Current Path : /sys/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/kern/uipc_mbuf.c |
/*- * Copyright (c) 1982, 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/uipc_mbuf.c 233353 2012-03-23 11:26:54Z kib $"); #include "opt_param.h" #include "opt_mbuf_stress_test.h" #include "opt_mbuf_profiling.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/sysctl.h> #include <sys/domain.h> #include <sys/protosw.h> #include <sys/uio.h> int max_linkhdr; int max_protohdr; int max_hdr; int max_datalen; #ifdef MBUF_STRESS_TEST int m_defragpackets; int m_defragbytes; int m_defraguseless; int m_defragfailure; int m_defragrandomfailures; #endif /* * sysctl(8) exported objects */ SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, &max_linkhdr, 0, "Size of largest link layer header"); SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, &max_protohdr, 0, "Size of largest protocol layer header"); SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, &max_hdr, 0, "Size of largest link plus protocol header"); SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); #ifdef MBUF_STRESS_TEST SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, &m_defragpackets, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, &m_defragbytes, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, &m_defraguseless, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, &m_defragfailure, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, &m_defragrandomfailures, 0, ""); #endif /* * Allocate a given length worth of mbufs and/or clusters (whatever fits * best) and return a pointer to the top of the allocated chain. If an * existing mbuf chain is provided, then we will append the new chain * to the existing one but still return the top of the newly allocated * chain. */ struct mbuf * m_getm2(struct mbuf *m, int len, int how, short type, int flags) { struct mbuf *mb, *nm = NULL, *mtail = NULL; KASSERT(len >= 0, ("%s: len is < 0", __func__)); /* Validate flags. */ flags &= (M_PKTHDR | M_EOR); /* Packet header mbuf must be first in chain. */ if ((flags & M_PKTHDR) && m != NULL) flags &= ~M_PKTHDR; /* Loop and append maximum sized mbufs to the chain tail. */ while (len > 0) { if (len > MCLBYTES) mb = m_getjcl(how, type, (flags & M_PKTHDR), MJUMPAGESIZE); else if (len >= MINCLSIZE) mb = m_getcl(how, type, (flags & M_PKTHDR)); else if (flags & M_PKTHDR) mb = m_gethdr(how, type); else mb = m_get(how, type); /* Fail the whole operation if one mbuf can't be allocated. */ if (mb == NULL) { if (nm != NULL) m_freem(nm); return (NULL); } /* Book keeping. */ len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size : ((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN); if (mtail != NULL) mtail->m_next = mb; else nm = mb; mtail = mb; flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ } if (flags & M_EOR) mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ /* If mbuf was supplied, append new chain to the end of it. */ if (m != NULL) { for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) ; mtail->m_next = nm; mtail->m_flags &= ~M_EOR; } else m = nm; return (m); } /* * Free an entire chain of mbufs and associated external buffers, if * applicable. */ void m_freem(struct mbuf *mb) { while (mb != NULL) mb = m_free(mb); } /*- * Configure a provided mbuf to refer to the provided external storage * buffer and setup a reference count for said buffer. If the setting * up of the reference count fails, the M_EXT bit will not be set. If * successfull, the M_EXT bit is set in the mbuf's flags. * * Arguments: * mb The existing mbuf to which to attach the provided buffer. * buf The address of the provided external storage buffer. * size The size of the provided buffer. * freef A pointer to a routine that is responsible for freeing the * provided external storage buffer. * args A pointer to an argument structure (of any type) to be passed * to the provided freef routine (may be NULL). * flags Any other flags to be passed to the provided mbuf. * type The type that the external storage buffer should be * labeled with. * * Returns: * Nothing. */ void m_extadd(struct mbuf *mb, caddr_t buf, u_int size, void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type) { KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); if (type != EXT_EXTREF) mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT); if (mb->m_ext.ref_cnt != NULL) { *(mb->m_ext.ref_cnt) = 1; mb->m_flags |= (M_EXT | flags); mb->m_ext.ext_buf = buf; mb->m_data = mb->m_ext.ext_buf; mb->m_ext.ext_size = size; mb->m_ext.ext_free = freef; mb->m_ext.ext_arg1 = arg1; mb->m_ext.ext_arg2 = arg2; mb->m_ext.ext_type = type; } } /* * Non-directly-exported function to clean up after mbufs with M_EXT * storage attached to them if the reference count hits 1. */ void mb_free_ext(struct mbuf *m) { int skipmbuf; KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); /* * check if the header is embedded in the cluster */ skipmbuf = (m->m_flags & M_NOFREE); /* Free attached storage if this mbuf is the only reference to it. */ if (*(m->m_ext.ref_cnt) == 1 || atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) { switch (m->m_ext.ext_type) { case EXT_PACKET: /* The packet zone is special. */ if (*(m->m_ext.ref_cnt) == 0) *(m->m_ext.ref_cnt) = 1; uma_zfree(zone_pack, m); return; /* Job done. */ case EXT_CLUSTER: uma_zfree(zone_clust, m->m_ext.ext_buf); break; case EXT_JUMBOP: uma_zfree(zone_jumbop, m->m_ext.ext_buf); break; case EXT_JUMBO9: uma_zfree(zone_jumbo9, m->m_ext.ext_buf); break; case EXT_JUMBO16: uma_zfree(zone_jumbo16, m->m_ext.ext_buf); break; case EXT_SFBUF: case EXT_NET_DRV: case EXT_MOD_TYPE: case EXT_DISPOSABLE: *(m->m_ext.ref_cnt) = 0; uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, m->m_ext.ref_cnt)); /* FALLTHROUGH */ case EXT_EXTREF: KASSERT(m->m_ext.ext_free != NULL, ("%s: ext_free not set", __func__)); (*(m->m_ext.ext_free))(m->m_ext.ext_arg1, m->m_ext.ext_arg2); break; default: KASSERT(m->m_ext.ext_type == 0, ("%s: unknown ext_type", __func__)); } } if (skipmbuf) return; /* * Free this mbuf back to the mbuf zone with all m_ext * information purged. */ m->m_ext.ext_buf = NULL; m->m_ext.ext_free = NULL; m->m_ext.ext_arg1 = NULL; m->m_ext.ext_arg2 = NULL; m->m_ext.ref_cnt = NULL; m->m_ext.ext_size = 0; m->m_ext.ext_type = 0; m->m_flags &= ~M_EXT; uma_zfree(zone_mbuf, m); } /* * Attach the cluster from *m to *n, set up m_ext in *n * and bump the refcount of the cluster. */ static void mb_dupcl(struct mbuf *n, struct mbuf *m) { KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__)); KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__)); if (*(m->m_ext.ref_cnt) == 1) *(m->m_ext.ref_cnt) += 1; else atomic_add_int(m->m_ext.ref_cnt, 1); n->m_ext.ext_buf = m->m_ext.ext_buf; n->m_ext.ext_free = m->m_ext.ext_free; n->m_ext.ext_arg1 = m->m_ext.ext_arg1; n->m_ext.ext_arg2 = m->m_ext.ext_arg2; n->m_ext.ext_size = m->m_ext.ext_size; n->m_ext.ref_cnt = m->m_ext.ref_cnt; n->m_ext.ext_type = m->m_ext.ext_type; n->m_flags |= M_EXT; n->m_flags |= m->m_flags & M_RDONLY; } /* * Clean up mbuf (chain) from any tags and packet headers. * If "all" is set then the first mbuf in the chain will be * cleaned too. */ void m_demote(struct mbuf *m0, int all) { struct mbuf *m; for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { if (m->m_flags & M_PKTHDR) { m_tag_delete_chain(m, NULL); m->m_flags &= ~M_PKTHDR; bzero(&m->m_pkthdr, sizeof(struct pkthdr)); } if (m != m0 && m->m_nextpkt != NULL) { KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt not NULL", __func__)); m_freem(m->m_nextpkt); m->m_nextpkt = NULL; } m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE); } } /* * Sanity checks on mbuf (chain) for use in KASSERT() and general * debugging. * Returns 0 or panics when bad and 1 on all tests passed. * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they * blow up later. */ int m_sanity(struct mbuf *m0, int sanitize) { struct mbuf *m; caddr_t a, b; int pktlen = 0; #ifdef INVARIANTS #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) #else #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) #endif for (m = m0; m != NULL; m = m->m_next) { /* * Basic pointer checks. If any of these fails then some * unrelated kernel memory before or after us is trashed. * No way to recover from that. */ a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf : ((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) : (caddr_t)(&m->m_dat)) ); b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size : ((m->m_flags & M_PKTHDR) ? MHLEN : MLEN))); if ((caddr_t)m->m_data < a) M_SANITY_ACTION("m_data outside mbuf data range left"); if ((caddr_t)m->m_data > b) M_SANITY_ACTION("m_data outside mbuf data range right"); if ((caddr_t)m->m_data + m->m_len > b) M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) { if ((caddr_t)m->m_pkthdr.header < a || (caddr_t)m->m_pkthdr.header > b) M_SANITY_ACTION("m_pkthdr.header outside mbuf data range"); } /* m->m_nextpkt may only be set on first mbuf in chain. */ if (m != m0 && m->m_nextpkt != NULL) { if (sanitize) { m_freem(m->m_nextpkt); m->m_nextpkt = (struct mbuf *)0xDEADC0DE; } else M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); } /* packet length (not mbuf length!) calculation */ if (m0->m_flags & M_PKTHDR) pktlen += m->m_len; /* m_tags may only be attached to first mbuf in chain. */ if (m != m0 && m->m_flags & M_PKTHDR && !SLIST_EMPTY(&m->m_pkthdr.tags)) { if (sanitize) { m_tag_delete_chain(m, NULL); /* put in 0xDEADC0DE perhaps? */ } else M_SANITY_ACTION("m_tags on in-chain mbuf"); } /* M_PKTHDR may only be set on first mbuf in chain */ if (m != m0 && m->m_flags & M_PKTHDR) { if (sanitize) { bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); m->m_flags &= ~M_PKTHDR; /* put in 0xDEADCODE and leave hdr flag in */ } else M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); } } m = m0; if (pktlen && pktlen != m->m_pkthdr.len) { if (sanitize) m->m_pkthdr.len = 0; else M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); } return 1; #undef M_SANITY_ACTION } /* * "Move" mbuf pkthdr from "from" to "to". * "from" must have M_PKTHDR set, and "to" must be empty. */ void m_move_pkthdr(struct mbuf *to, struct mbuf *from) { #if 0 /* see below for why these are not enabled */ M_ASSERTPKTHDR(to); /* Note: with MAC, this may not be a good assertion. */ KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_move_pkthdr: to has tags")); #endif #ifdef MAC /* * XXXMAC: It could be this should also occur for non-MAC? */ if (to->m_flags & M_PKTHDR) m_tag_delete_chain(to, NULL); #endif to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; /* especially tags */ SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ from->m_flags &= ~M_PKTHDR; } /* * Duplicate "from"'s mbuf pkthdr in "to". * "from" must have M_PKTHDR set, and "to" must be empty. * In particular, this does a deep copy of the packet tags. */ int m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) { #if 0 /* * The mbuf allocator only initializes the pkthdr * when the mbuf is allocated with MGETHDR. Many users * (e.g. m_copy*, m_prepend) use MGET and then * smash the pkthdr as needed causing these * assertions to trip. For now just disable them. */ M_ASSERTPKTHDR(to); /* Note: with MAC, this may not be a good assertion. */ KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); #endif MBUF_CHECKSLEEP(how); #ifdef MAC if (to->m_flags & M_PKTHDR) m_tag_delete_chain(to, NULL); #endif to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; to->m_pkthdr = from->m_pkthdr; SLIST_INIT(&to->m_pkthdr.tags); return (m_tag_copy_chain(to, from, MBTOM(how))); } /* * Lesser-used path for M_PREPEND: * allocate new mbuf to prepend to chain, * copy junk along. */ struct mbuf * m_prepend(struct mbuf *m, int len, int how) { struct mbuf *mn; if (m->m_flags & M_PKTHDR) MGETHDR(mn, how, m->m_type); else MGET(mn, how, m->m_type); if (mn == NULL) { m_freem(m); return (NULL); } if (m->m_flags & M_PKTHDR) M_MOVE_PKTHDR(mn, m); mn->m_next = m; m = mn; if(m->m_flags & M_PKTHDR) { if (len < MHLEN) MH_ALIGN(m, len); } else { if (len < MLEN) M_ALIGN(m, len); } m->m_len = len; return (m); } /* * Make a copy of an mbuf chain starting "off0" bytes from the beginning, * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. * Note that the copy is read-only, because clusters are not copied, * only their reference counts are incremented. */ struct mbuf * m_copym(struct mbuf *m, int off0, int len, int wait) { struct mbuf *n, **np; int off = off0; struct mbuf *top; int copyhdr = 0; KASSERT(off >= 0, ("m_copym, negative off %d", off)); KASSERT(len >= 0, ("m_copym, negative len %d", len)); MBUF_CHECKSLEEP(wait); if (off == 0 && m->m_flags & M_PKTHDR) copyhdr = 1; while (off > 0) { KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } np = ⊤ top = 0; while (len > 0) { if (m == NULL) { KASSERT(len == M_COPYALL, ("m_copym, length > size of mbuf chain")); break; } if (copyhdr) MGETHDR(n, wait, m->m_type); else MGET(n, wait, m->m_type); *np = n; if (n == NULL) goto nospace; if (copyhdr) { if (!m_dup_pkthdr(n, m, wait)) goto nospace; if (len == M_COPYALL) n->m_pkthdr.len -= off0; else n->m_pkthdr.len = len; copyhdr = 0; } n->m_len = min(len, m->m_len - off); if (m->m_flags & M_EXT) { n->m_data = m->m_data + off; mb_dupcl(n, m); } else bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), (u_int)n->m_len); if (len != M_COPYALL) len -= n->m_len; off = 0; m = m->m_next; np = &n->m_next; } if (top == NULL) mbstat.m_mcfail++; /* XXX: No consistency. */ return (top); nospace: m_freem(top); mbstat.m_mcfail++; /* XXX: No consistency. */ return (NULL); } /* * Returns mbuf chain with new head for the prepending case. * Copies from mbuf (chain) n from off for len to mbuf (chain) m * either prepending or appending the data. * The resulting mbuf (chain) m is fully writeable. * m is destination (is made writeable) * n is source, off is offset in source, len is len from offset * dir, 0 append, 1 prepend * how, wait or nowait */ static int m_bcopyxxx(void *s, void *t, u_int len) { bcopy(s, t, (size_t)len); return 0; } struct mbuf * m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len, int prep, int how) { struct mbuf *mm, *x, *z, *prev = NULL; caddr_t p; int i, nlen = 0; caddr_t buf[MLEN]; KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source")); KASSERT(off >= 0, ("m_copymdata, negative off %d", off)); KASSERT(len >= 0, ("m_copymdata, negative len %d", len)); KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep)); mm = m; if (!prep) { while(mm->m_next) { prev = mm; mm = mm->m_next; } } for (z = n; z != NULL; z = z->m_next) nlen += z->m_len; if (len == M_COPYALL) len = nlen - off; if (off + len > nlen || len < 1) return NULL; if (!M_WRITABLE(mm)) { /* XXX: Use proper m_xxx function instead. */ x = m_getcl(how, MT_DATA, mm->m_flags); if (x == NULL) return NULL; bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size); p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf); x->m_data = p; mm->m_next = NULL; if (mm != m) prev->m_next = x; m_free(mm); mm = x; } /* * Append/prepend the data. Allocating mbufs as necessary. */ /* Shortcut if enough free space in first/last mbuf. */ if (!prep && M_TRAILINGSPACE(mm) >= len) { m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) + mm->m_len); mm->m_len += len; mm->m_pkthdr.len += len; return m; } if (prep && M_LEADINGSPACE(mm) >= len) { mm->m_data = mtod(mm, caddr_t) - len; m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t)); mm->m_len += len; mm->m_pkthdr.len += len; return mm; } /* Expand first/last mbuf to cluster if possible. */ if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) { bcopy(mm->m_data, &buf, mm->m_len); m_clget(mm, how); if (!(mm->m_flags & M_EXT)) return NULL; bcopy(&buf, mm->m_ext.ext_buf, mm->m_len); mm->m_data = mm->m_ext.ext_buf; mm->m_pkthdr.header = NULL; } if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) { bcopy(mm->m_data, &buf, mm->m_len); m_clget(mm, how); if (!(mm->m_flags & M_EXT)) return NULL; bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf + mm->m_ext.ext_size - mm->m_len, mm->m_len); mm->m_data = (caddr_t)mm->m_ext.ext_buf + mm->m_ext.ext_size - mm->m_len; mm->m_pkthdr.header = NULL; } /* Append/prepend as many mbuf (clusters) as necessary to fit len. */ if (!prep && len > M_TRAILINGSPACE(mm)) { if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA)) return NULL; } if (prep && len > M_LEADINGSPACE(mm)) { if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA))) return NULL; i = 0; for (x = z; x != NULL; x = x->m_next) { i += x->m_flags & M_EXT ? x->m_ext.ext_size : (x->m_flags & M_PKTHDR ? MHLEN : MLEN); if (!x->m_next) break; } z->m_data += i - len; m_move_pkthdr(mm, z); x->m_next = mm; mm = z; } /* Seek to start position in source mbuf. Optimization for long chains. */ while (off > 0) { if (off < n->m_len) break; off -= n->m_len; n = n->m_next; } /* Copy data into target mbuf. */ z = mm; while (len > 0) { KASSERT(z != NULL, ("m_copymdata, falling off target edge")); i = M_TRAILINGSPACE(z); m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len); z->m_len += i; /* fixup pkthdr.len if necessary */ if ((prep ? mm : m)->m_flags & M_PKTHDR) (prep ? mm : m)->m_pkthdr.len += i; off += i; len -= i; z = z->m_next; } return (prep ? mm : m); } /* * Copy an entire packet, including header (which must be present). * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. * Note that the copy is read-only, because clusters are not copied, * only their reference counts are incremented. * Preserve alignment of the first mbuf so if the creator has left * some room at the beginning (e.g. for inserting protocol headers) * the copies still have the room available. */ struct mbuf * m_copypacket(struct mbuf *m, int how) { struct mbuf *top, *n, *o; MBUF_CHECKSLEEP(how); MGET(n, how, m->m_type); top = n; if (n == NULL) goto nospace; if (!m_dup_pkthdr(n, m, how)) goto nospace; n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; mb_dupcl(n, m); } else { n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); bcopy(mtod(m, char *), mtod(n, char *), n->m_len); } m = m->m_next; while (m) { MGET(o, how, m->m_type); if (o == NULL) goto nospace; n->m_next = o; n = n->m_next; n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; mb_dupcl(n, m); } else { bcopy(mtod(m, char *), mtod(n, char *), n->m_len); } m = m->m_next; } return top; nospace: m_freem(top); mbstat.m_mcfail++; /* XXX: No consistency. */ return (NULL); } /* * Copy data from an mbuf chain starting "off" bytes from the beginning, * continuing for "len" bytes, into the indicated buffer. */ void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) { u_int count; KASSERT(off >= 0, ("m_copydata, negative off %d", off)); KASSERT(len >= 0, ("m_copydata, negative len %d", len)); while (off > 0) { KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); count = min(m->m_len - off, len); bcopy(mtod(m, caddr_t) + off, cp, count); len -= count; cp += count; off = 0; m = m->m_next; } } /* * Copy a packet header mbuf chain into a completely new chain, including * copying any mbuf clusters. Use this instead of m_copypacket() when * you need a writable copy of an mbuf chain. */ struct mbuf * m_dup(struct mbuf *m, int how) { struct mbuf **p, *top = NULL; int remain, moff, nsize; MBUF_CHECKSLEEP(how); /* Sanity check */ if (m == NULL) return (NULL); M_ASSERTPKTHDR(m); /* While there's more data, get a new mbuf, tack it on, and fill it */ remain = m->m_pkthdr.len; moff = 0; p = ⊤ while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ struct mbuf *n; /* Get the next new mbuf */ if (remain >= MINCLSIZE) { n = m_getcl(how, m->m_type, 0); nsize = MCLBYTES; } else { n = m_get(how, m->m_type); nsize = MLEN; } if (n == NULL) goto nospace; if (top == NULL) { /* First one, must be PKTHDR */ if (!m_dup_pkthdr(n, m, how)) { m_free(n); goto nospace; } if ((n->m_flags & M_EXT) == 0) nsize = MHLEN; } n->m_len = 0; /* Link it into the new chain */ *p = n; p = &n->m_next; /* Copy data from original mbuf(s) into new mbuf */ while (n->m_len < nsize && m != NULL) { int chunk = min(nsize - n->m_len, m->m_len - moff); bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); moff += chunk; n->m_len += chunk; remain -= chunk; if (moff == m->m_len) { m = m->m_next; moff = 0; } } /* Check correct total mbuf length */ KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), ("%s: bogus m_pkthdr.len", __func__)); } return (top); nospace: m_freem(top); mbstat.m_mcfail++; /* XXX: No consistency. */ return (NULL); } /* * Concatenate mbuf chain n to m. * Both chains must be of the same type (e.g. MT_DATA). * Any m_pkthdr is not updated. */ void m_cat(struct mbuf *m, struct mbuf *n) { while (m->m_next) m = m->m_next; while (n) { if (m->m_flags & M_EXT || m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { /* just join the two chains */ m->m_next = n; return; } /* splat the data from one into the other */ bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, (u_int)n->m_len); m->m_len += n->m_len; n = m_free(n); } } void m_adj(struct mbuf *mp, int req_len) { int len = req_len; struct mbuf *m; int count; if ((m = mp) == NULL) return; if (len >= 0) { /* * Trim from head. */ while (m != NULL && len > 0) { if (m->m_len <= len) { len -= m->m_len; m->m_len = 0; m = m->m_next; } else { m->m_len -= len; m->m_data += len; len = 0; } } if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= (req_len - len); } else { /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ len = -len; count = 0; for (;;) { count += m->m_len; if (m->m_next == (struct mbuf *)0) break; m = m->m_next; } if (m->m_len >= len) { m->m_len -= len; if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= len; return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ m = mp; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len = count; for (; m; m = m->m_next) { if (m->m_len >= count) { m->m_len = count; if (m->m_next != NULL) { m_freem(m->m_next); m->m_next = NULL; } break; } count -= m->m_len; } } } /* * Rearange an mbuf chain so that len bytes are contiguous * and in the data area of an mbuf (so that mtod and dtom * will work for a structure of size len). Returns the resulting * mbuf chain on success, frees it and returns null on failure. * If there is room, it will add up to max_protohdr-len extra bytes to the * contiguous region in an attempt to avoid being called next time. */ struct mbuf * m_pullup(struct mbuf *n, int len) { struct mbuf *m; int count; int space; /* * If first mbuf has no cluster, and has room for len bytes * without shifting current data, pullup