Current Path : /sys/i386/include/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/i386/include/cpufunc.h |
/*- * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/i386/include/cpufunc.h 223796 2011-07-05 18:42:10Z jkim $ */ /* * Functions to provide access to special i386 instructions. * This in included in sys/systm.h, and that file should be * used in preference to this. */ #ifndef _MACHINE_CPUFUNC_H_ #define _MACHINE_CPUFUNC_H_ #ifndef _SYS_CDEFS_H_ #error this file needs sys/cdefs.h as a prerequisite #endif #ifdef XEN extern void xen_cli(void); extern void xen_sti(void); extern u_int xen_rcr2(void); extern void xen_load_cr3(u_int data); extern void xen_tlb_flush(void); extern void xen_invlpg(u_int addr); extern void write_eflags(u_int eflags); extern u_int read_eflags(void); #endif struct region_descriptor; #define readb(va) (*(volatile uint8_t *) (va)) #define readw(va) (*(volatile uint16_t *) (va)) #define readl(va) (*(volatile uint32_t *) (va)) #define writeb(va, d) (*(volatile uint8_t *) (va) = (d)) #define writew(va, d) (*(volatile uint16_t *) (va) = (d)) #define writel(va, d) (*(volatile uint32_t *) (va) = (d)) #if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE) static __inline void breakpoint(void) { __asm __volatile("int $3"); } static __inline u_int bsfl(u_int mask) { u_int result; __asm("bsfl %1,%0" : "=r" (result) : "rm" (mask) : "cc"); return (result); } static __inline u_int bsrl(u_int mask) { u_int result; __asm("bsrl %1,%0" : "=r" (result) : "rm" (mask) : "cc"); return (result); } static __inline void clflush(u_long addr) { __asm __volatile("clflush %0" : : "m" (*(char *)addr)); } static __inline void disable_intr(void) { #ifdef XEN xen_cli(); #else __asm __volatile("cli" : : : "memory"); #endif } static __inline void do_cpuid(u_int ax, u_int *p) { __asm __volatile("cpuid" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax)); } static __inline void cpuid_count(u_int ax, u_int cx, u_int *p) { __asm __volatile("cpuid" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax), "c" (cx)); } static __inline void enable_intr(void) { #ifdef XEN xen_sti(); #else __asm __volatile("sti"); #endif } static __inline void cpu_monitor(const void *addr, u_long extensions, u_int hints) { __asm __volatile("monitor" : : "a" (addr), "c" (extensions), "d" (hints)); } static __inline void cpu_mwait(u_long extensions, u_int hints) { __asm __volatile("mwait" : : "a" (hints), "c" (extensions)); } static __inline void mfence(void) { __asm __volatile("mfence" : : : "memory"); } #ifdef _KERNEL #define HAVE_INLINE_FFS static __inline int ffs(int mask) { /* * Note that gcc-2's builtin ffs would be used if we didn't declare * this inline or turn off the builtin. The builtin is faster but * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later * versions. */ return (mask == 0 ? mask : (int)bsfl((u_int)mask) + 1); } #define HAVE_INLINE_FLS static __inline int fls(int mask) { return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1); } #endif /* _KERNEL */ static __inline void halt(void) { __asm __volatile("hlt"); } static __inline u_char inb(u_int port) { u_char data; __asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline u_int inl(u_int port) { u_int data; __asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline void insb(u_int port, void *addr, size_t count) { __asm __volatile("cld; rep; insb" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void insw(u_int port, void *addr, size_t count) { __asm __volatile("cld; rep; insw" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void insl(u_int port, void *addr, size_t count) { __asm __volatile("cld; rep; insl" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void invd(void) { __asm __volatile("invd"); } static __inline u_short inw(u_int port) { u_short data; __asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline void outb(u_int port, u_char data) { __asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port)); } static __inline void outl(u_int port, u_int data) { __asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port)); } static __inline void outsb(u_int