Current Path : /sys/mips/nlm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/mips/nlm/xlp_pci.c |
/*- * Copyright (c) 2003-2009 RMI Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of RMI Corporation, nor the names of its contributors, * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * NETLOGIC_BSD */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/nlm/xlp_pci.c 229093 2011-12-31 14:12:12Z hselasky $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/types.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/malloc.h> #include <sys/bus.h> #include <sys/endian.h> #include <sys/rman.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/pmap.h> #include <sys/pciio.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcireg.h> #include <dev/uart/uart.h> #include <dev/uart/uart_bus.h> #include <dev/uart/uart_cpu.h> #include <machine/bus.h> #include <machine/md_var.h> #include <machine/intr_machdep.h> #include <machine/cpuregs.h> #include <mips/nlm/hal/haldefs.h> #include <mips/nlm/interrupt.h> #include <mips/nlm/hal/iomap.h> #include <mips/nlm/hal/mips-extns.h> #include <mips/nlm/hal/pic.h> #include <mips/nlm/hal/pcibus.h> #include <mips/nlm/hal/uart.h> #include <mips/nlm/xlp.h> #include "pcib_if.h" struct xlp_pcib_softc { bus_dma_tag_t sc_pci_dmat; /* PCI DMA tag pointer */ }; static devclass_t pcib_devclass; static struct rman irq_rman, port_rman, mem_rman, emul_rman; static void xlp_pci_init_resources(void) { irq_rman.rm_start = 0; irq_rman.rm_end = 255; irq_rman.rm_type = RMAN_ARRAY; irq_rman.rm_descr = "PCI Mapped Interrupts"; if (rman_init(&irq_rman) || rman_manage_region(&irq_rman, 0, 255)) panic("pci_init_resources irq_rman"); port_rman.rm_start = 0; port_rman.rm_end = ~0ul; port_rman.rm_type = RMAN_ARRAY; port_rman.rm_descr = "I/O ports"; if (rman_init(&port_rman) || rman_manage_region(&port_rman, 0x14000000UL, 0x15ffffffUL)) panic("pci_init_resources port_rman"); mem_rman.rm_start = 0; mem_rman.rm_end = ~0ul; mem_rman.rm_type = RMAN_ARRAY; mem_rman.rm_descr = "I/O memory"; if (rman_init(&mem_rman) || rman_manage_region(&mem_rman, 0xd0000000ULL, 0xdfffffffULL)) panic("pci_init_resources mem_rman"); emul_rman.rm_start = 0; emul_rman.rm_end = ~0ul; emul_rman.rm_type = RMAN_ARRAY; emul_rman.rm_descr = "Emulated MEMIO"; if (rman_init(&emul_rman) || rman_manage_region(&emul_rman, 0x18000000ULL, 0x18ffffffULL)) panic("pci_init_resources emul_rman"); } static int xlp_pcib_probe(device_t dev) { device_set_desc(dev, "XLP PCI bus"); xlp_pci_init_resources(); return (0); } static int xlp_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { switch (which) { case PCIB_IVAR_DOMAIN: *result = 0; return (0); case PCIB_IVAR_BUS: *result = 0; return (0); } return (ENOENT); } static int xlp_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t result) { switch (which) { case PCIB_IVAR_DOMAIN: return (EINVAL); case PCIB_IVAR_BUS: return (EINVAL); } return (ENOENT); } static int xlp_pcib_maxslots(device_t dev) { return (PCI_SLOTMAX); } static u_int32_t xlp_pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width) { uint32_t data = 0; uint64_t cfgaddr; int regindex = reg/sizeof(uint32_t); cfgaddr = nlm_pcicfg_base(XLP_HDR_OFFSET(0, b, s, f)); if ((width == 2) && (reg & 1)) return 0xFFFFFFFF; else if ((width == 4) && (reg & 3)) return 0xFFFFFFFF; data = nlm_read_pci_reg(cfgaddr, regindex); /* * Fix up read data in some SoC devices * to emulate complete PCIe header */ if (b == 0) { int dev = s % 8; /* Fake intpin on config read for UART/I2C, USB, SD/Flash */ if (regindex == 0xf && (dev == 6 || dev == 2 || dev == 7)) data |= 0x1 << 8; /* Fake int pin */ } if (width == 1) return ((data >> ((reg & 3) << 3)) & 0xff); else if (width == 2) return ((data >> ((reg & 3) << 3)) & 0xffff); else return (data); } static void xlp_pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, u_int32_t val, int width) { uint64_t cfgaddr; uint32_t data = 0; int regindex = reg / sizeof(uint32_t); cfgaddr = nlm_pcicfg_base(XLP_HDR_OFFSET(0, b, s, f)); if ((width == 2) && (reg & 1)) return; else if ((width == 4) && (reg & 3)) return; if (width == 1) { data = nlm_read_pci_reg(cfgaddr, regindex); data = (data & ~(0xff << ((reg & 3) << 3))) | (val << ((reg & 3) << 3)); } else if (width == 2) { data = nlm_read_pci_reg(cfgaddr, regindex); data = (data & ~(0xffff << ((reg & 3) << 3))) | (val << ((reg & 3) << 3)); } else { data = val; } nlm_write_pci_reg(cfgaddr, regindex, data); return; } static int xlp_pcib_attach(device_t dev) { struct xlp_pcib_softc *sc; sc = device_get_softc(dev); device_add_child(dev, "pci", 0); bus_generic_attach(dev); return (0); } static void xlp_pcib_identify(driver_t * driver, device_t parent) { BUS_ADD_CHILD(parent, 0, "pcib", 0); } /* * XLS PCIe can have upto 4 links, and each link has its on IRQ * Find the link on which the device is on */ static int xlp_pcie_link(device_t pcib, device_t dev) { device_t parent, tmp; /* find the lane on which the slot is connected to */ printf("xlp_pcie_link : bus %s dev %s\n", device_get_nameunit(pcib), device_get_nameunit(dev)); tmp = dev; while (1) { parent = device_get_parent(tmp); if (parent == NULL || parent == pcib) { device_printf(dev, "Cannot find parent bus\n"); return (-1); } if (strcmp(device_get_nameunit(parent), "pci0") == 0) break; tmp = parent; } return (pci_get_function(tmp)); } /* * Find the IRQ for the link, each link has a different interrupt * at the XLP pic */ static int xlp_pcie_link_irt(int link) { if( (link < 0) || (link > 3)) return (-1); return PIC_IRT_PCIE_LINK_INDEX(link); } static int xlp_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs) { int i, link; /* * Each link has 32 MSIs that can be allocated, but for now * we only support one device per link. * msi_alloc() equivalent is needed when we start supporting * bridges on the PCIe link. */ link = xlp_pcie_link(pcib, dev); if (link == -1) return (ENXIO); /* * encode the irq so that we know it is a MSI interrupt when we * setup interrupts */ for (i = 0; i < count; i++) irqs[i] = 64 + link * 32 + i; return (0); } static int xlp_release_msi(device_t pcib, device_t dev, int count, int *irqs) { device_printf(dev, "%s: msi release %d\n", device_get_nameunit(pcib), count); return (0); } static int xlp_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data) { int msi, irt; if (irq >= 64) { msi = irq - 64; *addr = MIPS_MSI_ADDR(0); irt = xlp_pcie_link_irt(msi/32); if (irt != -1) *data = MIPS_MSI_DATA(xlp_irt_to_irq(irt)); return (0); } else { device_printf(dev, "%s: map_msi for irq %d - ignored", device_get_nameunit(pcib), irq); return (ENXIO); } } static void bridge_pcie_ack(int irq) { uint32_t node,reg; uint64_t base; node = nlm_nodeid(); reg = PCIE_MSI_STATUS; switch(irq) { case PIC_PCIE_0_IRQ: base = nlm_pcicfg_base(XLP_IO_PCIE0_OFFSET(node)); break; case PIC_PCIE_1_IRQ: base = nlm_pcicfg_base(XLP_IO_PCIE1_OFFSET(node)); break; case PIC_PCIE_2_IRQ: base = nlm_pcicfg_base(XLP_IO_PCIE2_OFFSET(node)); break; case PIC_PCIE_3_IRQ: base = nlm_pcicfg_base(XLP_IO_PCIE3_OFFSET(node)); break; default: return; } nlm_write_pci_reg(base, reg, 0xFFFFFFFF); return; } static int mips_platform_pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg, void **cookiep) { int error = 0; int xlpirq; int node,base,val,link; void *extra_ack; error = rman_activate_resource(irq); if (error) return error; if (rman_get_start(irq) != rman_get_end(irq)) { device_printf(dev, "Interrupt allocation %lu != %lu\n", rman_get_start(irq), rman_get_end(irq)); return (EINVAL); } xlpirq = rman_get_start(irq); device_printf(dev, "setup intr %d\n", xlpirq); if (strcmp(device_get_name(dev), "pcib") != 0) { device_printf(dev, "ret 0 on dev\n"); return (0); } /* * temporary hack for MSI, we support just one device per * link, and assign the link interrupt to the device interrupt */ if (xlpirq >= 64) { xlpirq -= 64; if (xlpirq % 32 != 0) return (0); node = nlm_nodeid(); link = (xlpirq / 32); base = nlm_pcicfg_base(XLP_IO_PCIE_OFFSET(node,link)); /* MSI Interrupt Vector enable at bridge's configuration */ nlm_write_pci_reg(base, PCIE_MSI_EN, PCIE_MSI_VECTOR_INT_EN); val = nlm_read_pci_reg(base, PCIE_INT_EN0); /* MSI Interrupt enable at bridge's configuration */ nlm_write_pci_reg(base, PCIE_INT_EN0, (val | PCIE_MSI_INT_EN)); /* legacy interrupt disable at bridge */ val = nlm_read_pci_reg(base, PCIE_BRIDGE_CMD); nlm_write_pci_reg(base, PCIE_BRIDGE_CMD, (val | PCIM_CMD_INTxDIS)); /* MSI address update at bridge */ val = nlm_read_pci_reg(base, PCIE_BRIDGE_MSI_ADDRL); nlm_write_pci_reg(base, PCIE_BRIDGE_MSI_ADDRL, (val | MSI_MIPS_ADDR_BASE)); val = nlm_read_pci_reg(base, PCIE_BRIDGE_MSI_CAP); /* MSI capability enable at bridge */ nlm_write_pci_reg(base, PCIE_BRIDGE_MSI_CAP, (val | (PCIM_MSICTRL_MSI_ENABLE << 16) | (PCIM_MSICTRL_MMC_32 << 16))); xlpirq = xlp_pcie_link_irt(xlpirq / 32); if (xlpirq == -1) return (EINVAL); xlpirq = xlp_irt_to_irq(xlpirq); } /* Set all irqs to CPU 0 for now */ nlm_pic_write_irt_direct(xlp_pic_base, xlp_irq_to_irt(xlpirq), 1, 0, PIC_LOCAL_SCHEDULING, xlpirq, 0); extra_ack = NULL; if (xlpirq >= PIC_PCIE_0_IRQ && xlpirq <= PIC_PCIE_3_IRQ) extra_ack = bridge_pcie_ack; xlp_establish_intr(device_get_name(child), filt, intr, arg, xlpirq, flags, cookiep, extra_ack); return (0); } static int mips_platform_pci_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { if (strcmp(device_get_name(child), "pci") == 0) { /* if needed reprogram the pic to clear pcix related entry */ device_printf(dev, "teardown intr\n"); } return (bus_generic_teardown_intr(dev, child, irq, cookie)); } static void assign_soc_resource(device_t child, int type, u_long *startp, u_long *endp, u_long *countp, struct rman **rm, bus_space_tag_t *bst, vm_offset_t *va) { int devid = pci_get_device(child); int inst = pci_get_function(child); int node = pci_get_slot(child) / 8; *rm = NULL; *va = 0; *bst = 0; switch (devid) { case PCI_DEVICE_ID_NLM_UART: switch (type) { case SYS_RES_IRQ: *startp = *endp = PIC_UART_0_IRQ + inst; *countp = 1; break; case SYS_RES_MEMORY: *va = nlm_get_uart_regbase(node, inst); *startp = MIPS_KSEG1_TO_PHYS(va); *countp = 0x100; *rm = &emul_rman; *bst = uart_bus_space_mem; break; }; break; case PCI_DEVICE_ID_NLM_EHCI: if (type == SYS_RES_IRQ) { if (inst == 0) *startp = *endp = PIC_EHCI_0_IRQ; else if (inst == 3) *startp = *endp = PIC_EHCI_1_IRQ; else device_printf(child, "bad instance %d\n", inst); *countp = 