Current Path : /sys/dev/ste/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/ste/if_ste.c |
/*- * Copyright (c) 1997, 1998, 1999 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ste/if_ste.c 229093 2011-12-31 14:12:12Z hselasky $"); #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/rman.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_vlan_var.h> #include <machine/bus.h> #include <machine/resource.h> #include <dev/mii/mii.h> #include <dev/mii/mii_bitbang.h> #include <dev/mii/miivar.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/ste/if_stereg.h> /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" MODULE_DEPEND(ste, pci, 1, 1, 1); MODULE_DEPEND(ste, ether, 1, 1, 1); MODULE_DEPEND(ste, miibus, 1, 1, 1); /* Define to show Tx error status. */ #define STE_SHOW_TXERRORS /* * Various supported device vendors/types and their names. */ static const struct ste_type const ste_devs[] = { { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" }, { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" }, { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" }, { 0, 0, NULL } }; static int ste_attach(device_t); static int ste_detach(device_t); static int ste_probe(device_t); static int ste_resume(device_t); static int ste_shutdown(device_t); static int ste_suspend(device_t); static int ste_dma_alloc(struct ste_softc *); static void ste_dma_free(struct ste_softc *); static void ste_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int ste_eeprom_wait(struct ste_softc *); static int ste_encap(struct ste_softc *, struct mbuf **, struct ste_chain *); static int ste_ifmedia_upd(struct ifnet *); static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void ste_init(void *); static void ste_init_locked(struct ste_softc *); static int ste_init_rx_list(struct ste_softc *); static void ste_init_tx_list(struct ste_softc *); static void ste_intr(void *); static int ste_ioctl(struct ifnet *, u_long, caddr_t); static uint32_t ste_mii_bitbang_read(device_t); static void ste_mii_bitbang_write(device_t, uint32_t); static int ste_miibus_readreg(device_t, int, int); static void ste_miibus_statchg(device_t); static int ste_miibus_writereg(device_t, int, int, int); static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *); static int ste_read_eeprom(struct ste_softc *, uint16_t *, int, int); static void ste_reset(struct ste_softc *); static void ste_restart_tx(struct ste_softc *); static int ste_rxeof(struct ste_softc *, int); static void ste_rxfilter(struct ste_softc *); static void ste_setwol(struct ste_softc *); static void ste_start(struct ifnet *); static void ste_start_locked(struct ifnet *); static void ste_stats_clear(struct ste_softc *); static void ste_stats_update(struct ste_softc *); static void ste_stop(struct ste_softc *); static void ste_sysctl_node(struct ste_softc *); static void ste_tick(void *); static void ste_txeoc(struct ste_softc *); static void ste_txeof(struct ste_softc *); static void ste_wait(struct ste_softc *); static void ste_watchdog(struct ste_softc *); /* * MII bit-bang glue */ static const struct mii_bitbang_ops ste_mii_bitbang_ops = { ste_mii_bitbang_read, ste_mii_bitbang_write, { STE_PHYCTL_MDATA, /* MII_BIT_MDO */ STE_PHYCTL_MDATA, /* MII_BIT_MDI */ STE_PHYCTL_MCLK, /* MII_BIT_MDC */ STE_PHYCTL_MDIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static device_method_t ste_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ste_probe), DEVMETHOD(device_attach, ste_attach), DEVMETHOD(device_detach, ste_detach), DEVMETHOD(device_shutdown, ste_shutdown), DEVMETHOD(device_suspend, ste_suspend), DEVMETHOD(device_resume, ste_resume), /* MII interface */ DEVMETHOD(miibus_readreg, ste_miibus_readreg), DEVMETHOD(miibus_writereg, ste_miibus_writereg), DEVMETHOD(miibus_statchg, ste_miibus_statchg), DEVMETHOD_END }; static driver_t ste_driver = { "ste", ste_methods, sizeof(struct ste_softc) }; static devclass_t ste_devclass; DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0); DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0); #define STE_SETBIT4(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define STE_CLRBIT4(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define STE_SETBIT2(sc, reg, x) \ CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x)) #define STE_CLRBIT2(sc, reg, x) \ CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x)) #define STE_SETBIT1(sc, reg, x) \ CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x)) #define STE_CLRBIT1(sc, reg, x) \ CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x)) /* * Read the MII serial port for the MII bit-bang module. */ static uint32_t ste_mii_bitbang_read(device_t dev) { struct ste_softc *sc; uint32_t val; sc = device_get_softc(dev); val = CSR_READ_1(sc, STE_PHYCTL); CSR_BARRIER(sc, STE_PHYCTL, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); return (val); } /* * Write the MII serial port for the MII bit-bang module. */ static void ste_mii_bitbang_write(device_t dev, uint32_t val) { struct ste_softc *sc; sc = device_get_softc(dev); CSR_WRITE_1(sc, STE_PHYCTL, val); CSR_BARRIER(sc, STE_PHYCTL, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); } static int ste_miibus_readreg(device_t dev, int phy, int reg) { return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg)); } static int ste_miibus_writereg(device_t dev, int phy, int reg, int data) { mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data); return (0); } static void ste_miibus_statchg(device_t dev) { struct ste_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint16_t cfg; sc = device_get_softc(dev); mii = device_get_softc(sc->ste_miibus); ifp = sc->ste_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->ste_flags &= ~STE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: case IFM_100_FX: case IFM_100_T4: sc->ste_flags |= STE_FLAG_LINK; default: break; } } /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->ste_flags & STE_FLAG_LINK) != 0) { cfg = CSR_READ_2(sc, STE_MACCTL0); cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX); if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { /* * ST201 data sheet says driver should enable receiving * MAC control frames bit of receive mode register to * receive flow-control frames but the register has no * such bits. In addition the controller has no ability * to send pause frames so it should be handled in * driver. Implementing pause timer handling in driver * layer is not trivial, so don't enable flow-control * here. */ cfg |= STE_MACCTL0_FULLDUPLEX; } CSR_WRITE_2(sc, STE_MACCTL0, cfg); } } static int ste_ifmedia_upd(struct ifnet *ifp) { struct ste_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; STE_LOCK(sc); mii = device_get_softc(sc->ste_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); error = mii_mediachg(mii); STE_UNLOCK(sc); return (error); } static void ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ste_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->ste_miibus); STE_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { STE_UNLOCK(sc); return; } mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; STE_UNLOCK(sc); } static void ste_wait(struct ste_softc *sc) { int i; for (i = 0; i < STE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG)) break; DELAY(1); } if (i == STE_TIMEOUT) device_printf(sc->ste_dev, "command never completed!\n"); } /* * The EEPROM is slow: give it time to come ready after issuing * it a command. */ static int ste_eeprom_wait(struct ste_softc *sc) { int i; DELAY(1000); for (i = 0; i < 100; i++) { if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY) DELAY(1000); else break; } if (i == 100) { device_printf(sc->ste_dev, "eeprom failed to come ready\n"); return (1); } return (0); } /* * Read a sequence of words from the EEPROM. Note that ethernet address * data is stored in the EEPROM in network byte order. */ static int ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt) { int err = 0, i; if (ste_eeprom_wait(sc)) return (1); for (i = 0; i < cnt; i++) { CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i)); err = ste_eeprom_wait(sc); if (err) break; *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA)); dest++; } return (err ? 1 : 0); } static void ste_rxfilter(struct ste_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t hashes[2] = { 0, 0 }; uint8_t rxcfg; int h; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; rxcfg = CSR_READ_1(sc, STE_RX_MODE); rxcfg |= STE_RXMODE_UNICAST; rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH | STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC); if (ifp->if_flags & IFF_BROADCAST) rxcfg |= STE_RXMODE_BROADCAST; if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { if ((ifp->if_flags & IFF_ALLMULTI) != 0) rxcfg |= STE_RXMODE_ALLMULTI; if ((ifp->if_flags & IFF_PROMISC) != 0) rxcfg |= STE_RXMODE_PROMISC; goto chipit; } rxcfg |= STE_RXMODE_MULTIHASH; /* Now program new ones. */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } if_maddr_runlock(ifp); chipit: CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF); CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF); CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF); CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF); CSR_WRITE_1(sc, STE_RX_MODE, rxcfg); CSR_READ_1(sc, STE_RX_MODE); } #ifdef DEVICE_POLLING static poll_handler_t ste_poll, ste_poll_locked; static int ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct ste_softc *sc = ifp->if_softc; int rx_npkts = 0; STE_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) rx_npkts = ste_poll_locked(ifp, cmd, count); STE_UNLOCK(sc); return (rx_npkts); } static int ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct ste_softc *sc = ifp->if_softc; int rx_npkts; STE_LOCK_ASSERT(sc); rx_npkts = ste_rxeof(sc, count); ste_txeof(sc); ste_txeoc(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ste_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { uint16_t status; status = CSR_READ_2(sc, STE_ISR_ACK); if (status & STE_ISR_STATS_OFLOW) ste_stats_update(sc); if (status & STE_ISR_HOSTERR) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ste_init_locked(sc); } } return (rx_npkts); } #endif /* DEVICE_POLLING */ static void ste_intr(void *xsc) { struct ste_softc *sc; struct ifnet *ifp; uint16_t intrs, status; sc = xsc; STE_LOCK(sc); ifp = sc->ste_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { STE_UNLOCK(sc); return; } #endif /* Reading STE_ISR_ACK clears STE_IMR register. */ status = CSR_READ_2(sc, STE_ISR_ACK); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { STE_UNLOCK(sc); return; } intrs = STE_INTRS; if (status == 0xFFFF || (status & intrs) == 0) goto done; if (sc->ste_int_rx_act > 0) { status &= ~STE_ISR_RX_DMADONE; intrs &= ~STE_IMR_RX_DMADONE; } if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) { ste_rxeof(sc, -1); /* * The controller has no ability to Rx interrupt * moderation feature. Receiving 64 bytes frames * from wire generates too many interrupts which in * turn make system useless to process other useful * things. Fortunately ST201 supports single shot * timer so use the timer to implement Rx interrupt * moderation in driver. This adds more register * access but it greatly reduces number of Rx * interrupts under high network load. */ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && (sc->ste_int_rx_mod != 0)) { if ((status & STE_ISR_RX_DMADONE) != 