port, const void *addr, size_t count) { __asm __volatile("cld; rep; outsb" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outsw(u_int port, const void *addr, size_t count) { __asm __volatile("cld; rep; outsw" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outsl(u_int port, const void *addr, size_t count) { __asm __volatile("cld; rep; outsl" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outw(u_int port, u_short data) { __asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port)); } static __inline void ia32_pause(void) { __asm __volatile("pause"); } static __inline u_int #ifdef XEN _read_eflags(void) #else read_eflags(void) #endif { u_int ef; __asm __volatile("pushfl; popl %0" : "=r" (ef)); return (ef); } static __inline uint64_t rdmsr(u_int msr) { uint64_t rv; __asm __volatile("rdmsr" : "=A" (rv) : "c" (msr)); return (rv); } static __inline uint64_t rdpmc(u_int pmc) { uint64_t rv; __asm __volatile("rdpmc" : "=A" (rv) : "c" (pmc)); return (rv); } static __inline uint64_t rdtsc(void) { uint64_t rv; __asm __volatile("rdtsc" : "=A" (rv)); return (rv); } static __inline uint32_t rdtsc32(void) { uint32_t rv; __asm __volatile("rdtsc" : "=a" (rv) : : "edx"); return (rv); } static __inline void wbinvd(void) { __asm __volatile("wbinvd"); } static __inline void #ifdef XEN _write_eflags(u_int ef) #else write_eflags(u_int ef) #endif { __asm __volatile("pushl %0; popfl" : : "r" (ef)); } static __inline void wrmsr(u_int msr, uint64_t newval) { __asm __volatile("wrmsr" : : "A" (newval), "c" (msr)); } static __inline void load_cr0(u_int data) { __asm __volatile("movl %0,%%cr0" : : "r" (data)); } static __inline u_int rcr0(void) { u_int data; __asm __volatile("movl %%cr0,%0" : "=r" (data)); return (data); } static __inline u_int rcr2(void) { u_int data; #ifdef XEN return (xen_rcr2()); #endif __asm __volatile("movl %%cr2,%0" : "=r" (data)); return (data); } static __inline void load_cr3(u_int data) { #ifdef XEN xen_load_cr3(data); #else __asm __volatile("movl %0,%%cr3" : : "r" (data) : "memory"); #endif } static __inline u_int rcr3(void) { u_int data; __asm __volatile("movl %%cr3,%0" : "=r" (data)); return (data); } static __inline void load_cr4(u_int data) { __asm __volatile("movl %0,%%cr4" : : "r" (data)); } static __inline u_int rcr4(void) { u_int data; __asm __volatile("movl %%cr4,%0" : "=r" (data)); return (data); } /* * Global TLB flush (except for thise for pages marked PG_G) */ static __inline void invltlb(void) { #ifdef XEN xen_tlb_flush(); #else load_cr3(rcr3()); #endif } /* * TLB flush for an individual page (even if it has PG_G). * Only works on 486+ CPUs (i386 does not have PG_G). */ static __inline void invlpg(u_int addr) { #ifdef XEN xen_invlpg(addr); #else __asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory"); #endif } static __inline u_short rfs(void) { u_short sel; __asm __volatile("movw %%fs,%0" : "=rm" (sel)); return (sel); } static __inline uint64_t rgdt(void) { uint64_t gdtr; __asm __volatile("sgdt %0" : "=m" (gdtr)); return (gdtr); } static __inline u_short rgs(void) { u_short sel; __asm __volatile("movw %%gs,%0" : "=rm" (sel)); return (sel); } static __inline uint64_t ridt(void) { uint64_t idtr; __asm __volatile("sidt %0" : "=m" (idtr)); return (idtr); } static __inline u_short rldt(void) { u_short ldtr; __asm __volatile("sldt %0" : "=g" (ldtr)); return (ldtr); } static __inline u_short rss(void) { u_short sel; __asm __volatile("movw %%ss,%0" : "=rm" (sel)); return (sel); } static __inline u_short rtr(void) { u_short tr; __asm __volatile("str %0" : "=g" (tr)); return (tr); } static __inline void load_fs(u_short sel) { __asm __volatile("movw %0,%%fs" : : "rm" (sel)); } static __inline void load_gs(u_short sel) { __asm __volatile("movw %0,%%gs" : : "rm" (sel)); } static __inline void lidt(struct region_descriptor *addr) { __asm __volatile("lidt (%0)" : : "r" (addr)); } static __inline void lldt(u_short sel) { __asm __volatile("lldt %0" : : "r" (sel)); } static __inline void ltr(u_short sel) { __asm __volatile("ltr %0" : : "r" (sel)); } static __inline u_int rdr0(void) { u_int data; __asm __volatile("movl %%dr0,%0" : "=r" (data)); return (data); } static __inline void load_dr0(u_int dr0) { __asm __volatile("movl %0,%%dr0" : : "r" (dr0)); } static __inline u_int rdr1(void) { u_int data; __asm __volatile("movl %%dr1,%0" : "=r" (data)); return (data); } static __inline void load_dr1(u_int dr1) { __asm __volatile("movl %0,%%dr1" : : "r" (dr1)); } static __inline u_int rdr2(void) { u_int data; __asm __volatile("movl %%dr2,%0" : "=r" (data)); return (data); } static __inline void load_dr2(u_int dr2) { __asm __volatile("movl %0,%%dr2" : : "r" (dr2)); } static __inline u_int rdr3(void) { u_int data; __asm __volatile("movl %%dr3,%0" : "=r" (data)); return (data); } static __inline void load_dr3(u_int dr3) { __asm __volatile("movl %0,%%dr3" : : "r" (dr3)); } static __inline u_int rdr4(void) { u_int data; __asm __volatile("movl %%dr4,%0" : "=r" (data)); return (data); } static __inline void load_dr4(u_int dr4) { __asm __volatile("movl %0,%%dr4" : : "r" (dr4)); } static __inline u_int rdr5(void) { u_int data; __asm __volatile("movl %%dr5,%0" : "=r" (data)); return (data); } static __inline void load_dr5(u_int dr5) { __asm __volatile("movl %0,%%dr5" : : "r" (dr5)); } static __inline u_int rdr6(void) { u_int data; __asm __volatile("movl %%dr6,%0" : "=r" (data)); return (data); } static __inline void load_dr6(u_int dr6) { __asm __volatile("movl %0,%%dr6" : : "r" (dr6)); } static __inline u_int rdr7(void) { u_int data; __asm __volatile("movl %%dr7,%0" : "=r" (data)); return (data); } static __inline void load_dr7(u_int dr7) { __asm __volatile("movl %0,%%dr7" : : "r" (dr7)); } static __inline u_char read_cyrix_reg(u_char reg) { outb(0x22, reg); return inb(0x23); } static __inline void write_cyrix_reg(u_char reg, u_char data) { outb(0x22, reg); outb(0x23, data); } static __inline register_t intr_disable(void) { register_t eflags; eflags = read_eflags(); disable_intr(); return (eflags); } static __inline void intr_restore(register_t eflags) { write_eflags(eflags); } #else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */ int breakpoint(void); u_int bsfl(u_int mask); u_int bsrl(u_int mask); void disable_intr(void); void do_cpuid(u_int ax, u_int *p); void enable_intr(void); void halt(void); void ia32_pause(void); u_char inb(u_int port); u_int inl(u_int port); void insb(u_int port, void *addr, size_t count); void insl(u_int port, void *addr, size_t count); void insw(u_int port, void *addr, size_t count); register_t intr_disable(void); void intr_restore(register_t ef); void invd(void); void invlpg(u_int addr); void invltlb(void); u_short inw(u_int port); void lidt(struct region_descriptor *addr); void lldt(u_short sel); void load_cr0(u_int cr0); void load_cr3(u_int cr3); void load_cr4(u_int cr4); void load_dr0(u_int dr0); void load_dr1(u_int dr1); void load_dr2(u_int dr2); void load_dr3(u_int dr3); void load_dr4(u_int dr4); void load_dr5(u_int dr5); void load_dr6(u_int dr6); void load_dr7(u_int dr7); void load_fs(u_short sel); void load_gs(u_short sel); void ltr(u_short sel); void outb(u_int port, u_char data); void outl(u_int port, u_int data); void outsb(u_int port, const void *addr, size_t count); void outsl(u_int port, const void *addr, size_t count); void outsw(u_int port, const void *addr, size_t count); void outw(u_int port, u_short data); u_int rcr0(void); u_int rcr2(void); u_int rcr3(void); u_int rcr4(void); uint64_t rdmsr(u_int msr); uint64_t rdpmc(u_int pmc); u_int rdr0(void); u_int rdr1(void); u_int rdr2(void); u_int rdr3(void); u_int rdr4(void); u_int rdr5(void); u_int rdr6(void); u_int rdr7(void); uint64_t rdtsc(void); u_char read_cyrix_reg(u_char reg); u_int read_eflags(void); u_int rfs(void); uint64_t rgdt(void); u_int rgs(void); uint64_t ridt(void); u_short rldt(void); u_short rtr(void); void wbinvd(void); void write_cyrix_reg(u_char reg, u_char data); void write_eflags(u_int ef); void wrmsr(u_int msr, uint64_t newval); #endif /* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */ void reset_dbregs(void); #ifdef _KERNEL int rdmsr_safe(u_int msr, uint64_t *val); int wrmsr_safe(u_int msr, uint64_t newval); #endif #endif /* !_MACHINE_CPUFUNC_H_ */