Current Path : /sys/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/kern/kern_exec.c |
/*- * Copyright (c) 1993, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_exec.c 238560 2012-07-18 04:52:37Z mjg $"); #include "opt_capsicum.h" #include "opt_hwpmc_hooks.h" #include "opt_kdtrace.h" #include "opt_ktrace.h" #include "opt_vm.h" #include <sys/param.h> #include <sys/capability.h> #include <sys/systm.h> #include <sys/capability.h> #include <sys/eventhandler.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysproto.h> #include <sys/signalvar.h> #include <sys/kernel.h> #include <sys/mount.h> #include <sys/filedesc.h> #include <sys/fcntl.h> #include <sys/acct.h> #include <sys/exec.h> #include <sys/imgact.h> #include <sys/imgact_elf.h> #include <sys/wait.h> #include <sys/malloc.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/pioctl.h> #include <sys/namei.h> #include <sys/resourcevar.h> #include <sys/sched.h> #include <sys/sdt.h> #include <sys/sf_buf.h> #include <sys/syscallsubr.h> #include <sys/sysent.h> #include <sys/shm.h> #include <sys/sysctl.h> #include <sys/vnode.h> #include <sys/stat.h> #ifdef KTRACE #include <sys/ktrace.h> #endif #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/pmap.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_kern.h> #include <vm/vm_extern.h> #include <vm/vm_object.h> #include <vm/vm_pager.h> #ifdef HWPMC_HOOKS #include <sys/pmckern.h> #endif #include <machine/reg.h> #include <security/audit/audit.h> #include <security/mac/mac_framework.h> #ifdef KDTRACE_HOOKS #include <sys/dtrace_bsd.h> dtrace_execexit_func_t dtrace_fasttrap_exec; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE(proc, kernel, , exec, exec); SDT_PROBE_ARGTYPE(proc, kernel, , exec, 0, "char *"); SDT_PROBE_DEFINE(proc, kernel, , exec_failure, exec-failure); SDT_PROBE_ARGTYPE(proc, kernel, , exec_failure, 0, "int"); SDT_PROBE_DEFINE(proc, kernel, , exec_success, exec-success); SDT_PROBE_ARGTYPE(proc, kernel, , exec_success, 0, "char *"); MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD, NULL, 0, sysctl_kern_ps_strings, "LU", ""); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD, NULL, 0, sysctl_kern_usrstack, "LU", ""); SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD, NULL, 0, sysctl_kern_stackprot, "I", ""); u_long ps_arg_cache_limit = PAGE_SIZE / 16; SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, ""); static int map_at_zero = 0; TUNABLE_INT("security.bsd.map_at_zero", &map_at_zero); SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RW, &map_at_zero, 0, "Permit processes to map an object at virtual address 0."); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_psstrings; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, sizeof(p->p_sysent->sv_psstrings)); return error; } static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_usrstack; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, sizeof(p->p_sysent->sv_usrstack)); return error; } static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) { struct proc *p; p = curproc; return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, sizeof(p->p_sysent->sv_stackprot))); } /* * Each of the items is a pointer to a `const struct execsw', hence the * double pointer here. */ static const struct execsw **execsw; #ifndef _SYS_SYSPROTO_H_ struct execve_args { char *fname; char **argv; char **envv; }; #endif int sys_execve(td, uap) struct thread *td; struct execve_args /* { char *fname; char **argv; char **envv; } */ *uap; { int error; struct image_args args; error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, NULL); return (error); } #ifndef _SYS_SYSPROTO_H_ struct fexecve_args { int fd; char **argv; char **envv; } #endif int sys_fexecve(struct thread *td, struct fexecve_args *uap) { int error; struct image_args args; error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { args.fd = uap->fd; error = kern_execve(td, &args, NULL); } return (error); } #ifndef _SYS_SYSPROTO_H_ struct __mac_execve_args { char *fname; char **argv; char **envv; struct mac *mac_p; }; #endif int sys___mac_execve(td, uap) struct thread *td; struct __mac_execve_args /* { char *fname; char **argv; char **envv; struct mac *mac_p; } */ *uap; { #ifdef MAC int error; struct image_args args; error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, uap->mac_p); return (error); #else return (ENOSYS); #endif } /* * XXX: kern_execve has the astonishing property of not always returning to * the caller. If sufficiently bad things happen during the call to * do_execve(), it can end up calling exit1(); as a result, callers must * avoid doing anything which they might need to undo (e.g., allocating * memory). */ int kern_execve(td, args, mac_p) struct thread *td; struct image_args *args; struct mac *mac_p; { struct proc *p = td->td_proc; struct vmspace *oldvmspace; int error; AUDIT_ARG_ARGV(args->begin_argv, args->argc, args->begin_envv - args->begin_argv); AUDIT_ARG_ENVV(args->begin_envv, args->envc, args->endp - args->begin_envv); if (p->p_flag & P_HADTHREADS) { PROC_LOCK(p); if (thread_single(SINGLE_BOUNDARY)) { PROC_UNLOCK(p); exec_free_args(args); return (ERESTART); /* Try again later. */ } PROC_UNLOCK(p); } KASSERT((td->td_pflags & TDP_EXECVMSPC) == 0, ("nested execve")); oldvmspace = td->td_proc->p_vmspace; error = do_execve(td, args, mac_p); if (p->p_flag & P_HADTHREADS) { PROC_LOCK(p); /* * If success, we upgrade to SINGLE_EXIT state to * force other threads to suicide. */ if (error == 0) thread_single(SINGLE_EXIT); else thread_single_end(); PROC_UNLOCK(p); } if ((td->td_pflags & TDP_EXECVMSPC) != 0) { KASSERT(td->td_proc->p_vmspace != oldvmspace, ("oldvmspace still used")); vmspace_free(oldvmspace); td->td_pflags &= ~TDP_EXECVMSPC; } return (error); } /* * In-kernel implementation of execve(). All arguments are assumed to be * userspace pointers from the passed thread. */ static int do_execve(td, args, mac_p) struct thread *td; struct image_args *args; struct mac *mac_p; { struct proc *p = td->td_proc; struct nameidata nd; struct ucred *newcred = NULL, *oldcred; struct uidinfo *euip; register_t *stack_base; int error, i; struct image_params image_params, *imgp; struct vattr attr; int (*img_first)(struct image_params *); struct pargs *oldargs = NULL, *newargs = NULL; struct sigacts *oldsigacts, *newsigacts; #ifdef KTRACE struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; #endif struct vnode *textvp = NULL, *binvp = NULL; int credential_changing; int vfslocked; int textset; #ifdef MAC struct label *interpvplabel = NULL; int will_transition; #endif #ifdef HWPMC_HOOKS struct pmckern_procexec pe; #endif static const char fexecv_proc_title[] = "(fexecv)"; vfslocked = 0; imgp = &image_params; /* * Lock the process and set the P_INEXEC flag to indicate that * it should be left alone until we're done here. This is * necessary to avoid race conditions - e.g. in ptrace() - * that might allow a local user to illicitly obtain elevated * privileges. */ PROC_LOCK(p); KASSERT((p->p_flag & P_INEXEC) == 0, ("%s(): process already has P_INEXEC flag", __func__)); p->p_flag |= P_INEXEC; PROC_UNLOCK(p); /* * Initialize part of the common data */ imgp->proc = p; imgp->execlabel = NULL; imgp->attr = &attr; imgp->entry_addr = 0; imgp->reloc_base = 0; imgp->vmspace_destroyed = 0; imgp->interpreted = 0; imgp->opened = 0; imgp->interpreter_name = NULL; imgp->auxargs = NULL; imgp->vp = NULL; imgp->object = NULL; imgp->firstpage = NULL; imgp->ps_strings = 0; imgp->auxarg_size = 0; imgp->args = args; imgp->execpath = imgp->freepath = NULL; imgp->execpathp = 0; imgp->canary = 0; imgp->canarylen = 0; imgp->pagesizes = 0; imgp->pagesizeslen = 0; imgp->stack_prot = 0; #ifdef MAC error = mac_execve_enter(imgp, mac_p); if (error) goto exec_fail; #endif imgp->image_header = NULL; /* * Translate the file name. namei() returns a vnode pointer * in ni_vp amoung other things. * * XXXAUDIT: It would be desirable to also audit the name of the * interpreter if this is an interpreted binary. */ if (args->fname != NULL) { NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME | MPSAFE | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); } SDT_PROBE(proc, kernel, , exec, args->fname, 0, 0, 0, 0 ); interpret: if (args->fname != NULL) { #ifdef CAPABILITY_MODE /* * While