into it, * otherwise allocate a new mbuf to prepend to the chain. */ if ((n->m_flags & M_EXT) == 0 && n->m_data + len < &n->m_dat[MLEN] && n->m_next) { if (n->m_len >= len) return (n); m = n; n = n->m_next; len -= m->m_len; } else { if (len > MHLEN) goto bad; MGET(m, M_DONTWAIT, n->m_type); if (m == NULL) goto bad; m->m_len = 0; if (n->m_flags & M_PKTHDR) M_MOVE_PKTHDR(m, n); } space = &m->m_dat[MLEN] - (m->m_data + m->m_len); do { count = min(min(max(len, max_protohdr), space), n->m_len); bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, (u_int)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); if (len > 0) { (void) m_free(m); goto bad; } m->m_next = n; return (m); bad: m_freem(n); mbstat.m_mpfail++; /* XXX: No consistency. */ return (NULL); } /* * Like m_pullup(), except a new mbuf is always allocated, and we allow * the amount of empty space before the data in the new mbuf to be specified * (in the event that the caller expects to prepend later). */ int MSFail; struct mbuf * m_copyup(struct mbuf *n, int len, int dstoff) { struct mbuf *m; int count, space; if (len > (MHLEN - dstoff)) goto bad; MGET(m, M_DONTWAIT, n->m_type); if (m == NULL) goto bad; m->m_len = 0; if (n->m_flags & M_PKTHDR) M_MOVE_PKTHDR(m, n); m->m_data += dstoff; space = &m->m_dat[MLEN] - (m->m_data + m->m_len); do { count = min(min(max(len, max_protohdr), space), n->m_len); memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), (unsigned)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); if (len > 0) { (void) m_free(m); goto bad; } m->m_next = n; return (m); bad: m_freem(n); MSFail++; return (NULL); } /* * Partition an mbuf chain in two pieces, returning the tail -- * all but the first len0 bytes. In case of failure, it returns NULL and * attempts to restore the chain to its original state. * * Note that the resulting mbufs might be read-only, because the new * mbuf can end up sharing an mbuf cluster with the original mbuf if * the "breaking point" happens to lie within a cluster mbuf. Use the * M_WRITABLE() macro to check for this case. */ struct mbuf * m_split(struct mbuf *m0, int len0, int wait) { struct mbuf *m, *n; u_int len = len0, remain; MBUF_CHECKSLEEP(wait); for (m = m0; m && len > m->m_len; m = m->m_next) len -= m->m_len; if (m == NULL) return (NULL); remain = m->m_len - len; if (m0->m_flags & M_PKTHDR) { MGETHDR(n, wait, m0->m_type); if (n == NULL) return (NULL); n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; n->m_pkthdr.len = m0->m_pkthdr.len - len0; m0->m_pkthdr.len = len0; if (m->m_flags & M_EXT) goto extpacket; if (remain > MHLEN) { /* m can't be the lead packet */ MH_ALIGN(n, 0); n->m_next = m_split(m, len, wait); if (n->m_next == NULL) { (void) m_free(n); return (NULL); } else { n->m_len = 0; return (n); } } else MH_ALIGN(n, remain); } else if (remain == 0) { n = m->m_next; m->m_next = NULL; return (n); } else { MGET(n, wait, m->m_type); if (n == NULL) return (NULL); M_ALIGN(n, remain); } extpacket: if (m->m_flags & M_EXT) { n->m_data = m->m_data + len; mb_dupcl(n, m); } else { bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); } n->m_len = remain; m->m_len = len; n->m_next = m->m_next; m->m_next = NULL; return (n); } /* * Routine to copy from device local memory into mbufs. * Note that `off' argument is offset into first mbuf of target chain from * which to begin copying the data to. */ struct mbuf * m_devget(char *buf, int totlen, int off, struct ifnet *ifp, void (*copy)(char *from, caddr_t to, u_int len)) { struct mbuf *m; struct mbuf *top = NULL, **mp = ⊤ int len; if (off < 0 || off > MHLEN) return (NULL); while (totlen > 0) { if (top == NULL) { /* First one, must be PKTHDR */ if (totlen + off >= MINCLSIZE) { m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); len = MCLBYTES; } else { m = m_gethdr(M_DONTWAIT, MT_DATA); len = MHLEN; /* Place initial small packet/header at end of mbuf */ if (m && totlen + off + max_linkhdr <= MLEN) { m->m_data += max_linkhdr; len -= max_linkhdr; } } if (m == NULL) return NULL; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = totlen; } else { if (totlen + off >= MINCLSIZE) { m = m_getcl(M_DONTWAIT, MT_DATA, 0); len = MCLBYTES; } else { m = m_get(M_DONTWAIT, MT_DATA); len = MLEN; } if (m == NULL) { m_freem(top); return NULL; } } if (off) { m->m_data += off; len -= off; off = 0; } m->m_len = len = min(totlen, len); if (copy) copy(buf, mtod(m, caddr_t), (u_int)len); else bcopy(buf, mtod(m, caddr_t), (u_int)len); buf += len; *mp = m; mp = &m->m_next; totlen -= len; } return (top); } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. */ void m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) { int mlen; struct mbuf *m = m0, *n; int totlen = 0; if (m0 == NULL) return; while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == NULL) { n = m_get(M_DONTWAIT, m->m_type); if (n == NULL) goto out; bzero(mtod(n, caddr_t), MLEN); n->m_len = min(MLEN, len + off); m->m_next = n; } m = m->m_next; } while (len > 0) { if (m->m_next == NULL && (len > m->m_len - off)) { m->m_len += min(len - (m->m_len - off), M_TRAILINGSPACE(m)); } mlen = min (m->m_len - off, len); bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); cp += mlen; len -= mlen; mlen += off; off = 0; totlen += mlen; if (len == 0) break; if (m->m_next == NULL) { n = m_get(M_DONTWAIT, m->m_type); if (n == NULL) break; n->m_len = min(MLEN, len); m->m_next = n; } m = m->m_next; } out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) m->m_pkthdr.len = totlen; } /* * Append the specified data to the indicated mbuf chain, * Extend the mbuf chain if the new data does not fit in * existing space. * * Return 1 if able to