0) { CSR_WRITE_2(sc, STE_COUNTDOWN, STE_TIMER_USECS(sc->ste_int_rx_mod)); intrs &= ~STE_IMR_RX_DMADONE; sc->ste_int_rx_act = 1; } else { intrs |= STE_IMR_RX_DMADONE; sc->ste_int_rx_act = 0; } } } if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if ((status & STE_ISR_TX_DMADONE) != 0) ste_txeof(sc); if ((status & STE_ISR_TX_DONE) != 0) ste_txeoc(sc); if ((status & STE_ISR_STATS_OFLOW) != 0) ste_stats_update(sc); if ((status & STE_ISR_HOSTERR) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ste_init_locked(sc); STE_UNLOCK(sc); return; } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ste_start_locked(ifp); done: /* Re-enable interrupts */ CSR_WRITE_2(sc, STE_IMR, intrs); } STE_UNLOCK(sc); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static int ste_rxeof(struct ste_softc *sc, int count) { struct mbuf *m; struct ifnet *ifp; struct ste_chain_onefrag *cur_rx; uint32_t rxstat; int total_len, rx_npkts; ifp = sc->ste_ifp; bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag, sc->ste_cdata.ste_rx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cur_rx = sc->ste_cdata.ste_rx_head; for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++, cur_rx = cur_rx->ste_next) { rxstat = le32toh(cur_rx->ste_ptr->ste_status); if ((rxstat & STE_RXSTAT_DMADONE) == 0) break; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) { if (count == 0) break; count--; } #endif if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & STE_RXSTAT_FRAME_ERR) { ifp->if_ierrors++; cur_rx->ste_ptr->ste_status = 0; continue; } /* No errors; receive the packet. */ m = cur_rx->ste_mbuf; total_len = STE_RX_BYTES(rxstat); /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (ste_newbuf(sc, cur_rx) != 0) { ifp->if_iqdrops++; cur_rx->ste_ptr->ste_status = 0; continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; ifp->if_ipackets++; STE_UNLOCK(sc); (*ifp->if_input)(ifp, m); STE_LOCK(sc); } if (rx_npkts > 0) { sc->ste_cdata.ste_rx_head = cur_rx; bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag, sc->ste_cdata.ste_rx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } return (rx_npkts); } static void ste_txeoc(struct ste_softc *sc) { uint16_t txstat; struct ifnet *ifp; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; /* * STE_TX_STATUS register implements a queue of up to 31 * transmit status byte. Writing an arbitrary value to the * register will advance the queue to the next transmit * status byte. This means if driver does not read * STE_TX_STATUS register after completing sending more * than 31 frames the controller would be stalled so driver * should re-wake the Tx MAC. This is the most severe * limitation of ST201 based controller. */ for (;;) { txstat = CSR_READ_2(sc, STE_TX_STATUS); if ((txstat & STE_TXSTATUS_TXDONE) == 0) break; if ((txstat & (STE_TXSTATUS_UNDERRUN | STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR | STE_TXSTATUS_STATSOFLOW)) != 0) { ifp->if_oerrors++; #ifdef STE_SHOW_TXERRORS device_printf(sc->ste_dev, "TX error : 0x%b\n", txstat & 0xFF, STE_ERR_BITS); #endif if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 && sc->ste_tx_thresh < STE_PACKET_SIZE) { sc->ste_tx_thresh += STE_MIN_FRAMELEN; if (sc->ste_tx_thresh > STE_PACKET_SIZE) sc->ste_tx_thresh = STE_PACKET_SIZE; device_printf(sc->ste_dev, "TX underrun, increasing TX" " start threshold to %d bytes\n", sc->ste_tx_thresh); /* Make sure to disable active DMA cycles. */ STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL); ste_wait(sc); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ste_init_locked(sc); break; } /* Restart Tx. */ ste_restart_tx(sc); } /* * Advance to next status and ACK TxComplete * interrupt. ST201 data sheet was wrong here, to * get next Tx status, we have to write both * STE_TX_STATUS and STE_TX_FRAMEID register. * Otherwise controller returns the same status * as well as not acknowledge Tx completion * interrupt. */ CSR_WRITE_2(sc, STE_TX_STATUS, txstat); } } static void ste_tick(void *arg) { struct ste_softc *sc; struct mii_data *mii; sc = (struct ste_softc *)arg; STE_LOCK_ASSERT(sc); mii = device_get_softc(sc->ste_miibus); mii_tick(mii); /* * ukphy(4) does not seem to generate CB that reports * resolved link state so if we know we lost a link, * explicitly check the link state. */ if ((sc->ste_flags & STE_FLAG_LINK) == 0) ste_miibus_statchg(sc->ste_dev); /* * Because we are not generating Tx completion * interrupt for every frame, reclaim transmitted * buffers here. */ ste_txeof(sc); ste_txeoc(sc); ste_stats_update(sc); ste_watchdog(sc); callout_reset(&sc->ste_callout, hz, ste_tick, sc); } static void ste_txeof(struct ste_softc *sc) { struct ifnet *ifp; struct ste_chain *cur_tx; uint32_t txstat; int idx; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; idx = sc->ste_cdata.ste_tx_cons; if (idx == sc->ste_cdata.ste_tx_prod) return; bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); while (idx != sc->ste_cdata.ste_tx_prod) { cur_tx = &sc->ste_cdata.ste_tx_chain[idx]; txstat = le32toh(cur_tx->ste_ptr->ste_ctl); if ((txstat & STE_TXCTL_DMADONE) == 0) break; bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map); KASSERT(cur_tx->ste_mbuf != NULL, ("%s: freeing NULL mbuf!