capability mode can't reach this point via direct * path arguments to execve(), we also don't allow * interpreters to be used in capability mode (for now). * Catch indirect lookups and return a permissions error. */ if (IN_CAPABILITY_MODE(td)) { error = ECAPMODE; goto exec_fail; } #endif error = namei(&nd); if (error) goto exec_fail; vfslocked = NDHASGIANT(&nd); binvp = nd.ni_vp; imgp->vp = binvp; } else { AUDIT_ARG_FD(args->fd); /* * Some might argue that CAP_READ and/or CAP_MMAP should also * be required here; such arguments will be entertained. * * Descriptors opened only with O_EXEC or O_RDONLY are allowed. */ error = fgetvp_exec(td, args->fd, CAP_FEXECVE, &binvp); if (error) goto exec_fail; vfslocked = VFS_LOCK_GIANT(binvp->v_mount); vn_lock(binvp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(binvp); imgp->vp = binvp; } /* * Check file permissions (also 'opens' file) */ error = exec_check_permissions(imgp); if (error) goto exec_fail_dealloc; imgp->object = imgp->vp->v_object; if (imgp->object != NULL) vm_object_reference(imgp->object); /* * Set VV_TEXT now so no one can write to the executable while we're * activating it. * * Remember if this was set before and unset it in case this is not * actually an executable image. */ textset = imgp->vp->v_vflag & VV_TEXT; ASSERT_VOP_ELOCKED(imgp->vp, "vv_text"); imgp->vp->v_vflag |= VV_TEXT; error = exec_map_first_page(imgp); if (error) goto exec_fail_dealloc; imgp->proc->p_osrel = 0; /* * If the current process has a special image activator it * wants to try first, call it. For example, emulating shell * scripts differently. */ error = -1; if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) error = img_first(imgp); /* * Loop through the list of image activators, calling each one. * An activator returns -1 if there is no match, 0 on success, * and an error otherwise. */ for (i = 0; error == -1 && execsw[i]; ++i) { if (execsw[i]->ex_imgact == NULL || execsw[i]->ex_imgact == img_first) { continue; } error = (*execsw[i]->ex_imgact)(imgp); } if (error) { if (error == -1) { if (textset == 0) { ASSERT_VOP_ELOCKED(imgp->vp, "vv_text"); imgp->vp->v_vflag &= ~VV_TEXT; } error = ENOEXEC; } goto exec_fail_dealloc; } /* * Special interpreter operation, cleanup and loop up to try to * activate the interpreter. */ if (imgp->interpreted) { exec_unmap_first_page(imgp); /* * VV_TEXT needs to be unset for scripts. There is a short * period before we determine that something is a script where * VV_TEXT will be set. The vnode lock is held over this * entire period so nothing should illegitimately be blocked. */ imgp->vp->v_vflag &= ~VV_TEXT; /* free name buffer and old vnode */ if (args->fname != NULL) NDFREE(&nd, NDF_ONLY_PNBUF); #ifdef MAC mac_execve_interpreter_enter(binvp, &interpvplabel); #endif if (imgp->opened) { VOP_CLOSE(binvp, FREAD, td->td_ucred, td); imgp->opened = 0; } vput(binvp); vm_object_deallocate(imgp->object); imgp->object = NULL; VFS_UNLOCK_GIANT(vfslocked); vfslocked = 0; /* set new name to that of the interpreter */ NDINIT(&nd, LOOKUP, LOCKLEAF | FOLLOW | SAVENAME | MPSAFE, UIO_SYSSPACE, imgp->interpreter_name, td); args->fname = imgp->interpreter_name; goto interpret; } /* * NB: We unlock the vnode here because it is believed that none * of the sv_copyout_strings/sv_fixup operations require the vnode. */ VOP_UNLOCK(imgp->vp, 0); /* * Do the best to calculate the full path to the image file. */ if (imgp->auxargs != NULL && ((args->fname != NULL && args->fname[0] == '/') || vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0)) imgp->execpath = args->fname; /* * Copy out strings (args and env) and initialize stack base */ if (p->p_sysent->sv_copyout_strings) stack_base = (*p->p_sysent->sv_copyout_strings)(imgp); else stack_base = exec_copyout_strings(imgp); /* * If custom stack fixup routine present for this process * let it do the stack setup. * Else stuff argument count as first item on stack */ if (p->p_sysent->sv_fixup != NULL) (*p->p_sysent->sv_fixup)(&stack_base, imgp); else suword(--stack_base, imgp->args->argc); /* * For security and other reasons, the file descriptor table cannot * be shared after