complete the job; otherwise 0. */ int m_append(struct mbuf *m0, int len, c_caddr_t cp) { struct mbuf *m, *n; int remainder, space; for (m = m0; m->m_next != NULL; m = m->m_next) ; remainder = len; space = M_TRAILINGSPACE(m); if (space > 0) { /* * Copy into available space. */ if (space > remainder) space = remainder; bcopy(cp, mtod(m, caddr_t) + m->m_len, space); m->m_len += space; cp += space, remainder -= space; } while (remainder > 0) { /* * Allocate a new mbuf; could check space * and allocate a cluster instead. */ n = m_get(M_DONTWAIT, m->m_type); if (n == NULL) break; n->m_len = min(MLEN, remainder); bcopy(cp, mtod(n, caddr_t), n->m_len); cp += n->m_len, remainder -= n->m_len; m->m_next = n; m = n; } if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += len - remainder; return (remainder == 0); } /* * Apply function f to the data in an mbuf chain starting "off" bytes from * the beginning, continuing for "len" bytes. */ int m_apply(struct mbuf *m, int off, int len, int (*f)(void *, void *, u_int), void *arg) { u_int count; int rval; KASSERT(off >= 0, ("m_apply, negative off %d", off)); KASSERT(len >= 0, ("m_apply, negative len %d", len)); while (off > 0) { KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); count = min(m->m_len - off, len); rval = (*f)(arg, mtod(m, caddr_t) + off, count); if (rval) return (rval); len -= count; off = 0; m = m->m_next; } return (0); } /* * Return a pointer to mbuf/offset of location in mbuf chain. */ struct mbuf * m_getptr(struct mbuf *m, int loc, int *off) { while (loc >= 0) { /* Normal end of search. */ if (m->m_len > loc) { *off = loc; return (m); } else { loc -= m->m_len; if (m->m_next == NULL) { if (loc == 0) { /* Point at the end of valid data. */ *off = m->m_len; return (m); } return (NULL); } m = m->m_next; } } return (NULL); } void m_print(const struct mbuf *m, int maxlen) { int len; int pdata; const struct mbuf *m2; if (m == NULL) { printf("mbuf: %p\n", m); return; } if (m->m_flags & M_PKTHDR) len = m->m_pkthdr.len; else len = -1; m2 = m; while (m2 != NULL && (len == -1 || len)) { pdata = m2->m_len; if (maxlen != -1 && pdata > maxlen) pdata = maxlen; printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); if (pdata) printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); if (len != -1) len -= m2->m_len; m2 = m2->m_next; } if (len > 0) printf("%d bytes unaccounted for.\n", len); return; } u_int m_fixhdr(struct mbuf *m0) { u_int len; len = m_length(m0, NULL); m0->m_pkthdr.len = len; return (len); } u_int m_length(struct mbuf *m0, struct mbuf **last) { struct mbuf *m; u_int len; len = 0; for (m = m0; m != NULL; m = m->m_next) { len += m->m_len; if (m->m_next == NULL) break; } if (last != NULL) *last = m; return (len); } /* * Defragment a mbuf chain, returning the shortest possible * chain of mbufs and clusters. If allocation fails and * this cannot be completed, NULL will be returned, but * the passed in chain will be unchanged. Upon success, * the original chain will be freed, and the new chain * will be returned. * * If a non-packet header is passed in, the original * mbuf (chain?) will be returned unharmed. */ struct mbuf * m_defrag(struct mbuf *m0, int how) { struct mbuf *m_new = NULL, *m_final = NULL; int progress = 0, length; MBUF_CHECKSLEEP(how); if (!(m0->m_flags & M_PKTHDR)) return (m0); m_fixhdr(m0); /* Needed sanity check */ #ifdef MBUF_STRESS_TEST if (m_defragrandomfailures) { int temp = arc4random() & 0xff; if (temp == 0xba) goto nospace; } #endif if (m0->m_pkthdr.len > MHLEN) m_final = m_getcl(how, MT_DATA, M_PKTHDR); else m_final = m_gethdr(how, MT_DATA); if (m_final == NULL) goto nospace; if (m_dup_pkthdr(m_final, m0, how) == 0) goto nospace; m_new = m_final; while (progress < m0->m_pkthdr.len) { length = m0->m_pkthdr.len - progress; if (length > MCLBYTES) length = MCLBYTES; if (m_new == NULL) { if (length > MLEN) m_new = m_getcl(how, MT_DATA, 0); else m_new = m_get(how, MT_DATA); if (m_new == NULL) goto nospace; } m_copydata(m0, progress, length, mtod(m_new, caddr_t)); progress += length; m_new->m_len = length; if (m_new != m_final) m_cat(m_final, m_new); m_new = NULL; } #ifdef MBUF_STRESS_TEST if (m0->m_next == NULL) m_defraguseless++; #endif m_freem(m0); m0 = m_final; #ifdef MBUF_STRESS_TEST m_defragpackets++; m_defragbytes += m0->m_pkthdr.len; #endif return (m0); nospace: #ifdef MBUF_STRESS_TEST m_defragfailure++; #endif if (m_final) m_freem(m_final); return (NULL); } /* * Defragment an mbuf chain, returning at most maxfrags separate * mbufs+clusters. If this is not possible NULL is returned and * the original mbuf chain is left in it's present (potentially * modified) state. We use two techniques: collapsing consecutive * mbufs and replacing consecutive mbufs by a cluster. * * NB: this should really be named m_defrag but that name is taken */ struct mbuf * m_collapse(struct mbuf *m0, int how, int maxfrags) { struct mbuf *m, *n, *n2, **prev; u_int curfrags; /* * Calculate the current number of frags. */ curfrags = 0; for (m = m0; m != NULL; m = m->m_next) curfrags++; /* * First, try to collapse mbufs. Note that we always collapse * towards the front so we don't need to deal with moving the * pkthdr. This may be suboptimal if the first mbuf has much * less data than the following. */ m = m0; again: for (;;) { n = m->m_next; if (n == NULL) break; if ((m->m_flags & M_RDONLY) == 0 && n->m_len < M_TRAILINGSPACE(m)) { bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, n->m_len); m->m_len += n->m_len; m->m_next = n->m_next; m_free(n); if (--curfrags <= maxfrags) return m0; } else m = n; } KASSERT(maxfrags > 1, ("maxfrags %u, but normal collapse failed", maxfrags)); /* * Collapse