\n", __func__)); m_freem(cur_tx->ste_mbuf); cur_tx->ste_mbuf = NULL; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_opackets++; sc->ste_cdata.ste_tx_cnt--; STE_INC(idx, STE_TX_LIST_CNT); } sc->ste_cdata.ste_tx_cons = idx; if (sc->ste_cdata.ste_tx_cnt == 0) sc->ste_timer = 0; } static void ste_stats_clear(struct ste_softc *sc) { STE_LOCK_ASSERT(sc); /* Rx stats. */ CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO); CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI); CSR_READ_2(sc, STE_STAT_RX_FRAMES); CSR_READ_1(sc, STE_STAT_RX_BCAST); CSR_READ_1(sc, STE_STAT_RX_MCAST); CSR_READ_1(sc, STE_STAT_RX_LOST); /* Tx stats. */ CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO); CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI); CSR_READ_2(sc, STE_STAT_TX_FRAMES); CSR_READ_1(sc, STE_STAT_TX_BCAST); CSR_READ_1(sc, STE_STAT_TX_MCAST); CSR_READ_1(sc, STE_STAT_CARRIER_ERR); CSR_READ_1(sc, STE_STAT_SINGLE_COLLS); CSR_READ_1(sc, STE_STAT_MULTI_COLLS); CSR_READ_1(sc, STE_STAT_LATE_COLLS); CSR_READ_1(sc, STE_STAT_TX_DEFER); CSR_READ_1(sc, STE_STAT_TX_EXDEFER); CSR_READ_1(sc, STE_STAT_TX_ABORT); } static void ste_stats_update(struct ste_softc *sc) { struct ifnet *ifp; struct ste_hw_stats *stats; uint32_t val; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; stats = &sc->ste_stats; /* Rx stats. */ val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) | ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16; val &= 0x000FFFFF; stats->rx_bytes += val; stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES); stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST); stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST); stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST); /* Tx stats. */ val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) | ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16; val &= 0x000FFFFF; stats->tx_bytes += val; stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES); stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST); stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST); stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR); val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS); stats->tx_single_colls += val; ifp->if_collisions += val; val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS); stats->tx_multi_colls += val; ifp->if_collisions += val; val += CSR_READ_1(sc, STE_STAT_LATE_COLLS); stats->tx_late_colls += val; ifp->if_collisions += val; stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER); stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER); stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT); } /* * Probe for a Sundance ST201 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int ste_probe(device_t dev) { const struct ste_type *t; t = ste_devs; while (t->ste_name != NULL) { if ((pci_get_vendor(dev) == t->ste_vid) && (pci_get_device(dev) == t->ste_did)) { device_set_desc(dev, t->ste_name); return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int ste_attach(device_t dev) { struct ste_softc *sc; struct ifnet *ifp; uint16_t eaddr[ETHER_ADDR_LEN / 2]; int error = 0, phy, pmc, prefer_iomap, rid; sc = device_get_softc(dev); sc->ste_dev = dev; /* * Only use one PHY since this chip reports multiple * Note on the DFE-550 the PHY is at 1 on the DFE-580 * it is at 0 & 1. It is rev 0x12. */ if (pci_get_vendor(dev) == DL_VENDORID && pci_get_device(dev) == DL_DEVICEID_DL10050 && pci_get_revid(dev) == 0x12 ) sc->ste_flags |= STE_FLAG_ONE_PHY; mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); /* * Map control/status registers. */ pci_enable_busmaster(dev); /* * Prefer memory space register mapping over IO space but use * IO space for a device that is known to have issues on memory * mapping. */ prefer_iomap = 0; if (pci_get_device(dev) == ST_DEVICEID_ST201_1) prefer_iomap = 1; else resource_int_value(device_get_name(sc->ste_dev), device_get_unit(sc->ste_dev), "prefer_iomap", &prefer_iomap); if (prefer_iomap == 0) { sc->ste_res_id = PCIR_BAR(1); sc->ste_res_type = SYS_RES_MEMORY; sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type, &sc->ste_res_id, RF_ACTIVE); } if (prefer_iomap || sc->ste_res == NULL) { sc->ste_res_id = PCIR_BAR(0); sc->ste_res_type = SYS_RES_IOPORT; sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type, &sc->ste_res_id, RF_ACTIVE); } if (sc->ste_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } /* Allocate interrupt */ rid = 0; sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->ste_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0); /* Reset the adapter. */ ste_reset(sc); /* * Get station address from the EEPROM. */ if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) { device_printf(dev, "failed to read station address\n"); error = ENXIO; goto fail; } ste_sysctl_node(sc); if ((error = ste_dma_alloc(sc)) != 0) goto fail; ifp = sc->ste_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* Do MII setup. */ phy = MII_PHY_ANY; if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0) phy = 0; error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd, ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ste_ioctl; ifp->if_start = ste_start; ifp->if_init = ste_init; IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1); ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1; IFQ_SET_READY(&ifp->if_snd); sc->ste_tx_thresh = STE_TXSTART_THRESH; /* * Call MI attach routine. */ ether_ifattach(ifp, (uint8_t *)eaddr); /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU; if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) ifp->if_capabilities |= IFCAP_WOL_MAGIC; ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, ste_intr, sc, &sc->ste_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) ste_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int ste_detach(device_t dev) { struct ste_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized")); ifp = sc->ste_ifp; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { ether_ifdetach(ifp); STE_LOCK(sc); ste_stop(sc); STE_UNLOCK(sc); callout_drain(&sc->ste_callout); } if (sc->ste_miibus) device_delete_child(dev, sc->ste_miibus); bus_generic_detach(dev); if (sc->ste_intrhand) bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand); if (sc->ste_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq); if (sc->ste_res) bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id, sc->ste_res); if (ifp) if_free(ifp); ste_dma_free(sc); mtx_destroy(&sc->ste_mtx); return (0); } struct ste_dmamap_arg { bus_addr_t ste_busaddr; }; static void ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct ste_dmamap_arg *ctx; if (error != 0) return; KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); ctx = (struct ste_dmamap_arg *)arg; ctx->ste_busaddr = segs[0].ds_addr; } static int ste_dma_alloc(struct ste_softc *sc) { struct ste_chain *txc; struct ste_chain_onefrag *rxc; struct ste_dmamap_arg ctx; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->ste_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ste_cdata.ste_parent_tag); if (error != 0) { device_printf(sc->ste_dev, "could not create parent DMA tag.\n"); goto fail; } /* Create DMA tag for Tx descriptor list. */ error = bus_dma_tag_create( sc->ste_cdata.ste_parent_tag, /* parent */ STE_DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ STE_TX_LIST_SZ, /* maxsize */ 1, /* nsegments */ STE_TX_LIST_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ste_cdata.ste_tx_list_tag); if (error != 0) { device_printf(sc->ste_dev, "could not create Tx list DMA tag.\n"); goto fail; } /* Create DMA tag for Rx descriptor list. */ error = bus_dma_tag_create( sc->ste_cdata.ste_parent_tag, /* parent */ STE_DESC_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ STE_RX_LIST_SZ, /* maxsize */ 1, /* nsegments */ STE_RX_LIST_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ste_cdata.ste_rx_list_tag); if (error != 0) { device_printf(sc->ste_dev, "could not create Rx list DMA tag.\n"); goto fail; } /* Create DMA tag for Tx buffers. */ error = bus_dma_tag_create( sc->ste_cdata.ste_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * STE_MAXFRAGS, /* maxsize */ STE_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ste_cdata.ste_tx_tag); if (error != 0) { device_printf(sc->ste_dev, "could not create Tx DMA tag.\n"); goto fail; } /* Create DMA tag for Rx buffers. */ error = bus_dma_tag_create( sc->ste_cdata.ste_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->ste_cdata.ste_rx_tag); if (error != 0) { device_printf(sc->ste_dev, "could not create Rx DMA tag.\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx list. */ error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag, (void **)&sc->ste_ldata.ste_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ste_cdata.ste_tx_list_map); if (error != 0) { device_printf(sc->ste_dev, "could not allocate DMA'able memory for Tx list.\n"); goto fail; } ctx.ste_busaddr = 0; error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list, STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ste_busaddr == 0) { device_printf(sc->ste_dev, "could not load DMA'able memory for Tx list.\n"); goto fail; } sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx list. */ error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag, (void **)&sc->ste_ldata.ste_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ste_cdata.ste_rx_list_map); if (error != 0) { device_printf(sc->ste_dev, "could not allocate DMA'able memory for Rx list.\n"); goto fail; } ctx.ste_busaddr = 0; error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag, sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list, STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0); if (error != 0 || ctx.ste_busaddr == 0) { device_printf(sc->ste_dev, "could not load DMA'able memory for Rx list.\n"); goto fail; } sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < STE_TX_LIST_CNT; i++) { txc = &sc->ste_cdata.ste_tx_chain[i]; txc->ste_ptr = NULL; txc->ste_mbuf = NULL; txc->ste_next = NULL; txc->ste_phys = 0; txc->ste_map = NULL; error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0, &txc->ste_map); if (error != 0) { device_printf(sc->ste_dev, "could not create Tx dmamap.\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0, &sc->ste_cdata.ste_rx_sparemap)) != 0) { device_printf(sc->ste_dev, "could not create spare Rx dmamap.\n"); goto fail; } for (i = 0; i < STE_RX_LIST_CNT; i++) { rxc = &sc->ste_cdata.ste_rx_chain[i]; rxc->ste_ptr = NULL; rxc->ste_mbuf = NULL; rxc->ste_next = NULL; rxc->ste_map = NULL; error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0, &rxc->ste_map); if (error != 0) { device_printf(sc->ste_dev, "could not create Rx dmamap.\n"); goto fail; } } fail: return (error); } static void ste_dma_free(struct ste_softc *sc) { struct ste_chain *txc; struct ste_chain_onefrag *rxc; int i; /* Tx buffers. */ if (sc->ste_cdata.ste_tx_tag != NULL) { for (i = 0; i < STE_TX_LIST_CNT; i++) { txc = &sc->ste_cdata.ste_tx_chain[i]; if (txc->ste_map != NULL) { bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag, txc->ste_map); txc->ste_map = NULL; } } bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag); sc->ste_cdata.ste_tx_tag = NULL; } /* Rx buffers. */ if (sc->ste_cdata.ste_rx_tag != NULL) { for (i = 0; i < STE_RX_LIST_CNT; i++) { rxc = &sc->ste_cdata.ste_rx_chain[i]; if (rxc->ste_map != NULL) { bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag, rxc->ste_map); rxc->ste_map = NULL; } } if (sc->ste_cdata.ste_rx_sparemap != NULL) { bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag, sc->ste_cdata.ste_rx_sparemap); sc->ste_cdata.ste_rx_sparemap = NULL; } bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag); sc->ste_cdata.ste_rx_tag = NULL; } /* Tx descriptor list. */ if (sc->ste_cdata.ste_tx_list_tag != NULL) { if (sc->ste_cdata.ste_tx_list_map != NULL) bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map); if (sc->ste_cdata.ste_tx_list_map != NULL && sc->ste_ldata.ste_tx_list != NULL) bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag, sc->ste_ldata.ste_tx_list, sc->ste_cdata.ste_tx_list_map); sc->ste_ldata.ste_tx_list = NULL; sc->ste_cdata.ste_tx_list_map = NULL; bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag); sc->ste_cdata.ste_tx_list_tag = NULL; } /* Rx descriptor list. */ if (sc->ste_cdata.ste_rx_list_tag != NULL) { if (sc->ste_cdata.ste_rx_list_map != NULL) bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag, sc->ste_cdata.ste_rx_list_map); if (sc->ste_cdata.ste_rx_list_map != NULL && sc->ste_ldata.ste_rx_list != NULL) bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag, sc->ste_ldata.ste_rx_list, sc->ste_cdata.ste_rx_list_map); sc->ste_ldata.ste_rx_list = NULL; sc->ste_cdata.ste_rx_list_map = NULL; bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag); sc->ste_cdata.ste_rx_list_tag = NULL; } if (sc->ste_cdata.ste_parent_tag != NULL) { bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag); sc->ste_cdata.ste_parent_tag = NULL; } } static int ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc) { struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag, sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) { m_freem(m); return (error); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rxc->ste_mbuf != NULL) { bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map); } map = rxc->ste_map; rxc->ste_map = sc->ste_cdata.ste_rx_sparemap; sc->ste_cdata.ste_rx_sparemap = map; bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map, BUS_DMASYNC_PREREAD); rxc->ste_mbuf = m; rxc->ste_ptr->ste_status = 0; rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr); rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len | STE_FRAG_LAST); return (0); } static int ste_init_rx_list(struct ste_softc *sc) { struct ste_chain_data *cd; struct ste_list_data *ld; int error, i; sc->ste_int_rx_act = 0; cd = &sc->ste_cdata; ld = &sc->ste_ldata; bzero(ld->ste_rx_list, STE_RX_LIST_SZ); for (i = 0; i < STE_RX_LIST_CNT; i++) { cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i]; error = ste_newbuf(sc, &cd->ste_rx_chain[i]); if (error != 0) return (error); if (i == (STE_RX_LIST_CNT - 1)) { cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0]; ld->ste_rx_list[i].ste_next = htole32(ld->ste_rx_list_paddr + (sizeof(struct ste_desc_onefrag) * 0)); } else { cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1]; ld->ste_rx_list[i].ste_next = htole32(ld->ste_rx_list_paddr + (sizeof(struct ste_desc_onefrag) * (i + 1))); } } cd->ste_rx_head = &cd->ste_rx_chain[0]; bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag, sc->ste_cdata.ste_rx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void ste_init_tx_list(struct ste_softc *sc) { struct ste_chain_data *cd; struct ste_list_data *ld; int i; cd = &sc->ste_cdata; ld = &sc->ste_ldata; bzero(ld->ste_tx_list, STE_TX_LIST_SZ); for (i = 0; i < STE_TX_LIST_CNT; i++) { cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i]; cd->ste_tx_chain[i].ste_mbuf = NULL; if (i == (STE_TX_LIST_CNT - 1)) { cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0]; cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO( ld->ste_tx_list_paddr + (sizeof(struct ste_desc) * 0))); } else { cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1]; cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO( ld->ste_tx_list_paddr + (sizeof(struct ste_desc) * (i + 1)))); } } cd->ste_last_tx = NULL; cd->ste_tx_prod = 0; cd->ste_tx_cons = 0; cd->ste_tx_cnt = 0; bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void ste_init(void *xsc) { struct ste_softc *sc; sc = xsc; STE_LOCK(sc); ste_init_locked(sc); STE_UNLOCK(sc); } static void ste_init_locked(struct ste_softc *sc) { struct ifnet *ifp; struct mii_data *mii; uint8_t val; int i; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; mii = device_get_softc(sc->ste_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; ste_stop(sc); /* Reset the chip to a known state. */ ste_reset(sc); /* Init our MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i += 2) { CSR_WRITE_2(sc, STE_PAR0 + i, ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) | IF_LLADDR(sc->ste_ifp)[i + 1] << 8)); } /* Init RX list */ if (ste_init_rx_list(sc) != 0) { device_printf(sc->ste_dev, "initialization failed: no memory for RX buffers\n"); ste_stop(sc); return; } /* Set RX polling interval */ CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64); /* Init TX descriptors */ ste_init_tx_list(sc); /* Clear and disable WOL. */ val = CSR_READ_1(sc, STE_WAKE_EVENT); val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB); CSR_WRITE_1(sc, STE_WAKE_EVENT, val); /* Set the TX freethresh value */ CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8); /* Set the TX start threshold for best performance. */ CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh); /* Set the TX reclaim threshold. */ CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4)); /* Accept VLAN length packets */ CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); /* Set up the RX filter. */ ste_rxfilter(sc); /* Load the address of the RX list. */ STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr)); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL); /* Set TX polling interval(defer until we TX first packet). */ CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0); /* Load address of the TX list */ STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL); ste_wait(sc); /* Select 3.2us timer. */ STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED | STE_DMACTL_COUNTDOWN_MODE); /* Enable receiver and transmitter */ CSR_WRITE_2(sc, STE_MACCTL0, 0); CSR_WRITE_2(sc, STE_MACCTL1, 0); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE); /* Enable stats counters. */ STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE); /* Clear stats counters. */ ste_stats_clear(sc); CSR_WRITE_2(sc, STE_COUNTDOWN, 0); CSR_WRITE_2(sc, STE_ISR, 0xFFFF); #ifdef DEVICE_POLLING /* Disable interrupts if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_2(sc, STE_IMR, 0); else #endif /* Enable interrupts. */ CSR_WRITE_2(sc, STE_IMR, STE_INTRS); sc->ste_flags &= ~STE_FLAG_LINK; /* Switch to the current media. */ mii_mediachg(mii); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->ste_callout, hz, ste_tick, sc); } static void ste_stop(struct ste_softc *sc) { struct ifnet *ifp; struct ste_chain_onefrag *cur_rx; struct ste_chain *cur_tx; uint32_t val; int i; STE_LOCK_ASSERT(sc); ifp = sc->ste_ifp; callout_stop(&sc->ste_callout); sc->ste_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE); CSR_WRITE_2(sc, STE_IMR, 0); CSR_WRITE_2(sc, STE_COUNTDOWN, 0); /* Stop pending DMA. */ val = CSR_READ_4(sc, STE_DMACTL); val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL; CSR_WRITE_4(sc, STE_DMACTL, val); ste_wait(sc); /* Disable auto-polling. */ CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0); CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0); /* Nullify DMA address to stop any further DMA. */ CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0); CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0); /* Stop TX/RX MAC. */ val = CSR_READ_2(sc, STE_MACCTL1); val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE; CSR_WRITE_2(sc, STE_MACCTL1, val); for (i = 0; i < STE_TIMEOUT; i++) { DELAY(10); if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0) break; } if (i == STE_TIMEOUT) device_printf(sc->ste_dev, "Stopping MAC timed out\n"); /* Acknowledge any pending interrupts. */ CSR_READ_2(sc, STE_ISR_ACK); ste_stats_update(sc); for (i = 0; i < STE_RX_LIST_CNT; i++) { cur_rx = &sc->ste_cdata.ste_rx_chain[i]; if (cur_rx->ste_mbuf != NULL) { bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, cur_rx->ste_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, cur_rx->ste_map); m_freem(cur_rx->ste_mbuf); cur_rx->ste_mbuf = NULL; } } for (i = 0; i < STE_TX_LIST_CNT; i++) { cur_tx = &sc->ste_cdata.ste_tx_chain[i]; if (cur_tx->ste_mbuf != NULL) { bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map); m_freem(cur_tx->ste_mbuf); cur_tx->ste_mbuf = NULL; } } } static void ste_reset(struct ste_softc *sc) { uint32_t ctl; int i; ctl = CSR_READ_4(sc, STE_ASICCTL); ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET | STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET | STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET | STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET | STE_ASICCTL_EXTRESET_RESET; CSR_WRITE_4(sc, STE_ASICCTL, ctl); CSR_READ_4(sc, STE_ASICCTL); /* * Due to the need of accessing EEPROM controller can take * up to 1ms to complete the global reset. */ DELAY(1000); for (i = 0; i < STE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY)) break; DELAY(10); } if (i == STE_TIMEOUT) device_printf(sc->ste_dev, "global reset never completed\n"); } static void ste_restart_tx(struct ste_softc *sc) { uint16_t mac; int i; for (i = 0; i < STE_TIMEOUT; i++) { mac = CSR_READ_2(sc, STE_MACCTL1); mac |= STE_MACCTL1_TX_ENABLE; CSR_WRITE_2(sc, STE_MACCTL1, mac); mac = CSR_READ_2(sc, STE_MACCTL1); if ((mac & STE_MACCTL1_TX_ENABLED) != 0) break; DELAY(10); } if (i == STE_TIMEOUT) device_printf(sc->ste_dev, "starting Tx failed"); } static int ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ste_softc *sc; struct ifreq *ifr; struct mii_data *mii; int error = 0, mask; sc = ifp->if_softc; ifr = (struct ifreq *)data; switch (command) { case SIOCSIFFLAGS: STE_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->ste_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) ste_rxfilter(sc); else ste_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) ste_stop(sc); sc->ste_if_flags = ifp->if_flags; STE_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: STE_LOCK(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) ste_rxfilter(sc); STE_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->ste_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: STE_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; #ifdef DEVICE_POLLING if ((mask & IFCAP_POLLING) != 0 && (IFCAP_POLLING & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_POLLING; if ((IFCAP_POLLING & ifp->if_capenable) != 0) { error = ether_poll_register(ste_poll, ifp); if (error != 0) { STE_UNLOCK(sc); break; } /* Disable interrupts. */ CSR_WRITE_2(sc, STE_IMR, 0); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ CSR_WRITE_2(sc, STE_IMR, STE_INTRS); } } #endif /* DEVICE_POLLING */ if ((mask & IFCAP_WOL_MAGIC) != 0 && (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0) ifp->if_capenable ^= IFCAP_WOL_MAGIC; STE_UNLOCK(sc); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static int ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc) { struct ste_frag *frag; struct mbuf *m; struct ste_desc *desc; bus_dma_segment_t txsegs[STE_MAXFRAGS]; int error, i, nsegs; STE_LOCK_ASSERT(sc); M_ASSERTPKTHDR((*m_head)); error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag, txc->ste_map, *m_head, txsegs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag, txc->ste_map, *m_head, txsegs, &nsegs, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map, BUS_DMASYNC_PREWRITE); desc = txc->ste_ptr; for (i = 0; i < nsegs; i++) { frag = &desc->ste_frags[i]; frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr)); frag->ste_len = htole32(txsegs[i].ds_len); } desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST); /* * Because