an exec. */ fdunshare(p, td); /* * Malloc things before we need locks. */ newcred = crget(); euip = uifind(attr.va_uid); i = imgp->args->begin_envv - imgp->args->begin_argv; /* Cache arguments if they fit inside our allowance */ if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { newargs = pargs_alloc(i); bcopy(imgp->args->begin_argv, newargs->ar_args, i); } /* close files on exec */ fdcloseexec(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); /* Get a reference to the vnode prior to locking the proc */ VREF(binvp); /* * For security and other reasons, signal handlers cannot * be shared after an exec. The new process gets a copy of the old * handlers. In execsigs(), the new process will have its signals * reset. */ PROC_LOCK(p); oldcred = crcopysafe(p, newcred); if (sigacts_shared(p->p_sigacts)) { oldsigacts = p->p_sigacts; PROC_UNLOCK(p); newsigacts = sigacts_alloc(); sigacts_copy(newsigacts, oldsigacts); PROC_LOCK(p); p->p_sigacts = newsigacts; } else oldsigacts = NULL; /* Stop profiling */ stopprofclock(p); /* reset caught signals */ execsigs(p); /* name this process - nameiexec(p, ndp) */ bzero(p->p_comm, sizeof(p->p_comm)); if (args->fname) bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); else if (vn_commname(binvp, p->p_comm, sizeof(p->p_comm)) != 0) bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif /* * mark as execed, wakeup the process that vforked (if any) and tell * it that it now has its own resources back */ p->p_flag |= P_EXEC; if (p->p_pptr && (p->p_flag & P_PPWAIT)) { p->p_flag &= ~P_PPWAIT; cv_broadcast(&p->p_pwait); } /* * Implement image setuid/setgid. * * Don't honor setuid/setgid if the filesystem prohibits it or if * the process is being traced. * * We disable setuid/setgid/etc in compatibility mode on the basis * that most setugid applications are not written with that * environment in mind, and will therefore almost certainly operate * incorrectly. In principle there's no reason that setugid * applications might not be useful in capability mode, so we may want * to reconsider this conservative design choice in the future. * * XXXMAC: For the time being, use NOSUID to also prohibit * transitions on the file system. */ credential_changing = 0; credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid != attr.va_uid; credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid != attr.va_gid; #ifdef MAC will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, interpvplabel, imgp); credential_changing |= will_transition; #endif if (credential_changing && #ifdef CAPABILITY_MODE ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && #endif (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && (p->p_flag & P_TRACED) == 0) { /* * Turn off syscall tracing for set-id programs, except for * root. Record any set-id flags first to make sure that * we do not regain any tracing during a possible block. */ setsugid(p); #ifdef KTRACE if (priv_check_cred(oldcred, PRIV_DEBUG_DIFFCRED, 0)) ktrprocexec(p, &tracecred, &tracevp); #endif /* * Close any file descriptors 0..2 that reference procfs, * then make sure file descriptors 0..2 are in use. * * setugidsafety() may call closef() and then pfind() * which may grab the process lock. * fdcheckstd() may call falloc() which may block to * allocate memory, so temporarily drop the process lock. */ PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp, 0); setugidsafety(td); error = fdcheckstd(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto done1; PROC_LOCK(p); /* * Set the new credentials. */ if (attr.va_mode & S_ISUID) change_euid(newcred, euip); if (attr.va_mode & S_ISGID) change_egid(newcred, attr.va_gid); #ifdef MAC if (will_transition) { mac_vnode_execve_transition(oldcred, newcred, imgp->vp, interpvplabel, imgp); } #endif /* * Implement correct POSIX saved-id behavior. * * XXXMAC: Note that the current logic will save the * uid and gid if a MAC domain transition occurs, even * though maybe it shouldn't. */ change_svuid(newcred, newcred->cr_uid); change_svgid(newcred, newcred->cr_gid); p->p_ucred = newcred; newcred = NULL; } else { if (oldcred->cr_uid == oldcred->cr_ruid && oldcred->cr_gid == oldcred->cr_rgid) p->p_flag &= ~P_SUGID; /* * Implement correct POSIX saved-id behavior. * * XXX: It's not clear that the existing behavior is * POSIX-compliant. A number of sources indicate that the * saved uid/gid should only be updated if the new ruid is * not equal to the old ruid, or the new euid is not equal * to the old euid and the new euid is not equal to the old * ruid. The FreeBSD code always updates the saved uid/gid. * Also, this code uses the new (replaced) euid and egid as * the source, which may or may not be the right ones to use. */ if (oldcred->cr_svuid != oldcred->cr_uid || oldcred->cr_svgid != oldcred->cr_gid) { change_svuid(newcred, newcred->cr_uid); change_svgid(newcred, newcred->cr_gid); p->p_ucred = newcred; newcred = NULL; } } /* * Store the vp for use in procfs. This vnode was referenced prior * to locking the proc lock. */ textvp = p->p_textvp; p->p_textvp = binvp; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exec if it * has declared an interest. */ if (dtrace_fasttrap_exec) dtrace_fasttrap_exec(p); #endif /* * Notify others that we exec'd, and clear the P_INEXEC flag * as we're now a bona fide freshly-execed process. */ KNOTE_LOCKED(&p->p_klist, NOTE_EXEC); p->p_flag &= ~P_INEXEC; /* clear "fork but no exec" flag, as we _are_ execing */ p->p_acflag &= ~AFORK; /* * Free any previous argument cache and replace it with * the new argument cache, if any. */ oldargs = p->p_args; p->p_args = newargs; newargs = NULL; #ifdef HWPMC_HOOKS /* * Check if system-wide sampling is in effect or if the * current process is using PMCs. If so, do exec() time * processing. This processing needs to happen AFTER the * P_INEXEC flag is cleared. * * The proc lock needs to be released before taking the PMC * SX. */ if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp, 0); pe.pm_credentialschanged = credential_changing; pe.pm_entryaddr = imgp->entry_addr; PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } else PROC_UNLOCK(p); #else /* !HWPMC_HOOKS */ PROC_UNLOCK(p); #endif /* Set values passed into the program in registers. */ if (p->p_sysent->sv_setregs) (*p->p_sysent->sv_setregs)(td, imgp, (u_long)(uintptr_t)stack_base); else exec_setregs(td, imgp, (u_long)(uintptr_t)stack_base); vfs_mark_atime(imgp->vp, td->td_ucred); SDT_PROBE(proc, kernel, , exec_success, args->fname, 0, 0, 0, 0); done1: /* * Free any resources malloc'd earlier that we didn't use. */ uifree(euip); if (newcred == NULL) crfree(oldcred); else crfree(newcred); VOP_UNLOCK(imgp->vp, 0); /* * Handle deferred decrement of ref counts. */ if (textvp != NULL) { int tvfslocked; tvfslocked = VFS_LOCK_GIANT(textvp->v_mount); vrele(textvp); VFS_UNLOCK_GIANT(tvfslocked); } if (binvp && error != 0) vrele(binvp); #ifdef KTRACE if (tracevp != NULL) { int tvfslocked; tvfslocked = VFS_LOCK_GIANT(tracevp->v_mount); vrele(tracevp); VFS_UNLOCK_GIANT(tvfslocked); } if (tracecred != NULL) crfree(tracecred); #endif vn_lock(imgp->vp, LK_SHARED | LK_RETRY); pargs_drop(oldargs); pargs_drop(newargs); if (oldsigacts != NULL) sigacts_free(oldsigacts); exec_fail_dealloc: /* * free various allocated resources */ if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); if (imgp->vp != NULL) { if (args->fname) NDFREE(&nd, NDF_ONLY_PNBUF); if (imgp->opened) VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); vput(imgp->vp); } if (imgp->object != NULL) vm_object_deallocate(imgp->object); free(imgp->freepath, M_TEMP); if (error == 0) { PROC_LOCK(p); td->td_dbgflags |= TDB_EXEC; PROC_UNLOCK(p); /* * Stop the process here if its stop event mask has * the S_EXEC bit set. */ STOPEVENT(p, S_EXEC, 0); goto done2; } exec_fail: /* we're done here, clear P_INEXEC */ PROC_LOCK(p); p->p_flag &= ~P_INEXEC; PROC_UNLOCK(p); SDT_PROBE(proc, kernel, , exec_failure, error, 0, 0, 0, 0); done2: #ifdef MAC mac_execve_exit(imgp); mac_execve_interpreter_exit(interpvplabel); #endif VFS_UNLOCK_GIANT(vfslocked); exec_free_args(args); if (error && imgp->vmspace_destroyed) { /* sorry, no more process anymore. exit gracefully */ exit1(td, W_EXITCODE(0, SIGABRT)); /* NOT REACHED */ } #ifdef KTRACE if (error == 