915_gem_object * eb_get_object(struct eb_objects *eb, unsigned long handle) { struct drm_i915_gem_object *obj; LIST_FOREACH(obj, &eb->buckets[handle & eb->hashmask], exec_node) { if (obj->exec_handle == handle) return (obj); } return (NULL); } static void eb_destroy(struct eb_objects *eb) { free(eb->buckets, DRM_I915_GEM); free(eb, DRM_I915_GEM); } static int i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj, struct eb_objects *eb, struct drm_i915_gem_relocation_entry *reloc) { struct drm_device *dev = obj->base.dev; struct drm_gem_object *target_obj; uint32_t target_offset; int ret = -EINVAL; /* we've already hold a reference to all valid objects */ target_obj = &eb_get_object(eb, reloc->target_handle)->base; if (unlikely(target_obj == NULL)) return -ENOENT; target_offset = to_intel_bo(target_obj)->gtt_offset; #if WATCH_RELOC DRM_INFO("%s: obj %p offset %08x target %d " "read %08x write %08x gtt %08x " "presumed %08x delta %08x\n", __func__, obj, (int) reloc->offset, (int) reloc->target_handle, (int) reloc->read_domains, (int) reloc->write_domain, (int) target_offset, (int) reloc->presumed_offset, reloc->delta); #endif /* The target buffer should have appeared before us in the * exec_object list, so it should have a GTT space bound by now. */ if (unlikely(target_offset == 0)) { DRM_DEBUG("No GTT space found for object %d\n", reloc->target_handle); return ret; } /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { DRM_DEBUG("reloc with multiple write domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return ret; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { DRM_DEBUG("reloc with read/write non-GPU domains: " "obj %p target %d offset %d " "read %08x write %08x", obj, reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return ret; } if (unlikely(reloc->write_domain && target_obj->pending_write_domain && reloc->write_domain != target_obj->pending_write_domain)) { DRM_DEBUG("Write domain conflict: " "obj %p target %d offset %d " "new %08x old %08x\n", obj, reloc->target_handle, (int) reloc->offset, reloc->write_domain, target_obj->pending_write_domain); return ret; } target_obj->pending_read_domains |= reloc->read_domains; target_obj->pending_write_domain |= reloc->write_domain; /* If the relocation already has the right value in it, no * more work needs to be done. */ if (target_offset == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > obj->base.size - 4)) { DRM_DEBUG("Relocation beyond object bounds: " "obj %p target %d offset %d size %d.\n", obj, reloc->target_handle, (int) reloc->offset, (int) obj->base.size); return ret; } if (unlikely(reloc->offset & 3)) { DRM_DEBUG("Relocation not 4-byte aligned: " "obj %p target %d offset %d.\n", obj, reloc->target_handle, (int) reloc->offset); return ret; } reloc->delta += target_offset; if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) { uint32_t page_offset = reloc->offset & PAGE_MASK; char *vaddr; struct sf_buf *sf; sf = sf_buf_alloc(obj->pages[OFF_TO_IDX(reloc->offset)], SFB_NOWAIT); if (sf == NULL) return (-ENOMEM); vaddr = (void *)sf_buf_kva(sf); *(uint32_t *)(vaddr + page_offset) = reloc->delta; sf_buf_free(sf); } else { uint32_t *reloc_entry; char *reloc_page; /* We can't wait for rendering with pagefaults disabled */ if (obj->active && (curthread->td_pflags & TDP_NOFAULTING) != 0) return (-EFAULT); ret = i915_gem_object_set_to_gtt_domain(obj, 1); if (ret) return ret; /* * Map the page containing the relocation we're going * to perform. */ reloc->offset += obj->gtt_offset; reloc_page = pmap_mapdev_attr(dev->agp->base + (reloc->offset & ~PAGE_MASK), PAGE_SIZE, PAT_WRITE_COMBINING); reloc_entry = (uint32_t *)(reloc_page + (reloc->offset & PAGE_MASK)); *(volatile uint32_t *)reloc_entry = reloc->delta; pmap_unmapdev((vm_offset_t)reloc_page, PAGE_SIZE); } /* and update the user's relocation entry */ reloc->presumed_offset = target_offset; return 0; } static int i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj, struct eb_objects *eb) { struct drm_i915_gem_relocation_entry *user_relocs; struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; struct drm_i915_gem_relocation_entry reloc; int i, ret; user_relocs = (void *)(uintptr_t)entry->relocs_ptr; for (i = 0; i < entry->relocation_count; i++) { ret = -copyin_nofault(user_relocs + i, &reloc, sizeof(reloc)); if (ret != 0) return (ret); ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc); if (ret != 0) return (ret); ret = -copyout_nofault(&reloc.presumed_offset, &user_relocs[i].presumed_offset, sizeof(reloc.presumed_offset)); if (ret != 0) return (ret); } return (0); } static int i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj, struct eb_objects *eb, struct drm_i915_gem_relocation_entry *relocs) { const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; int i, ret; for (i = 0; i < entry->relocation_count; i++) { ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]); if (ret) return ret; } return 0; } static int i915_gem_execbuffer_relocate(struct drm_device *dev, struct eb_objects *eb, struct list_head *objects) { struct drm_i915_gem_object *obj; int ret, pflags; /* Try to move as many of the relocation targets off the active list * to avoid unnecessary fallbacks to the slow path, as we cannot wait * for the retirement with pagefaults disabled. */ i915_gem_retire_requests(dev); ret = 0; pflags = vm_fault_disable_pagefaults(); /* This is the fast path and we cannot handle a pagefault whilst * holding the device lock lest the user pass in the relocations * contained within a mmaped bo. For in such a case we, the page * fault handler would call i915_gem_fault() and we would try to * acquire the device lock again. Obviously this is bad. */ list_for_each_entry(obj, objects, exec_list) { ret = i915_gem_execbuffer_relocate_object(obj, eb); if (ret != 0) break; } vm_fault_enable_pagefaults(pflags); return (ret); } #define __EXEC_OBJECT_HAS_FENCE (1<<31) static int pin_and_fence_object(struct drm_i915_gem_object *obj, struct intel_ring_buffer *ring) { struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; bool need_fence, need_mappable; int ret; need_fence = has_fenced_gpu_access && entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; need_mappable = entry->relocation_count ? true : need_fence; ret = i915_gem_object_pin(obj, entry->alignment, need_mappable); if (ret) return ret; if (has_fenced_gpu_access) { if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) { if (obj->tiling_mode) { ret = i915_gem_object_get_fence(obj, ring); if (ret) goto err_unpin; entry->flags |= __EXEC_OBJECT_HAS_FENCE; i915_gem_object_pin_fence(obj); } else { ret = i915_gem_object_put_fence(obj); if (ret) goto err_unpin; } obj->pending_fenced_gpu_access = true; } } entry->offset = obj->gtt_offset; return 0; err_unpin: i915_gem_object_unpin(obj); return ret; } static int i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring, struct drm_file *file, struct list_head *objects) { drm_i915_private_t *dev_priv; struct drm_i915_gem_object *obj; int ret, retry; bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4; struct list_head ordered_objects; dev_priv = ring->dev->dev_private; INIT_LIST_HEAD(&ordered_objects); while (!list_empty(objects)) { struct drm_i915_gem_exec_object2 *entry; bool need_fence, need_mappable; obj = list_first_entry(objects, struct drm_i915_gem_object, exec_list); entry = obj->exec_entry; need_fence = has_fenced_gpu_access && entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; need_mappable = entry->relocation_count ? true : need_fence; if (need_mappable) list_move(&obj->exec_list, &ordered_objects); else list_move_tail(&obj->exec_list, &ordered_objects); obj->base.pending_read_domains = 0; obj->base.pending_write_domain = 0; } list_splice(&ordered_objects, objects); /* Attempt to pin all of the buffers into the GTT. * This is done in 3 phases: * * 1a. Unbind all objects that do not match the GTT constraints for * the execbuffer (fenceable, mappable, alignment etc). * 1b. Increment pin count for already bound objects and obtain * a fence register if required. * 2. Bind new objects. * 3. Decrement pin count. * * This avoid unnecessary unbinding of later objects in order to makr * room for the earlier objects *unless* we need to defragment. */ retry = 0; do { ret = 0; /* Unbind any ill-fitting objects or pin. */ list_for_each_entry(obj, objects, exec_list) { struct drm_i915_gem_exec_object2 *entry = obj->exec_entry; bool need_fence, need_mappable; if (!obj->gtt_space) continue; need_fence = has_fenced_gpu_access && entry->flags & EXEC_OBJECT_NEEDS_FENCE && obj->tiling_mode != I915_TILING_NONE; need_mappable = entry->relocation_count ? true : need_fence; if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) || (need_mappable && !obj->map_and_fenceable)) ret = i915_gem_object_unbind(obj); else ret = pin_and_fence_object(obj, ring); if (ret) goto err; } /* Bind fresh objects */ list_for_each_entry(obj, objects, exec_list) { if (obj->gtt_space) continue; ret = pin_and_fence_object(obj, ring); if (ret) { int ret_ignore; /* This can potentially raise a harmless * -EINVAL if we failed to bind in the above * call. It cannot raise -EINTR since we know * that the bo is freshly bound and so will * not need to be flushed or waited upon. */ ret_ignore = i915_gem_object_unbind(obj); (void)ret_ignore; if (obj->gtt_space != NULL) printf("%s: gtt_space\n", __func__); break; } } /* Decrement pin count for bound objects */ list_for_each_entry(obj, objects, exec_list) { struct drm_i915_gem_exec_object2 *entry; if (!obj->gtt_space) continue; entry = obj->exec_entry; if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { i915_gem_object_unpin_fence(obj); entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; } i915_gem_object_unpin(obj); /* ... and ensure ppgtt mapping exist if needed. */ if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) { i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, obj, obj->cache_level); obj->has_aliasing_ppgtt_mapping = 1; } } if (ret != -ENOSPC || retry > 1) return ret; /* First attempt, just clear anything that is purgeable. * Second attempt, clear the entire GTT. */ ret = i915_gem_evict_everything(ring->dev, retry == 0); if (ret) return ret; retry++; } while (1); err: list_for_each_entry_continue_reverse(obj, objects, exec_list) { struct drm_i915_gem_exec_object2 *entry; if (!obj->gtt_space) continue; entry = obj->exec_entry; if (entry->flags & __EXEC_OBJECT_HAS_FENCE) { i915_gem_object_unpin_fence(obj); entry->flags &= ~__EXEC_OBJECT_HAS_FENCE; } i915_gem_object_unpin(obj); } return ret; } static int i915_gem_execbuffer_relocate_slow(struct drm_device *dev, struct drm_file *file, struct intel_ring_buffer *ring, struct list_head *objects, struct eb_objects *eb, struct drm_i915_gem_exec_object2 *exec, int count) { struct drm_i915_gem_relocation_entry *reloc; struct drm_i915_gem_object *obj; int *reloc_offset; int i, total, ret; /* We may process another execbuffer during the unlock... */ while (!list_empty(objects)) { obj = list_first_entry(objects, struct drm_i915_gem_object, exec_list); list_del_init(&obj->exec_list); drm_gem_object_unreference(&obj->base); } DRM_UNLOCK(dev); total = 0; for (i = 0; i < count; i++) total += exec[i].relocation_count; reloc_offset = malloc(count * sizeof(*reloc_offset), DRM_I915_GEM, M_WAITOK | M_ZERO); reloc = malloc(total * sizeof(*reloc), DRM_I915_GEM, M_WAITOK | M_ZERO); total = 0; for (i = 0; i < count; i++) { struct drm_i915_gem_relocation_entry *user_relocs; user_relocs = (void *)(uintptr_t)exec[i].relocs_ptr; ret = -copyin(user_relocs, reloc + total, exec[i].relocation_count * sizeof(*reloc)); if (ret != 0) { DRM_LOCK(dev); goto err; } reloc_offset[i] = total; total += exec[i].relocation_count; } ret = i915_mutex_lock_interruptible(dev); if (ret) { DRM_LOCK(dev); goto err; } /* reacquire the objects */ eb_reset(eb); for (i = 0; i < count; i++) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, file, exec[i].handle)); if (&obj->base == NULL) { DRM_DEBUG("Invalid object handle %d at index %d\n", exec[i].handle, i); ret = -ENOENT; goto err; } list_add_tail(&obj->exec_list, objects); obj->exec_handle = exec[i].handle; obj->exec_entry = &exec[i]; eb_add_object(eb, obj); } ret = i915_gem_execbuffer_reserve(ring, file, objects); if (ret) goto err; list_for_each_entry(obj, objects, exec_list) { int offset = obj->exec_entry - exec; ret = i915_gem_execbuffer_relocate_object_slow(obj, eb, reloc + reloc_offset[offset]); if (ret) goto err; } /* Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: free(reloc, DRM_I915_GEM); free(reloc_offset, DRM_I915_GEM); return ret; } static int i915_gem_execbuffer_flush(struct drm_device *dev, uint32_t invalidate_domains, uint32_t flush_domains, uint32_t flush_rings) { drm_i915_private_t *dev_priv = dev->dev_private; int i, ret; if (flush_domains & I915_GEM_DOMAIN_CPU) intel_gtt_chipset_flush(); if (flush_domains & I915_GEM_DOMAIN_GTT) wmb(); if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) { for (i = 0; i < I915_NUM_RINGS; i++) if (flush_rings & (1 << i)) { ret = i915_gem_flush_ring(&dev_priv->rings[i], invalidate_domains, flush_domains); if (ret) return ret; } } return 0; } static bool intel_enable_semaphores(struct drm_device *dev) { if (INTEL_INFO(dev)->gen < 6) return 0; if (i915_semaphores >= 0) return i915_semaphores; /* Enable semaphores on SNB when IO remapping is off */ if (INTEL_INFO(dev)->gen == 6) return !intel_iommu_enabled; return 1; } static int i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj, struct intel_ring_buffer *to) { struct intel_ring_buffer *from = obj->ring; u32 seqno; int ret, idx; if (from == NULL || to == from) return 0; /* XXX gpu semaphores are implicated in various hard hangs on SNB */ if (!intel_enable_semaphores(obj->base.dev)) return i915_gem_object_wait_rendering(obj); idx = intel_ring_sync_index(from, to); seqno = obj->last_rendering_seqno; if (seqno <= from->sync_seqno[idx]) return 0; if (seqno == from->outstanding_lazy_request) { struct drm_i915_gem_request *request; request = malloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO); ret = i915_add_request(from, NULL, request); if (ret) { free(request, DRM_I915_GEM); return ret; } seqno = request->seqno; } from->sync_seqno[idx] = seqno; return to->sync_to(to, from, seqno - 1); } static int i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips) { u32 plane, flip_mask; int ret; /* Check for any pending flips. As we only maintain a flip queue depth * of 1, we can simply insert a WAIT for the next display flip prior * to executing the batch and avoid stalling the CPU. */ for (plane = 0; flips >> plane; plane++) { if (((flips >> plane) & 1) == 0) continue; if (plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } return 0; } static int i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring, struct list_head *objects) { struct drm_i915_gem_object *obj; struct change_domains cd; int