consecutive mbufs to a cluster. */ prev = &m0->m_next; /* NB: not the first mbuf */ while ((n = *prev) != NULL) { if ((n2 = n->m_next) != NULL && n->m_len + n2->m_len < MCLBYTES) { m = m_getcl(how, MT_DATA, 0); if (m == NULL) goto bad; bcopy(mtod(n, void *), mtod(m, void *), n->m_len); bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, n2->m_len); m->m_len = n->m_len + n2->m_len; m->m_next = n2->m_next; *prev = m; m_free(n); m_free(n2); if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ return m0; /* * Still not there, try the normal collapse * again before we allocate another cluster. */ goto again; } prev = &n->m_next; } /* * No place where we can collapse to a cluster; punt. * This can occur if, for example, you request 2 frags * but the packet requires that both be clusters (we * never reallocate the first mbuf to avoid moving the * packet header). */ bad: return NULL; } #ifdef MBUF_STRESS_TEST /* * Fragment an mbuf chain. There's no reason you'd ever want to do * this in normal usage, but it's great for stress testing various * mbuf consumers. * * If fragmentation is not possible, the original chain will be * returned. * * Possible length values: * 0 no fragmentation will occur * > 0 each fragment will be of the specified length * -1 each fragment will be the same random value in length * -2 each fragment's length will be entirely random * (Random values range from 1 to 256) */ struct mbuf * m_fragment(struct mbuf *m0, int how, int length) { struct mbuf *m_new = NULL, *m_final = NULL; int progress = 0; if (!(m0->m_flags & M_PKTHDR)) return (m0); if ((length == 0) || (length < -2)) return (m0); m_fixhdr(m0); /* Needed sanity check */ m_final = m_getcl(how, MT_DATA, M_PKTHDR); if (m_final == NULL) goto nospace; if (m_dup_pkthdr(m_final, m0, how) == 0) goto nospace; m_new = m_final; if (length == -1) length = 1 + (arc4random() & 255); while (progress < m0->m_pkthdr.len) { int fraglen; if (length > 0) fraglen = length; else fraglen = 1 + (arc4random() & 255); if (fraglen > m0->m_pkthdr.len - progress) fraglen = m0->m_pkthdr.len - progress; if (fraglen > MCLBYTES) fraglen = MCLBYTES; if (m_new == NULL) { m_new = m_getcl(how, MT_DATA, 0); if (m_new == NULL) goto nospace; } m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); progress += fraglen; m_new->m_len = fraglen; if (m_new != m_final) m_cat(m_final, m_new); m_new = NULL; } m_freem(m0); m0 = m_final; return (m0); nospace: if (m_final) m_freem(m_final); /* Return the original chain on failure */ return (m0); } #endif /* * Copy the contents of uio into a properly sized mbuf chain. */ struct mbuf * m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) { struct mbuf *m, *mb; int error, length; ssize_t total; int progress = 0; /* * len can be zero or an arbitrary large value bound by * the total data supplied by the uio. */ if (len > 0) total = min(uio->uio_resid, len); else total = uio->uio_resid; /* * The smallest unit returned by m_getm2() is a single mbuf * with pkthdr. We can't align past it. */ if (align >= MHLEN) return (NULL); /* * Give us the full allocation or nothing. * If len is zero return the smallest empty mbuf. */ m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); if (m == NULL) return (NULL); m->m_data += align; /* Fill all mbufs with uio data and update header information. */ for (mb = m; mb != NULL; mb = mb->m_next) { length = min(M_TRAILINGSPACE(mb), total - progress); error = uiomove(mtod(mb, void *), length, uio); if (error) { m_freem(m); return (NULL); } mb->m_len = length; progress += length; if (flags & M_PKTHDR) m->m_pkthdr.len += length; } KASSERT(progress == total, ("%s: progress != total", __func__)); return (m); } /* * Copy an mbuf chain into a uio limited by len if set. */ int m_mbuftouio(struct uio *uio, struct mbuf *m, int len) { int error, length, total; int progress = 0; if (len > 0) total = min(uio->uio_resid, len); else total = uio->uio_resid; /* Fill the uio with data from the mbufs. */ for (; m != NULL; m = m->m_next) { length = min(m->m_len, total - progress); error = uiomove(mtod(m, void *), length, uio); if (error) return (error); progress += length; } return (0); } /* * Set the m_data pointer of a newly-allocated mbuf * to place an object of the specified size at the * end of the mbuf, longword aligned. */ void m_align(struct mbuf *m, int len) { int adjust; if (m->m_flags & M_EXT) adjust = m->m_ext.ext_size - len; else if (m->m_flags & M_PKTHDR) adjust = MHLEN - len; else adjust = MLEN - len; m->m_data += adjust &~ (sizeof(long)-1); } /* * Create a writable copy of the mbuf chain. While doing this * we compact the chain with a goal of producing a chain with * at most two mbufs. The second mbuf in this chain is likely * to be a cluster. The primary purpose of this work is to create * a writable packet for encryption, compression, etc. The * secondary goal is to linearize the data so the data can be * passed to crypto hardware in the most efficient manner possible. */ struct mbuf * m_unshare(struct mbuf *m0, int how) { struct mbuf *m, *mprev; struct mbuf *n, *mfirst, *mlast; int len, off; mprev = NULL; for (m = m0; m != NULL; m = mprev->m_next) { /* * Regular mbufs are ignored unless there's a cluster * in front of it that we can use to coalesce. We do * the latter mainly so later clusters can be coalesced * also w/o having to handle them specially (i.e. convert * mbuf+cluster -> cluster). This optimization is heavily * influenced by the assumption that we're running over * Ethernet where MCLBYTES is large enough that the max * packet size will permit lots of coalescing into a * single cluster. This in turn permits