0) ktrprocctor(p); #endif return (error); } int exec_map_first_page(imgp) struct image_params *imgp; { int rv, i; int initial_pagein; vm_page_t ma[VM_INITIAL_PAGEIN]; vm_object_t object; if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); object = imgp->vp->v_object; if (object == NULL) return (EACCES); VM_OBJECT_LOCK(object); #if VM_NRESERVLEVEL > 0 if ((object->flags & OBJ_COLORED) == 0) { object->flags |= OBJ_COLORED; object->pg_color = 0; } #endif ma[0] = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); if (ma[0]->valid != VM_PAGE_BITS_ALL) { initial_pagein = VM_INITIAL_PAGEIN; if (initial_pagein > object->size) initial_pagein = object->size; for (i = 1; i < initial_pagein; i++) { if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { if (ma[i]->valid) break; if ((ma[i]->oflags & VPO_BUSY) || ma[i]->busy) break; vm_page_busy(ma[i]); } else { ma[i] = vm_page_alloc(object, i, VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED); if (ma[i] == NULL) break; } } initial_pagein = i; rv = vm_pager_get_pages(object, ma, initial_pagein, 0); ma[0] = vm_page_lookup(object, 0); if ((rv != VM_PAGER_OK) || (ma[0] == NULL)) { if (ma[0] != NULL) { vm_page_lock(ma[0]); vm_page_free(ma[0]); vm_page_unlock(ma[0]); } VM_OBJECT_UNLOCK(object); return (EIO); } } vm_page_lock(ma[0]); vm_page_hold(ma[0]); vm_page_unlock(ma[0]); vm_page_wakeup(ma[0]); VM_OBJECT_UNLOCK(object); imgp->firstpage = sf_buf_alloc(ma[0], 0); imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); return (0); } void exec_unmap_first_page(imgp) struct image_params *imgp; { vm_page_t m; if (imgp->firstpage != NULL) { m = sf_buf_page(imgp->firstpage); sf_buf_free(imgp->firstpage); imgp->firstpage = NULL; vm_page_lock(m); vm_page_unhold(m); vm_page_unlock(m); } } /* * Destroy old address space, and allocate a new stack * The new stack is only SGROWSIZ large because it is grown * automatically in trap.c. */ int exec_new_vmspace(imgp, sv) struct image_params *imgp; struct sysentvec *sv; { int error; struct proc *p = imgp->proc; struct vmspace *vmspace = p->p_vmspace; vm_object_t obj; vm_offset_t sv_minuser, stack_addr; vm_map_t map; u_long ssiz; imgp->vmspace_destroyed = 1; imgp->sysent = sv; /* May be called with Giant held */ EVENTHANDLER_INVOKE(process_exec, p, imgp); /* * Blow away entire process VM, if address space not shared, * otherwise, create a new VM space so that other threads are * not disrupted */ map = &vmspace->vm_map; if (map_at_zero) sv_minuser = sv->sv_minuser; else sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser && vm_map_max(map) == sv->sv_maxuser) { shmexit(vmspace); pmap_remove_pages(vmspace_pmap(vmspace)); vm_map_remove(map, vm_map_min(map), vm_map_max(map)); } else { error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); if (error) return (error); vmspace = p->p_vmspace; map = &vmspace->vm_map; } /* Map a shared page */ obj = sv->sv_shared_page_obj; if (obj != NULL) { vm_object_reference(obj); error = vm_map_fixed(map, obj, 0, sv->sv_shared_page_base, sv->sv_shared_page_len, VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_ALL, MAP_COPY_ON_WRITE | MAP_ACC_NO_CHARGE); if (error) { vm_object_deallocate(obj); return (error); } } /* Allocate a new stack */ if (sv->sv_maxssiz != NULL) ssiz = *sv->sv_maxssiz; else ssiz = maxssiz; stack_addr = sv->sv_usrstack - ssiz; error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_DOWN); if (error) return (error); #ifdef __ia64__ /* Allocate a new register stack */ stack_addr = IA64_BACKINGSTORE; error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_UP); if (error) return (error); #endif /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the * VM_STACK case, but they are still used to monitor the size of the * process stack so we can check the stack rlimit. */ vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; vmspace->vm_maxsaddr = (char *)sv->sv_usrstack - ssiz; return (0); } /* * Copy out argument and environment strings from the old process address * space into the temporary string buffer. */ int exec_copyin_args(struct image_args *args, char *fname, enum uio_seg segflg, char **argv, char **envv) { char *argp, *envp; int error; size_t length; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ if (fname != NULL) { args->fname = args->buf; error = (segflg == UIO_SYSSPACE) ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) goto err_exit; } else length = 0; args->begin_argv = args->buf + length; args->endp = args->begin_argv; args->stringspace = ARG_MAX; /* * extract arguments first */ while ((argp = (caddr_t) (intptr_t) fuword(argv++))) { if (argp == (caddr_t) -1) { error = EFAULT; goto err_exit; } if ((error = copyinstr(argp, args->endp, args->stringspace, &length))) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->argc++; } args->begin_envv = args->endp; /* * extract environment strings */ if (envv) { while ((envp = (caddr_t)(intptr_t)fuword(envv++))) { if (envp == (caddr_t)-1) { error = EFAULT; goto err_exit; } if ((error = copyinstr(envp, args->endp, args->stringspace, &length))) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->envc++; } } return (0); err_exit: exec_free_args(args); return (error); } /* * Allocate temporary demand-paged, zero-filled memory for the file name, * argument, and environment strings. Returns zero if the allocation succeeds * and ENOMEM otherwise. */ int exec_alloc_args(struct image_args *args) { args->buf = (char *)kmem_alloc_wait(exec_map, PATH_MAX + ARG_MAX); return (args->buf != NULL ? 0 : ENOMEM); } void exec_free_args(struct image_args *args) { if (args->buf != NULL) { kmem_free_wakeup(exec_map, (vm_offset_t)args->buf, PATH_MAX + ARG_MAX); args->buf = NULL; } if (args->fname_buf != NULL) { free(args->fname_buf, M_TEMP); args->fname_buf = NULL; } } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ register_t * exec_copyout_strings(imgp) struct image_params *imgp; { int argc, envc; char **vectp; char *stringp, *destp; register_t *stack_base; struct ps_strings *arginfo; struct proc *p; size_t execpath_len; int szsigcode, szps; char canary[sizeof(long) * 8]; szps = sizeof(pagesizes[0]) * MAXPAGESIZES; /* * Calculate string base and vector table pointers. * Also deal with signal trampoline code for this exec type. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; p = imgp->proc; szsigcode = 0; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; if (p->p_sysent->sv_sigcode_base == 0) { if (p->p_sysent->sv_szsigcode != NULL) szsigcode = *(p->p_sysent->sv_szsigcode); } destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE - roundup(execpath_len, sizeof(char *)) - roundup(sizeof(canary), sizeof(char *)) - roundup(szps, sizeof(char *)) - roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); /* * install sigcode */ if (szsigcode != 0) copyout(p->p_sysent->sv_sigcode, ((caddr_t)arginfo - szsigcode), szsigcode); /* * Copy the image path for the rtld. */ if (execpath_len != 0) { imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len; copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len - sizeof(canary); copyout(canary, (void *)imgp->canary, sizeof(canary)); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len - roundup(sizeof(canary), sizeof(char *)) - szps; copyout(pagesizes, (void *)imgp->pagesizes, szps); imgp->pagesizeslen = szps; /* * If we have a valid auxargs ptr, prepare some room * on the stack. */ if (imgp->auxargs) { /* * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for * lower compatibility. */ imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size : (AT_COUNT * 2); /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets,and imgp->auxarg_size is room * for argument of Runtime loader. */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2 + imgp->auxarg_size) * sizeof(char *)); } else { /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(char *)); } /* * vectp also becomes our initial stack base */ stack_base = (register_t *)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); /* * Fill in "ps_strings" struct for ps, w, etc. */ suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp); suword32(&arginfo->ps_nargvstr, argc); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* a null vector table pointer separates the argp's from the envp's */ suword(vectp++, 