ret; memset(&cd, 0, sizeof(cd)); list_for_each_entry(obj, objects, exec_list) i915_gem_object_set_to_gpu_domain(obj, ring, &cd); if (cd.invalidate_domains | cd.flush_domains) { #if WATCH_EXEC DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", __func__, cd.invalidate_domains, cd.flush_domains); #endif ret = i915_gem_execbuffer_flush(ring->dev, cd.invalidate_domains, cd.flush_domains, cd.flush_rings); if (ret) return ret; } if (cd.flips) { ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips); if (ret) return ret; } list_for_each_entry(obj, objects, exec_list) { ret = i915_gem_execbuffer_sync_rings(obj, ring); if (ret) return ret; } return 0; } static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) { return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0; } static int validate_exec_list(struct drm_i915_gem_exec_object2 *exec, int count, vm_page_t ***map) { vm_page_t *ma; int i, length, page_count; /* XXXKIB various limits checking is missing there */ *map = malloc(count * sizeof(*ma), DRM_I915_GEM, M_WAITOK | M_ZERO); for (i = 0; i < count; i++) { /* First check for malicious input causing overflow */ if (exec[i].relocation_count > INT_MAX / sizeof(struct drm_i915_gem_relocation_entry)) return -EINVAL; length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry); if (length == 0) { (*map)[i] = NULL; continue; } /* * Since both start and end of the relocation region * may be not aligned on the page boundary, be * conservative and request a page slot for each * partial page. Thus +2. */ page_count = howmany(length, PAGE_SIZE) + 2; ma = (*map)[i] = malloc(page_count * sizeof(vm_page_t), DRM_I915_GEM, M_WAITOK | M_ZERO); if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, exec[i].relocs_ptr, length, VM_PROT_READ | VM_PROT_WRITE, ma, page_count) == -1) { free(ma, DRM_I915_GEM); (*map)[i] = NULL; return (-EFAULT); } } return 0; } static void i915_gem_execbuffer_move_to_active(struct list_head *objects, struct intel_ring_buffer *ring, u32 seqno) { struct drm_i915_gem_object *obj; uint32_t old_read, old_write; list_for_each_entry(obj, objects, exec_list) { old_read = obj->base.read_domains; old_write = obj->base.write_domain; obj->base.read_domains = obj->base.pending_read_domains; obj->base.write_domain = obj->base.pending_write_domain; obj->fenced_gpu_access = obj->pending_fenced_gpu_access; i915_gem_object_move_to_active(obj, ring, seqno); if (obj->base.write_domain) { obj->dirty = 1; obj->pending_gpu_write = true; list_move_tail(&obj->gpu_write_list, &ring->gpu_write_list); intel_mark_busy(ring->dev, obj); } CTR3(KTR_DRM, "object_change_domain move_to_active %p %x %x", obj, old_read, old_write); } } int i915_gem_sync_exec_requests; static void i915_gem_execbuffer_retire_commands(struct drm_device *dev, struct drm_file *file, struct intel_ring_buffer *ring) { struct drm_i915_gem_request *request; u32 invalidate; /* * Ensure that the commands in the batch buffer are * finished before the interrupt fires. * * The sampler always gets flushed on i965 (sigh). */ invalidate = I915_GEM_DOMAIN_COMMAND; if (INTEL_INFO(dev)->gen >= 4) invalidate |= I915_GEM_DOMAIN_SAMPLER; if (ring->flush(ring, invalidate, 0)) { i915_gem_next_request_seqno(ring); return; } /* Add a breadcrumb for the completion of the batch buffer */ request = malloc(sizeof(*request), DRM_I915_GEM, M_WAITOK | M_ZERO); if (request == NULL || i915_add_request(ring, file, request)) { i915_gem_next_request_seqno(ring); free(request, DRM_I915_GEM); } else if (i915_gem_sync_exec_requests) i915_wait_request(ring, request->seqno, true); } static void i915_gem_fix_mi_batchbuffer_end(struct drm_i915_gem_object *batch_obj, uint32_t batch_start_offset, uint32_t batch_len) { char *mkva; uint64_t po_r, po_w; uint32_t cmd; po_r = batch_obj->base.dev->agp->base + batch_obj->gtt_offset + batch_start_offset + batch_len; if (batch_len > 0) po_r -= 4; mkva = pmap_mapdev_attr(trunc_page(po_r), 2 * PAGE_SIZE, PAT_WRITE_COMBINING); po_r &= PAGE_MASK; cmd = *(uint32_t *)(mkva + po_r); if (cmd != MI_BATCH_BUFFER_END) { /* * batch_len != 0 due to the check at the start of * i915_gem_do_execbuffer */ if (batch_obj->base.size > batch_start_offset + batch_len) { po_w = po_r + 4; /* DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END !