Current Path : /sys/dev/uart/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/dev/uart/uart_dev_ns8250.c |
/*- * Copyright (c) 2003 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/uart/uart_dev_ns8250.c 222317 2011-05-26 17:02:56Z marcel $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/conf.h> #include <machine/bus.h> #include <dev/uart/uart.h> #include <dev/uart/uart_cpu.h> #include <dev/uart/uart_bus.h> #include <dev/ic/ns16550.h> #include "uart_if.h" #define DEFAULT_RCLK 1843200 /* * Clear pending interrupts. THRE is cleared by reading IIR. Data * that may have been received gets lost here. */ static void ns8250_clrint(struct uart_bas *bas) { uint8_t iir, lsr; iir = uart_getreg(bas, REG_IIR); while ((iir & IIR_NOPEND) == 0) { iir &= IIR_IMASK; if (iir == IIR_RLS) { lsr = uart_getreg(bas, REG_LSR); if (lsr & (LSR_BI|LSR_FE|LSR_PE)) (void)uart_getreg(bas, REG_DATA); } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) (void)uart_getreg(bas, REG_DATA); else if (iir == IIR_MLSC) (void)uart_getreg(bas, REG_MSR); uart_barrier(bas); iir = uart_getreg(bas, REG_IIR); } } static int ns8250_delay(struct uart_bas *bas) { int divisor; u_char lcr; lcr = uart_getreg(bas, REG_LCR); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); /* 1/10th the time to transmit 1 character (estimate). */ if (divisor <= 134) return (16000000 * divisor / bas->rclk); return (16000 * divisor / (bas->rclk / 1000)); } static int ns8250_divisor(int rclk, int baudrate) { int actual_baud, divisor; int error; if (baudrate == 0) return (0); divisor = (rclk / (baudrate << 3) + 1) >> 1; if (divisor == 0 || divisor >= 65536) return (0); actual_baud = rclk / (divisor << 4); /* 10 times error in percent: */ error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; /* 3.0% maximum error tolerance: */ if (error < -30 || error > 30) return (0); return (divisor); } static int ns8250_drain(struct uart_bas *bas, int what) { int delay, limit; delay = ns8250_delay(bas); if (what & UART_DRAIN_TRANSMITTER) { /* * Pick an arbitrary high limit to avoid getting stuck in * an infinite loop when the hardware is broken. Make the * limit high enough to handle large FIFOs. */ limit = 10*1024; while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) DELAY(delay); if (limit == 0) { /* printf("ns8250: transmitter appears stuck... "); */ return (EIO); } } if (what & UART_DRAIN_RECEIVER) { /* * Pick an arbitrary high limit to avoid getting stuck in * an infinite loop when the hardware is broken. Make the * limit high enough to handle large FIFOs and integrated * UARTs. The HP rx2600 for example has 3 UARTs on the * management board that tend to get a lot of data send * to it when the UART is first activated. */ limit=10*4096; while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { (void)uart_getreg(bas, REG_DATA); uart_barrier(bas); DELAY(delay << 2); } if (limit == 0) { /* printf("ns8250: receiver appears broken... "); */ return (EIO); } } return (0); } /* * We can only flush UARTs with FIFOs. UARTs without FIFOs should be * drained. WARNING: this function clobbers the FIFO setting! */ static void ns8250_flush(struct uart_bas *bas, int what) { uint8_t fcr; fcr = FCR_ENABLE; if (what & UART_FLUSH_TRANSMITTER) fcr |= FCR_XMT_RST; if (what & UART_FLUSH_RECEIVER) fcr |= FCR_RCV_RST; uart_setreg(bas, REG_FCR, fcr); uart_barrier(bas); } static int ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { int divisor; uint8_t lcr; lcr = 0; if (databits >= 8) lcr |= LCR_8BITS; else if (databits == 7) lcr |= LCR_7BITS; else if (databits == 6) lcr |= LCR_6BITS; else lcr |= LCR_5BITS; if (stopbits > 1) lcr |= LCR_STOPB; lcr |= parity << 3; /* Set