0); suword(&arginfo->ps_envstr, (long)(intptr_t)vectp); suword32(&arginfo->ps_nenvstr, envc); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* end of vector table is a null pointer */ suword(vectp, 0); return (stack_base); } /* * Check permissions of file to execute. * Called with imgp->vp locked. * Return 0 for success or error code on failure. */ int exec_check_permissions(imgp) struct image_params *imgp; { struct vnode *vp = imgp->vp; struct vattr *attr = imgp->attr; struct thread *td; int error; td = curthread; /* Get file attributes */ error = VOP_GETATTR(vp, attr, td->td_ucred); if (error) return (error); #ifdef MAC error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); if (error) return (error); #endif /* * 1) Check if file execution is disabled for the filesystem that * this file resides on. * 2) Ensure that at least one execute bit is on. Otherwise, a * privileged user will always succeed, and we don't want this * to happen unless the file really is executable. * 3) Ensure that the file is a regular file. */ if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || (attr->va_type != VREG)) return (EACCES); /* * Zero length files can't be exec'd */ if (attr->va_size == 0) return (ENOEXEC); /* * Check for execute permission to file based on current credentials. */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) return (error); /* * Check number of open-for-writes on the file and deny execution * if there are any. */ if (vp->v_writecount) return (ETXTBSY); /* * Call filesystem specific open routine (which does nothing in the * general case). */ error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error == 0) imgp->opened = 1; return (error); } /* * Exec handler registration */ int exec_register(execsw_arg) const struct execsw *execsw_arg; { const struct execsw **es, **xs, **newexecsw; int count = 2; /* New slot and trailing NULL */ if (execsw) for (es = execsw; *es; es++) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); if (newexecsw == NULL) return (ENOMEM); xs = newexecsw; if (execsw) for (es = execsw; *es; es++) *xs++ = *es; *xs++ = execsw_arg; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } int exec_unregister(execsw_arg) const struct execsw *execsw_arg; { const struct execsw **es, **xs, **newexecsw; int count = 1; if (execsw == NULL) panic("unregister with no handlers left?\n"); for (es = execsw; *es; es++) { if (*es == execsw_arg) break; } if (*es == NULL) return (ENOENT); for (es = execsw; *es; es++) if (*es != execsw_arg) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); if (newexecsw == NULL) return (ENOMEM); xs = newexecsw; for (es = execsw; *es; es++) if (*es != execsw_arg) *xs++ = *es; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } static vm_object_t shared_page_obj; static int shared_page_free; int shared_page_fill(int size, int align, const char *data) { vm_page_t m; struct sf_buf *s; vm_offset_t sk; int res; VM_OBJECT_LOCK(shared_page_obj); m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY); res = roundup(shared_page_free, align); if (res + size >= IDX_TO_OFF(shared_page_obj->size)) res = -1; else { VM_OBJECT_UNLOCK(shared_page_obj); s = sf_buf_alloc(m, SFB_DEFAULT); sk = sf_buf_kva(s); bcopy(data, (void *)(sk + res), size); shared_page_free = res + size; sf_buf_free(s); VM_OBJECT_LOCK(shared_page_obj); } vm_page_wakeup(m); VM_OBJECT_UNLOCK(shared_page_obj); return (res); } static void shared_page_init(void *dummy __unused) { vm_page_t m; shared_page_obj = vm_pager_allocate(OBJT_PHYS, 0, PAGE_SIZE, VM_PROT_DEFAULT, 0, NULL); VM_OBJECT_LOCK(shared_page_obj); m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_RETRY | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO); m->valid = VM_PAGE_BITS_ALL; VM_OBJECT_UNLOCK(shared_page_obj); } SYSINIT(shp, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)shared_page_init, NULL); void exec_sysvec_init(void *param) { struct sysentvec *sv; sv = (struct sysentvec *)param; if ((sv->sv_flags & SV_SHP) == 0) return; sv->sv_shared_page_obj = shared_page_obj; sv->sv_sigcode_base = sv->sv_shared_page_base + shared_page_fill(*(sv->sv_szsigcode), 16, sv->sv_sigcode); }