\n"); */ } else { po_w = po_r; DRM_DEBUG("batchbuffer does not end by MI_BATCH_BUFFER_END, overwriting last bo cmd !\n"); } *(uint32_t *)(mkva + po_w) = MI_BATCH_BUFFER_END; } pmap_unmapdev((vm_offset_t)mkva, 2 * PAGE_SIZE); } int i915_fix_mi_batchbuffer_end = 0; static int i915_reset_gen7_sol_offsets(struct drm_device *dev, struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = dev->dev_private; int ret, i; if (!IS_GEN7(dev) || ring != &dev_priv->rings[RCS]) return 0; ret = intel_ring_begin(ring, 4 * 3); if (ret) return ret; for (i = 0; i < 4; i++) { intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i)); intel_ring_emit(ring, 0); } intel_ring_advance(ring); return 0; } static int i915_gem_do_execbuffer(struct drm_device *dev, void *data, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { drm_i915_private_t *dev_priv = dev->dev_private; struct list_head objects; struct eb_objects *eb; struct drm_i915_gem_object *batch_obj; struct drm_clip_rect *cliprects = NULL; struct intel_ring_buffer *ring; vm_page_t **relocs_ma; u32 exec_start, exec_len; u32 seqno; u32 mask; int ret, mode, i; if (!i915_gem_check_execbuffer(args)) { DRM_DEBUG("execbuf with invalid offset/length\n"); return -EINVAL; } if (args->batch_len == 0) return (0); ret = validate_exec_list(exec, args->buffer_count, &relocs_ma); if (ret != 0) goto pre_struct_lock_err; switch (args->flags & I915_EXEC_RING_MASK) { case I915_EXEC_DEFAULT: case I915_EXEC_RENDER: ring = &dev_priv->rings[RCS]; break; case I915_EXEC_BSD: if (!HAS_BSD(dev)) { DRM_DEBUG("execbuf with invalid ring (BSD)\n"); return -EINVAL; } ring = &dev_priv->rings[VCS]; break; case I915_EXEC_BLT: if (!HAS_BLT(dev)) { DRM_DEBUG("execbuf with invalid ring (BLT)\n"); return -EINVAL; } ring = &dev_priv->rings[BCS]; break; default: DRM_DEBUG("execbuf with unknown ring: %d\n", (int)(args->flags & I915_EXEC_RING_MASK)); ret = -EINVAL; goto pre_struct_lock_err; } mode = args->flags & I915_EXEC_CONSTANTS_MASK; mask = I915_EXEC_CONSTANTS_MASK; switch (mode) { case I915_EXEC_CONSTANTS_REL_GENERAL: case I915_EXEC_CONSTANTS_ABSOLUTE: case I915_EXEC_CONSTANTS_REL_SURFACE: if (ring == &dev_priv->rings[RCS] && mode != dev_priv->relative_constants_mode) { if (INTEL_INFO(dev)->gen < 4) { ret = -EINVAL; goto pre_struct_lock_err; } if (INTEL_INFO(dev)->gen > 5 && mode == I915_EXEC_CONSTANTS_REL_SURFACE) { ret = -EINVAL; goto pre_struct_lock_err; } /* The HW changed the meaning on this bit on gen6 */ if (INTEL_INFO(dev)->gen >= 6) mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; } break; default: DRM_DEBUG("execbuf with unknown constants: %d\n", mode); ret = -EINVAL; goto pre_struct_lock_err; } if (args->buffer_count < 1) { DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); ret = -EINVAL; goto pre_struct_lock_err; } if (args->num_cliprects != 0) { if (ring != &dev_priv->rings[RCS]) { DRM_DEBUG("clip rectangles are only valid with the render ring\n"); ret = -EINVAL; goto pre_struct_lock_err; } if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) { DRM_DEBUG("execbuf with %u cliprects\n", args->num_cliprects); ret = -EINVAL; goto pre_struct_lock_err; } cliprects = malloc( sizeof(*cliprects) * args->num_cliprects, DRM_I915_GEM, M_WAITOK | M_ZERO); ret = -copyin((void *)(uintptr_t)args->cliprects_ptr, cliprects, sizeof(*cliprects) * args->num_cliprects); if (ret != 0) goto pre_struct_lock_err; } ret = i915_mutex_lock_interruptible(dev); if (ret) goto pre_struct_lock_err; if (dev_priv->mm.suspended) { ret = -EBUSY; goto struct_lock_err; } eb = eb_create(args->buffer_count); if (eb == NULL) { ret = -ENOMEM; goto struct_lock_err; } /* Look up object handles */ INIT_LIST_HEAD(&objects); for (i = 0; i < args->buffer_count; i++) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, file, exec[i].handle)); if (&obj->base == NULL) { DRM_DEBUG("Invalid object handle %d at index %d\n", exec[i].handle, i); /* prevent error path from reading uninitialized data */ ret = -ENOENT; goto err; } if (!list_empty(&obj->exec_list)) { DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n", obj, exec[i].handle, i); ret = -EINVAL; goto err; } list_add_tail(&obj->exec_list, &objects); obj->exec_handle = exec[i].handle; obj->exec_entry = &exec[i]; eb_add_object(eb, obj); } /* take note of the batch buffer before we might reorder the lists */ batch_obj = list_entry(objects.prev, struct drm_i915_gem_object, exec_list); /* Move the objects en-masse into the GTT, evicting if necessary. */ ret = i915_gem_execbuffer_reserve(ring, file, &objects); if (ret) goto err; /* The objects are in their final locations, apply the relocations. */ ret = i915_gem_execbuffer_relocate(dev, eb, &objects); if (ret) { if (ret == -EFAULT) { ret = i915_gem_execbuffer_relocate_slow(dev, file, ring, &objects, eb, exec, args->buffer_count); DRM_LOCK_ASSERT(dev); } if (ret) goto err; } /* Set the pending read domains for the batch buffer to COMMAND */ if (batch_obj->base.pending_write_domain) { DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); ret = -EINVAL; goto err; } batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND; ret = i915_gem_execbuffer_move_to_gpu(ring, &objects); if (ret) goto err; seqno = i915_gem_next_request_seqno(ring); for (i = 0; i < I915_NUM_RINGS - 1; i++) { if (seqno < ring->sync_seqno[i]) { /* The GPU can not handle its semaphore value wrapping, * so every billion or so execbuffers, we need to stall * the GPU in order to reset the counters. */ ret = i915_gpu_idle(dev, true); if (ret) goto err; KASSERT(ring->sync_seqno[i] == 0, ("Non-zero sync_seqno")); } } if (ring == &dev_priv->rings[RCS] && mode != dev_priv->relative_constants_mode) { ret = intel_ring_begin(ring, 4); if (ret) goto err; intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, INSTPM); intel_ring_emit(ring, mask << 16 | mode); intel_ring_advance(ring); dev_priv->relative_constants_mode = mode; } if (args->flags & I915_EXEC_GEN7_SOL_RESET) { ret = i915_reset_gen7_sol_offsets(dev, ring); if (ret) goto err; } exec_start = batch_obj->gtt_offset + args->batch_start_offset; exec_len = args->batch_len; if (i915_fix_mi_batchbuffer_end) { i915_gem_fix_mi_batchbuffer_end(batch_obj, args->batch_start_offset, args->batch_len); } CTR4(KTR_DRM, "ring_dispatch %s %d exec %x %x", ring->name, seqno, exec_start, exec_len); if (cliprects) { for (i = 0; i < args->num_cliprects; i++) { ret = i915_emit_box_p(dev, &cliprects[i], args->DR1, args->DR4); if (ret) goto err; ret = ring->dispatch_execbuffer(ring, exec_start, exec_len); if (ret) goto err; } } else { ret = ring->dispatch_execbuffer(ring, exec_start, exec_len); if (ret) goto err; } i915_gem_execbuffer_move_to_active(&objects, ring, seqno); i915_gem_execbuffer_retire_commands(dev, file, ring); err: eb_destroy(eb); while (!list_empty(&objects)) { struct drm_i915_gem_object *obj; obj = list_first_entry(&objects, struct drm_i915_gem_object, exec_list); list_del_init(&obj->exec_list); drm_gem_object_unreference(&obj->base); } struct_lock_err: DRM_UNLOCK(dev); pre_struct_lock_err: for (i = 0; i < args->buffer_count; i++) { if (relocs_ma[i] != NULL) { vm_page_unhold_pages(relocs_ma[i], howmany( exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry), PAGE_SIZE)); free(relocs_ma[i], DRM_I915_GEM); } } free(relocs_ma, DRM_I915_GEM); free(cliprects, DRM_I915_GEM); return ret; } /* * Legacy execbuffer just creates an exec2 list from the original exec object * list array and passes it to the real function. */ int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_execbuffer2 exec2; struct drm_i915_gem_exec_object *exec_list = NULL; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret, i; DRM_DEBUG("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); if (args->buffer_count < 1) { DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count); return -EINVAL; } /* Copy in the exec list from userland */ /* XXXKIB user-controlled malloc size */ exec_list = malloc(sizeof(*exec_list) * args->buffer_count, DRM_I915_GEM, M_WAITOK); exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count, DRM_I915_GEM, M_WAITOK); ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec_list, sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_DEBUG("copy %d exec entries failed %d\n", args->buffer_count, ret); free(exec_list, DRM_I915_GEM); free(exec2_list, DRM_I915_GEM); return (ret); } for (i = 0; i < args->buffer_count; i++) { exec2_list[i].handle = exec_list[i].handle; exec2_list[i].relocation_count = exec_list[i].relocation_count; exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; exec2_list[i].alignment = exec_list[i].alignment; exec2_list[i].offset = exec_list[i].offset; if (INTEL_INFO(dev)->gen < 4) exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; else exec2_list[i].flags = 0; } exec2.buffers_ptr = args->buffers_ptr; exec2.buffer_count = args->buffer_count; exec2.batch_start_offset = args->batch_start_offset; exec2.batch_len = args->batch_len; exec2.DR1 = args->DR1; exec2.DR4 = args->DR4; exec2.num_cliprects = args->num_cliprects; exec2.cliprects_ptr = args->cliprects_ptr; exec2.flags = I915_EXEC_RENDER; ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ for (i = 0; i < args->buffer_count; i++) exec_list[i].offset = exec2_list[i].offset; /* ... and back out to userspace */ ret = -copyout(exec_list, (void *)(uintptr_t)args->buffers_ptr, sizeof(*exec_list) * args->buffer_count); if (ret != 0) { DRM_DEBUG("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } free(exec_list, DRM_I915_GEM); free(exec2_list, DRM_I915_GEM); return ret; } int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list = NULL; int ret; DRM_DEBUG("buffers_ptr %jx buffer_count %d len %08x\n", (uintmax_t)args->buffers_ptr, args->buffer_count, args->batch_len); if (args->buffer_count < 1 || args->buffer_count > UINT_MAX / sizeof(*exec2_list)) { DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count); return -EINVAL; } /* XXXKIB user-controllable malloc size */ exec2_list = malloc(sizeof(*exec2_list) * args->buffer_count, DRM_I915_GEM, M_WAITOK); ret = -copyin((void *)(uintptr_t)args->buffers_ptr, exec2_list, sizeof(*exec2_list) * args->buffer_count); if (ret != 0) { DRM_DEBUG("copy %d exec entries failed %d\n", args->buffer_count, ret); free(exec2_list, DRM_I915_GEM); return (ret); } ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list); if (!ret) { /* Copy the new buffer offsets back to the user's exec list. */ ret = -copyout(exec2_list, (void *)(uintptr_t)args->buffers_ptr, sizeof(*exec2_list) * args->buffer_count); if (ret) { DRM_DEBUG("failed to copy %d exec entries " "back to user (%d)\n", args->buffer_count, ret); } } free(exec2_list, DRM_I915_GEM); return ret; }