baudrate. */ if (baudrate > 0) { divisor = ns8250_divisor(bas->rclk, baudrate); if (divisor == 0) return (EINVAL); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); uart_setreg(bas, REG_DLL, divisor & 0xff); uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff); uart_barrier(bas); } /* Set LCR and clear DLAB. */ uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); return (0); } /* * Low-level UART interface. */ static int ns8250_probe(struct uart_bas *bas); static void ns8250_init(struct uart_bas *bas, int, int, int, int); static void ns8250_term(struct uart_bas *bas); static void ns8250_putc(struct uart_bas *bas, int); static int ns8250_rxready(struct uart_bas *bas); static int ns8250_getc(struct uart_bas *bas, struct mtx *); static struct uart_ops uart_ns8250_ops = { .probe = ns8250_probe, .init = ns8250_init, .term = ns8250_term, .putc = ns8250_putc, .rxready = ns8250_rxready, .getc = ns8250_getc, }; static int ns8250_probe(struct uart_bas *bas) { u_char val; /* Check known 0 bits that don't depend on DLAB. */ val = uart_getreg(bas, REG_IIR); if (val & 0x30) return (ENXIO); /* * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699 * chip, but otherwise doesn't seem to have a function. In * other words, uart(4) works regardless. Ignore that bit so * the probe succeeds. */ val = uart_getreg(bas, REG_MCR); if (val & 0xa0) return (ENXIO); return (0); } static void ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { u_char ier; if (bas->rclk == 0) bas->rclk = DEFAULT_RCLK; ns8250_param(bas, baudrate, databits, stopbits, parity); /* Disable all interrupt sources. */ /* * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA * UARTs split the receive time-out interrupt bit out separately as * 0x10. This gets handled by ier_mask and ier_rxbits below. */ ier = uart_getreg(bas, REG_IER) & 0xe0; uart_setreg(bas, REG_IER, ier); uart_barrier(bas); /* Disable the FIFO (if present). */ uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); /* Set RTS & DTR. */ uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); uart_barrier(bas); ns8250_clrint(bas); } static void ns8250_term(struct uart_bas *bas) { /* Clear RTS & DTR. */ uart_setreg(bas, REG_MCR, MCR_IE); uart_barrier(bas); } static void ns8250_putc(struct uart_bas *bas, int c) { int limit; limit = 250000; while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) DELAY(4); uart_setreg(bas, REG_DATA, c); uart_barrier(bas); limit = 250000; while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) DELAY(4); } static int ns8250_rxready(struct uart_bas *bas) { return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0); } static int ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx) { int c; uart_lock(hwmtx); while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) { uart_unlock(hwmtx); DELAY(4); uart_lock(hwmtx); } c = uart_getreg(bas, REG_DATA); uart_unlock(hwmtx); return (c); } /* * High-level UART interface. */ struct ns8250_softc { struct uart_softc base; uint8_t fcr; uint8_t ier; uint8_t mcr; uint8_t ier_mask; uint8_t ier_rxbits; }; static int ns8250_bus_attach(struct uart_softc *); static int ns8250_bus_detach(struct uart_softc *); static int ns8250_bus_flush(struct uart_softc *, int); static int ns8250_bus_getsig(struct uart_softc *); static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t); static int ns8250_bus_ipend(struct uart_softc *); static int ns8250_bus_param(struct uart_softc *, int, int, int, int); static int ns8250_bus_probe(struct uart_softc *); static int ns8250_bus_receive(struct uart_softc *); static int ns8250_bus_setsig(struct uart_softc *, int); static int ns8250_bus_transmit(struct uart_softc *); static kobj_method_t ns8250_methods[] = { KOBJMETHOD(uart_attach, ns8250_bus_attach), KOBJMETHOD(uart_detach, ns8250_bus_detach), KOBJMETHOD(uart_flush, ns8250_bus_flush), KOBJMETHOD(uart_getsig, ns8250_bus_getsig), KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), KOBJMETHOD(uart_ipend, ns8250_bus_ipend), KOBJMETHOD(uart_param, ns8250_bus_param), KOBJMETHOD(uart_probe, ns8250_bus_probe), KOBJMETHOD(uart_receive, ns8250_bus_receive), KOBJMETHOD(uart_setsig, ns8250_bus_setsig), KOBJMETHOD(uart_transmit, ns8250_bus_transmit), { 0, 0 } }; struct uart_class uart_ns8250_class = { "ns8250", ns8250_methods, sizeof(struct ns8250_softc), .uc_ops = &uart_ns8250_ops, .uc_range = 8, .uc_rclk = DEFAULT_RCLK }; #define SIGCHG(c, i, s, d) \ if (c) { \ i |= (i & s) ? s : s | d; \ } else { \ i = (i & s) ? (i & ~s) | d : i; \ } static int ns8250_bus_attach(struct uart_softc *sc) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; unsigned int ivar; bas = &sc->sc_bas; ns8250->mcr = uart_getreg(bas, REG_MCR); ns8250->fcr = FCR_ENABLE; if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags", &ivar)) { if (UART_FLAGS_FCR_RX_LOW(ivar)) ns8250->fcr |= FCR_RX_LOW; else if (UART_FLAGS_FCR_RX_MEDL(ivar)) ns8250->fcr |= FCR_RX_MEDL; else if (UART_FLAGS_FCR_RX_HIGH(ivar)) ns8250->fcr |= FCR_RX_HIGH; else ns8250->fcr |= FCR_RX_MEDH; } else ns8250->fcr |= FCR_RX_MEDH; /* Get IER mask */ ivar = 0xf0; resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask", &ivar); ns8250->ier_mask = (uint8_t)(ivar & 0xff); /* Get IER RX interrupt bits */ ivar = IER_EMSC | IER_ERLS | IER_ERXRDY; resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits", &ivar); ns8250->ier_rxbits = (uint8_t)(ivar & 0xff); uart_setreg(bas, REG_FCR, ns8250->fcr); uart_barrier(bas); ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); if (ns8250->mcr & MCR_DTR) sc->sc_hwsig |= SER_DTR; if (ns8250->mcr & MCR_RTS) sc->sc_hwsig |= SER_RTS; ns8250_bus_getsig(sc); ns8250_clrint(bas); ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; ns8250->ier |= ns8250->ier_rxbits; uart_setreg(bas, REG_IER, ns8250->ier); uart_barrier(bas); return (0); } static int ns8250_bus_detach(struct uart_softc *sc) { struct ns8250_softc *ns8250; struct uart_bas *bas; u_char ier; ns8250 = (struct ns8250_softc *)sc; bas = &sc->sc_bas; ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; uart_setreg(bas, REG_IER, ier); uart_barrier(bas); ns8250_clrint(bas); return (0); } static int ns8250_bus_flush(struct uart_softc *sc, int what) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; int error; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); if (sc->sc_rxfifosz > 1) { ns8250_flush(bas, what); uart_setreg(bas, REG_FCR, ns8250->fcr); uart_barrier(bas); error = 0; } else error = ns8250_drain(bas, what); uart_unlock(sc->sc_hwmtx); return (error); } static int ns8250_bus_getsig(struct uart_softc *sc) { uint32_t new, old, sig; uint8_t msr; do { old = sc->sc_hwsig; sig = old; uart_lock(sc->sc_hwmtx); msr = uart_getreg(&sc->sc_bas, REG_MSR); uart_unlock(sc->sc_hwmtx); SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR); SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS); SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD); SIGCHG(msr & MSR_RI, sig, SER_RI, SER_DRI); new = sig & ~SER_MASK_DELTA; } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); return (sig); } static int ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) { struct uart_bas *bas; int baudrate, divisor, error; uint8_t efr, lcr; bas = &sc->sc_bas; error = 0; uart_lock(sc->sc_hwmtx); switch (request) { case UART_IOCTL_BREAK: lcr = uart_getreg(bas, REG_LCR); if (data) lcr |= LCR_SBREAK; else lcr &= ~LCR_SBREAK; uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_IFLOW: lcr = uart_getreg(bas, REG_LCR); uart_barrier(bas); uart_setreg(bas, REG_LCR, 0xbf); uart_barrier(bas); efr = uart_getreg(bas, REG_EFR); if (data) efr |= EFR_RTS; else efr &= ~EFR_RTS; uart_setreg(bas, REG_EFR, efr); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_OFLOW: lcr = uart_getreg(bas, REG_LCR); uart_barrier(bas); uart_setreg(bas, REG_LCR, 0xbf); uart_barrier(bas); efr = uart_getreg(bas, REG_EFR); if (data) efr |= EFR_CTS; else efr &= ~EFR_CTS; uart_setreg(bas, REG_EFR, efr); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_BAUD: lcr = uart_getreg(bas, REG_LCR); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0; if (baudrate > 0) *(int*)data = baudrate; else error = ENXIO; break; default: error = EINVAL; break; } uart_unlock(sc->sc_hwmtx); return (error); } static int ns8250_bus_ipend(struct uart_softc *sc) { struct uart_bas *bas; int ipend; uint8_t iir, lsr; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); iir = uart_getreg(bas, REG_IIR); if (iir & IIR_NOPEND) { uart_unlock(sc->sc_hwmtx); return (0); } ipend = 0; if (iir & IIR_RXRDY) { lsr = uart_getreg(bas, REG_LSR); if (lsr & LSR_OE) ipend |= SER_INT_OVERRUN; if (lsr & LSR_BI) ipend |= SER_INT_BREAK; if (lsr & LSR_RXRDY) ipend |= SER_INT_RXREADY; } else { if (iir & IIR_TXRDY) ipend |= SER_INT_TXIDLE; else ipend |= SER_INT_SIGCHG; } if (ipend == 0) ns8250_clrint(bas); uart_unlock(sc->sc_hwmtx); return (ipend); } static int ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, int stopbits, int parity) { struct uart_bas *bas; int error; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); error = ns8250_param(bas, baudrate, databits, stopbits, parity); uart_unlock(sc->sc_hwmtx); return (error); } static int ns8250_bus_probe(struct uart_softc *sc) { struct ns8250_softc *ns8250; struct uart_bas *bas; int count, delay, error, limit; uint8_t lsr, mcr, ier; ns8250 = (struct ns8250_softc *)sc; bas = &sc->sc_bas; error = ns8250_probe(bas); if (error) return (error); mcr = MCR_IE; if (sc->sc_sysdev == NULL) { /* By using ns8250_init() we also set DTR and RTS. */ ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE); } else mcr |= MCR_DTR | MCR_RTS; error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); if (error) return (error); /* * Set loopback mode. This avoids having garbage on the wire and * also allows us send and receive data. We set DTR and RTS to * avoid the possibility that automatic flow-control prevents * any data from being sent. */ uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); uart_barrier(bas); /* * Enable FIFOs. And check that the UART has them. If not, we're * done. Since this is the first time we enable the FIFOs, we reset * them. */ uart_setreg(bas, REG_FCR, FCR_ENABLE); uart_barrier(bas); if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) { /* * NS16450 or INS8250. We don't bother to differentiate * between them. They're too old to be interesting. */ uart_setreg(bas, REG_MCR, mcr); uart_barrier(bas); sc->sc_rxfifosz = sc->sc_txfifosz = 1; device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); return (0); } uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); uart_barrier(bas); count = 0; delay = ns8250_delay(bas); /* We have FIFOs. Drain the transmitter and receiver. */ error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); if (error) { uart_setreg(bas, REG_MCR, mcr); uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); goto describe; } /* * We should have a sufficiently clean "pipe" to determine the * size of the FIFOs. We send as much characters as is reasonable * and wait for the overflow bit in the LSR register to be * asserted, counting the characters as we send them. Based on * that count we know the FIFO size. */ do { uart_setreg(bas, REG_DATA, 0); uart_barrier(bas); count++; limit = 30; lsr = 0; /* * LSR bits are cleared upon read, so we must accumulate * them to be able to test LSR_OE below. */ while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && --limit) DELAY(delay); if (limit == 0) { ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; uart_setreg(bas, REG_IER, ier); uart_setreg(bas, REG_MCR, mcr); uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); count = 0; goto describe; } } while ((lsr & LSR_OE) == 0 && count < 130); count--; uart_setreg(bas, REG_MCR, mcr); /* Reset FIFOs. */ ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); describe: if (count >= 14 && count <= 16) { sc->sc_rxfifosz = 16; device_set_desc(sc->sc_dev, "16550 or compatible"); } else if (count >= 28 && count <= 32) { sc->sc_rxfifosz = 32; device_set_desc(sc->sc_dev, "16650 or compatible"); } else if (count >= 56 && count <= 64) { sc->sc_rxfifosz = 64; device_set_desc(sc->sc_dev, "16750 or compatible"); } else if (count >= 112 && count <= 128) { sc->sc_rxfifosz = 128; device_set_desc(sc->sc_dev, "16950 or compatible"); } else { sc->sc_rxfifosz = 16; device_set_desc(sc->sc_dev, "Non-standard ns8250 class UART with FIFOs"); } /* * Force the Tx FIFO size to 16 bytes for now. We don't program the * Tx trigger. Also, we assume that all data has been sent when the * interrupt happens. */ sc->sc_txfifosz = 16; #if 0 /* * XXX there are some issues related to hardware flow control and * it's likely that uart(4) is the cause. This basicly needs more * investigation, but we avoid using for hardware flow control * until then. */ /* 16650s or higher have automatic flow control. */ if (sc->sc_rxfifosz > 16) { sc->sc_hwiflow = 1; sc->sc_hwoflow = 1; } #endif return (0); } static int ns8250_bus_receive(struct uart_softc *sc) { struct uart_bas *bas; int xc; uint8_t lsr; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); lsr = uart_getreg(bas, REG_LSR); while (lsr & LSR_RXRDY) { if (uart_rx_full(sc)) { sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; break; } xc = uart_getreg(bas, REG_DATA); if (lsr & LSR_FE) xc |= UART_STAT_FRAMERR; if (lsr & LSR_PE) xc |= UART_STAT_PARERR; uart_rx_put(sc, xc); lsr = uart_getreg(bas, REG_LSR); } /* Discard everything left in the Rx FIFO. */ while (lsr & LSR_RXRDY) { (void)uart_getreg(bas, REG_DATA); uart_barrier(bas); lsr = uart_getreg(bas, REG_LSR); } uart_unlock(sc->sc_hwmtx); return (0); } static int ns8250_bus_setsig(struct uart_softc *sc, int sig) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; uint32_t new, old; bas = &sc->sc_bas; do { old = sc->sc_hwsig; new = old; if (sig & SER_DDTR) { SIGCHG(sig & SER_DTR, new, SER_DTR, SER_DDTR); } if (sig & SER_DRTS) { SIGCHG(sig & SER_RTS, new, SER_RTS, SER_DRTS); } } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); uart_lock(sc->sc_hwmtx); ns8250->mcr &= ~(MCR_DTR|MCR_RTS); if (new & SER_DTR) ns8250->mcr |= MCR_DTR; if (new & SER_RTS) ns8250->mcr |= MCR_RTS; uart_setreg(bas, REG_MCR, ns8250->mcr); uart_barrier(bas); uart_unlock(sc->sc_hwmtx); return (0); } static int ns8250_bus_transmit(struct uart_softc *sc) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; int i; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) ; uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); uart_barrier(bas); for (i = 0; i < sc->sc_txdatasz; i++) { uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); uart_barrier(bas); } sc->sc_txbusy = 1; uart_unlock(sc->sc_hwmtx); return (0); }