Current Path : /sys/libkern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/libkern/arc4random.c |
/*- * THE BEER-WARE LICENSE * * <dan@FreeBSD.ORG> wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you * think this stuff is worth it, you can buy me a beer in return. * * Dan Moschuk */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/libkern/arc4random.c 180825 2008-07-26 16:42:45Z ache $"); #include <sys/types.h> #include <sys/param.h> #include <sys/kernel.h> #include <sys/random.h> #include <sys/libkern.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/time.h> #define ARC4_RESEED_BYTES 65536 #define ARC4_RESEED_SECONDS 300 #define ARC4_KEYBYTES (256 / 8) static u_int8_t arc4_i, arc4_j; static int arc4_numruns = 0; static u_int8_t arc4_sbox[256]; static time_t arc4_t_reseed; static struct mtx arc4_mtx; static u_int8_t arc4_randbyte(void); static __inline void arc4_swap(u_int8_t *a, u_int8_t *b) { u_int8_t c; c = *a; *a = *b; *b = c; } /* * Stir our S-box. */ static void arc4_randomstir (void) { u_int8_t key[256]; int r, n; struct timeval tv_now; /* * XXX read_random() returns unsafe numbers if the entropy * device is not loaded -- MarkM. */ r = read_random(key, ARC4_KEYBYTES); getmicrouptime(&tv_now); mtx_lock(&arc4_mtx); /* If r == 0 || -1, just use what was on the stack. */ if (r > 0) { for (n = r; n < sizeof(key); n++) key[n] = key[n % r]; } for (n = 0; n < 256; n++) { arc4_j = (arc4_j + arc4_sbox[n] + key[n]) % 256; arc4_swap(&arc4_sbox[n], &arc4_sbox[arc4_j]); } arc4_i = arc4_j = 0; /* Reset for next reseed cycle. */ arc4_t_reseed = tv_now.tv_sec + ARC4_RESEED_SECONDS; arc4_numruns = 0; /* * Throw away the first N words of output, as suggested in the * paper "Weaknesses in the Key Scheduling Algorithm of RC4" * by Fluher, Mantin, and Shamir. (N = 256 in our case.) */ for (n = 0; n < 256*4; n++) arc4_randbyte(); mtx_unlock(&arc4_mtx); } /* * Initialize our S-box to its beginning defaults. */ static void arc4_init(void) { int n; mtx_init(&arc4_mtx, "arc4_mtx", NULL, MTX_DEF); arc4_i = arc4_j = 0; for (n = 0; n < 256; n++) arc4_sbox[n] = (u_int8_t) n; arc4_t_reseed = 0; } SYSINIT(arc4_init, SI_SUB_LOCK, SI_ORDER_ANY, arc4_init, NULL); /* * Generate a random byte. */ static u_int8_t arc4_randbyte(void) { u_int8_t arc4_t; arc4_i = (arc4_i + 1) % 256; arc4_j = (arc4_j + arc4_sbox[arc4_i]) % 256; arc4_swap(&arc4_sbox[arc4_i], &arc4_sbox[arc4_j]); arc4_t = (arc4_sbox[arc4_i] + arc4_sbox[arc4_j]) % 256; return arc4_sbox[arc4_t]; } /* * MPSAFE */ void arc4rand(void *ptr, u_int len, int reseed) { u_char *p; struct timeval tv; getmicrouptime(&tv); if (reseed || (arc4_numruns > ARC4_RESEED_BYTES) || (tv.tv_sec > arc4_t_reseed)) arc4_randomstir(); mtx_lock(&arc4_mtx); arc4_numruns += len; p = ptr; while (len--) *p++ = arc4_randbyte(); mtx_unlock(&arc4_mtx); } uint32_t arc4random(void) { uint32_t ret; arc4rand(&ret, sizeof ret, 0); return ret; }