efficient * crypto operations, especially when using hardware. */ if ((m->m_flags & M_EXT) == 0) { if (mprev && (mprev->m_flags & M_EXT) && m->m_len <= M_TRAILINGSPACE(mprev)) { /* XXX: this ignores mbuf types */ memcpy(mtod(mprev, caddr_t) + mprev->m_len, mtod(m, caddr_t), m->m_len); mprev->m_len += m->m_len; mprev->m_next = m->m_next; /* unlink from chain */ m_free(m); /* reclaim mbuf */ #if 0 newipsecstat.ips_mbcoalesced++; #endif } else { mprev = m; } continue; } /* * Writable mbufs are left alone (for now). */ if (M_WRITABLE(m)) { mprev = m; continue; } /* * Not writable, replace with a copy or coalesce with * the previous mbuf if possible (since we have to copy * it anyway, we try to reduce the number of mbufs and * clusters so that future work is easier). */ KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); /* NB: we only coalesce into a cluster or larger */ if (mprev != NULL && (mprev->m_flags & M_EXT) && m->m_len <= M_TRAILINGSPACE(mprev)) { /* XXX: this ignores mbuf types */ memcpy(mtod(mprev, caddr_t) + mprev->m_len, mtod(m, caddr_t), m->m_len); mprev->m_len += m->m_len; mprev->m_next = m->m_next; /* unlink from chain */ m_free(m); /* reclaim mbuf */ #if 0 newipsecstat.ips_clcoalesced++; #endif continue; } /* * Allocate new space to hold the copy... */ /* XXX why can M_PKTHDR be set past the first mbuf? */ if (mprev == NULL && (m->m_flags & M_PKTHDR)) { /* * NB: if a packet header is present we must * allocate the mbuf separately from any cluster * because M_MOVE_PKTHDR will smash the data * pointer and drop the M_EXT marker. */ MGETHDR(n, how, m->m_type); if (n == NULL) { m_freem(m0); return (NULL); } M_MOVE_PKTHDR(n, m); MCLGET(n, how); if ((n->m_flags & M_EXT) == 0) { m_free(n); m_freem(m0); return (NULL); } } else { n = m_getcl(how, m->m_type, m->m_flags); if (n == NULL) { m_freem(m0); return (NULL); } } /* * ... and copy the data. We deal with jumbo mbufs * (i.e. m_len > MCLBYTES) by splitting them into * clusters. We could just malloc a buffer and make * it external but too many device drivers don't know * how to break up the non-contiguous memory when * doing DMA. */ len = m->m_len; off = 0; mfirst = n; mlast = NULL; for (;;) { int cc = min(len, MCLBYTES); memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); n->m_len = cc; if (mlast != NULL) mlast->m_next = n; mlast = n; #if 0 newipsecstat.ips_clcopied++; #endif len -= cc; if (len <= 0) break; off += cc; n = m_getcl(how, m->m_type, m->m_flags); if (n == NULL) { m_freem(mfirst); m_freem(m0); return (NULL); } } n->m_next = m->m_next; if (mprev == NULL) m0 = mfirst; /* new head of chain */ else mprev->m_next = mfirst; /* replace old mbuf */ m_free(m); /* release old mbuf */ mprev = mfirst; } return (m0); } #ifdef MBUF_PROFILING #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ struct mbufprofile { uintmax_t wasted[MP_BUCKETS]; uintmax_t used[MP_BUCKETS]; uintmax_t segments[MP_BUCKETS]; } mbprof; #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ #define MP_NUMLINES 6 #define MP_NUMSPERLINE 16 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ /* work out max space needed and add a bit of spare space too */ #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) char mbprofbuf[MP_BUFSIZE]; void m_profile(struct mbuf *m) { int segments = 0; int used = 0; int wasted = 0; while (m) { segments++; used += m->m_len; if (m->m_flags & M_EXT) { wasted += MHLEN - sizeof(m->m_ext) + m->m_ext.ext_size - m->m_len; } else { if (m->m_flags & M_PKTHDR) wasted += MHLEN - m->m_len; else wasted += MLEN - m->m_len; } m = m->m_next; } /* be paranoid.. it helps */ if (segments > MP_BUCKETS - 1) segments = MP_BUCKETS - 1; if (used > 100000) used = 100000; if (wasted > 100000) wasted = 100000; /* store in the appropriate bucket */ /* don't bother locking. if it's slightly off, so what? */ mbprof.segments[segments]++; mbprof.used[fls(used)]++; mbprof.wasted[fls(wasted)]++; } static void mbprof_textify(void) { int offset; char *c; uint64_t *p; p = &mbprof.wasted[0]; c = mbprofbuf; offset = snprintf(c, MP_MAXLINE + 10, "wasted:\n" "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %ju\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #ifdef BIG_ARRAY p = &mbprof.wasted[16]; c += offset; offset = snprintf(c, MP_MAXLINE, "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %ju\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #endif p = &mbprof.used[0]; c += offset; offset = snprintf(c, MP_MAXLINE + 10, "used:\n" "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %ju\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #ifdef BIG_ARRAY p = &mbprof.used[16]; c += offset; offset = snprintf(c, MP_MAXLINE, "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %ju\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #endif p = &mbprof.segments[0]; c += offset; offset = snprintf(c, MP_MAXLINE + 10, "segments:\n" "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %ju\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #ifdef BIG_ARRAY p = &mbprof.segments[16]; c += offset; offset = snprintf(c, MP_MAXLINE, "%ju %ju %ju %ju %ju %ju %ju %ju " "%ju %ju %ju %ju %ju %ju %ju %jju", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); #endif } static int mbprof_handler(SYSCTL_HANDLER_ARGS) { int error; mbprof_textify(); error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); return (error); } static int mbprof_clr_handler(SYSCTL_HANDLER_ARGS) { int clear, error; clear = 0; error = sysctl_handle_int(oidp, &clear, 0, req); if (error || !req->newptr) return (error); if (clear) { bzero(&mbprof, sizeof(mbprof)); } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); #endif