we use Tx polling we can't chain multiple * Tx descriptors here. Otherwise we race with controller. */ desc->ste_next = 0; if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0) desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS | STE_TXCTL_DMAINTR); else desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS); txc->ste_mbuf = *m_head; STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT); sc->ste_cdata.ste_tx_cnt++; return (0); } static void ste_start(struct ifnet *ifp) { struct ste_softc *sc; sc = ifp->if_softc; STE_LOCK(sc); ste_start_locked(ifp); STE_UNLOCK(sc); } static void ste_start_locked(struct ifnet *ifp) { struct ste_softc *sc; struct ste_chain *cur_tx; struct mbuf *m_head = NULL; int enq; sc = ifp->if_softc; STE_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) { /* * Controller may have cached copy of the last used * next ptr so we have to reserve one TFD to avoid * TFD overruns. */ ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod]; if (ste_encap(sc, &m_head, cur_tx) != 0) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); break; } if (sc->ste_cdata.ste_last_tx == NULL) { bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr)); CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL); ste_wait(sc); } else { sc->ste_cdata.ste_last_tx->ste_ptr->ste_next = sc->ste_cdata.ste_last_tx->ste_phys; bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag, sc->ste_cdata.ste_tx_list_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } sc->ste_cdata.ste_last_tx = cur_tx; enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (enq > 0) sc->ste_timer = STE_TX_TIMEOUT; } static void ste_watchdog(struct ste_softc *sc) { struct ifnet *ifp; ifp = sc->ste_ifp; STE_LOCK_ASSERT(sc); if (sc->ste_timer == 0 || --sc->ste_timer) return; ifp->if_oerrors++; if_printf(ifp, "watchdog timeout\n"); ste_txeof(sc); ste_txeoc(sc); ste_rxeof(sc, -1); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ste_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ste_start_locked(ifp); } static int ste_shutdown(device_t dev) { return (ste_suspend(dev)); } static int ste_suspend(device_t dev) { struct ste_softc *sc; sc = device_get_softc(dev); STE_LOCK(sc); ste_stop(sc); ste_setwol(sc); STE_UNLOCK(sc); return (0); } static int ste_resume(device_t dev) { struct ste_softc *sc; struct ifnet *ifp; int pmc; uint16_t pmstat; sc = device_get_softc(dev); STE_LOCK(sc); if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) { /* Disable PME and clear PME status. */ pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2); if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } } ifp = sc->ste_ifp; if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; ste_init_locked(sc); } STE_UNLOCK(sc); return (0); } #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) static void ste_sysctl_node(struct ste_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct ste_hw_stats *stats; stats = &sc->ste_stats; ctx = device_get_sysctl_ctx(sc->ste_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev)); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod", CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation"); /* Pull in device tunables. */ sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT; resource_int_value(device_get_name(sc->ste_dev), device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "STE statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, NULL, "Rx MAC statistics"); child = SYSCTL_CHILDREN(tree); STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->rx_bytes, "Good octets"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->rx_frames, "Good frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->rx_bcast_frames, "Good broadcast frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->rx_mcast_frames, "Good multicast frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames", &stats->rx_lost_frames, "Lost frames"); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets", &stats->tx_bytes, "Good octets"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames", &stats->tx_frames, "Good frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames", &stats->tx_bcast_frames, "Good broadcast frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames", &stats->tx_mcast_frames, "Good multicast frames"); STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs", &stats->tx_carrsense_errs, "Carrier sense errors"); STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls", &stats->tx_single_colls, "Single collisions"); STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls", &stats->tx_multi_colls, "Multiple collisions"); STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls", &stats->tx_late_colls, "Late collisions"); STE_SYSCTL_STAT_ADD32(ctx, child, "defers", &stats->tx_frames_defered, "Frames with deferrals"); STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers", &stats->tx_excess_defers, "Frames with excessive derferrals"); STE_SYSCTL_STAT_ADD32(ctx, child, "abort", &stats->tx_abort, "Aborted frames due to Excessive collisions"); } #undef STE_SYSCTL_STAT_ADD32 #undef STE_SYSCTL_STAT_ADD64 static void ste_setwol(struct ste_softc *sc) { struct ifnet *ifp; uint16_t pmstat; uint8_t val; int pmc; STE_LOCK_ASSERT(sc); if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) { /* Disable WOL. */ CSR_READ_1(sc, STE_WAKE_EVENT); CSR_WRITE_1(sc, STE_WAKE_EVENT, 0); return; } ifp = sc->ste_ifp; val = CSR_READ_1(sc, STE_WAKE_EVENT); val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB); if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB; CSR_WRITE_1(sc, STE_WAKE_EVENT, val); /* Request PME. */ pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); }