1; } break; } /* default to rmi_bus_space for SoC resources */ if (type == SYS_RES_MEMORY && *bst == 0) *bst = rmi_bus_space; } static struct resource * xlp_pci_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct rman *rm = NULL; struct resource *rv; vm_offset_t va = 0; int needactivate = flags & RF_ACTIVE; bus_space_tag_t bst = 0; /* * For SoC PCI devices, we have to assign resources correctly * since the IRQ and MEM resources depend on the block. * If the address is not from BAR0, then we use emul_rman */ if (pci_get_bus(child) == 0 && pci_get_vendor(child) == PCI_VENDOR_NETLOGIC) assign_soc_resource(child, type, &start, &end, &count, &rm, &bst, &va); if (rm == NULL) { switch (type) { case SYS_RES_IRQ: rm = &irq_rman; break; case SYS_RES_IOPORT: rm = &port_rman; break; case SYS_RES_MEMORY: rm = &mem_rman; break; default: return (0); } } rv = rman_reserve_resource(rm, start, end, count, flags, child); if (rv == 0) return (0); rman_set_rid(rv, *rid); if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { if (va == 0) va = (vm_offset_t)pmap_mapdev(start, count); if (bst == 0) bst = rmi_pci_bus_space; rman_set_bushandle(rv, va); rman_set_virtual(rv, (void *)va); rman_set_bustag(rv, bst); } if (needactivate) { if (bus_activate_resource(child, type, *rid, rv)) { rman_release_resource(rv); return (NULL); } } return (rv); } static int xlp_pci_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { return (rman_release_resource(r)); } static bus_dma_tag_t xlp_pci_get_dma_tag(device_t bus, device_t child) { struct xlp_pcib_softc *sc; sc = device_get_softc(bus); return (sc->sc_pci_dmat); } static int xlp_pci_activate_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { return (rman_activate_resource(r)); } static int xlp_pci_deactivate_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { return (rman_deactivate_resource(r)); } static int mips_pci_route_interrupt(device_t bus, device_t dev, int pin) { int irt, link; /* * Validate requested pin number. */ device_printf(bus, "route %s %d", device_get_nameunit(dev), pin); if ((pin < 1) || (pin > 4)) return (255); link = xlp_pcie_link(bus, dev); irt = xlp_pcie_link_irt(link); if (irt != -1) return (xlp_irt_to_irq(irt)); return (255); } static device_method_t xlp_pcib_methods[] = { /* Device interface */ DEVMETHOD(device_identify, xlp_pcib_identify), DEVMETHOD(device_probe, xlp_pcib_probe), DEVMETHOD(device_attach, xlp_pcib_attach), /* Bus interface */ DEVMETHOD(bus_read_ivar, xlp_pcib_read_ivar), DEVMETHOD(bus_write_ivar, xlp_pcib_write_ivar), DEVMETHOD(bus_alloc_resource, xlp_pci_alloc_resource), DEVMETHOD(bus_release_resource, xlp_pci_release_resource), DEVMETHOD(bus_get_dma_tag, xlp_pci_get_dma_tag), DEVMETHOD(bus_activate_resource, xlp_pci_activate_resource), DEVMETHOD(bus_deactivate_resource, xlp_pci_deactivate_resource), DEVMETHOD(bus_setup_intr, mips_platform_pci_setup_intr), DEVMETHOD(bus_teardown_intr, mips_platform_pci_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, xlp_pcib_maxslots), DEVMETHOD(pcib_read_config, xlp_pcib_read_config), DEVMETHOD(pcib_write_config, xlp_pcib_write_config), DEVMETHOD(pcib_route_interrupt, mips_pci_route_interrupt), DEVMETHOD(pcib_alloc_msi, xlp_alloc_msi), DEVMETHOD(pcib_release_msi, xlp_release_msi), DEVMETHOD(pcib_map_msi, xlp_map_msi), DEVMETHOD_END }; static driver_t xlp_pcib_driver = { "pcib", xlp_pcib_methods, sizeof(struct xlp_pcib_softc), }; DRIVER_MODULE(pcib, nexus, xlp_pcib_driver, pcib_devclass, 0, 0);