Current Path : /sys/mips/rmi/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/mips/rmi/pic.h |
/*- * Copyright (c) 2003-2009 RMI Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of RMI Corporation, nor the names of its contributors, * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RMI_BSD * $FreeBSD: release/9.1.0/sys/mips/rmi/pic.h 217625 2011-01-20 08:08:19Z jchandra $ */ #ifndef _RMI_PIC_H_ #define _RMI_PIC_H_ #include <sys/cdefs.h> #include <sys/lock.h> #include <sys/mutex.h> #include <mips/rmi/iomap.h> #define PIC_IRT_WD_INDEX 0 #define PIC_IRT_TIMER_INDEX(i) (1 + (i)) #define PIC_IRT_UART_0_INDEX 9 #define PIC_IRT_UART_1_INDEX 10 #define PIC_IRT_I2C_0_INDEX 11 #define PIC_IRT_I2C_1_INDEX 12 #define PIC_IRT_PCMCIA_INDEX 13 #define PIC_IRT_GPIO_INDEX 14 #define PIC_IRT_HYPER_INDEX 15 #define PIC_IRT_PCIX_INDEX 16 #define PIC_IRT_GMAC0_INDEX 17 #define PIC_IRT_GMAC1_INDEX 18 #define PIC_IRT_GMAC2_INDEX 19 #define PIC_IRT_GMAC3_INDEX 20 #define PIC_IRT_XGS0_INDEX 21 #define PIC_IRT_XGS1_INDEX 22 #define PIC_IRT_HYPER_FATAL_INDEX 23 #define PIC_IRT_PCIX_FATAL_INDEX 24 #define PIC_IRT_BRIDGE_AERR_INDEX 25 #define PIC_IRT_BRIDGE_BERR_INDEX 26 #define PIC_IRT_BRIDGE_TB_INDEX 27 #define PIC_IRT_BRIDGE_AERR_NMI_INDEX 28 /* numbering for XLS */ #define PIC_IRT_BRIDGE_ERR_INDEX 25 #define PIC_IRT_PCIE_LINK0_INDEX 26 #define PIC_IRT_PCIE_LINK1_INDEX 27 #define PIC_IRT_PCIE_LINK2_INDEX 23 #define PIC_IRT_PCIE_LINK3_INDEX 24 #define PIC_IRT_PCIE_B0_LINK2_INDEX 28 #define PIC_IRT_PCIE_B0_LINK3_INDEX 29 #define PIC_IRT_PCIE_INT_INDEX 28 #define PIC_IRT_PCIE_FATAL_INDEX 29 #define PIC_IRT_GPIO_B_INDEX 30 #define PIC_IRT_USB_INDEX 31 #define PIC_NUM_IRTS 32 #define PIC_CLOCK_TIMER 7 #define PIC_CTRL 0x00 #define PIC_IPI 0x04 #define PIC_INT_ACK 0x06 #define WD_MAX_VAL_0 0x08 #define WD_MAX_VAL_1 0x09 #define WD_MASK_0 0x0a #define WD_MASK_1 0x0b #define WD_HEARBEAT_0 0x0c #define WD_HEARBEAT_1 0x0d #define PIC_IRT_0_BASE 0x40 #define PIC_IRT_1_BASE 0x80 #define PIC_TIMER_MAXVAL_0_BASE 0x100 #define PIC_TIMER_MAXVAL_1_BASE 0x110 #define PIC_TIMER_COUNT_0_BASE 0x120 #define PIC_TIMER_COUNT_1_BASE 0x130 #define PIC_IRT_0(picintr) (PIC_IRT_0_BASE + (picintr)) #define PIC_IRT_1(picintr) (PIC_IRT_1_BASE + (picintr)) #define PIC_TIMER_MAXVAL_0(i) (PIC_TIMER_MAXVAL_0_BASE + (i)) #define PIC_TIMER_MAXVAL_1(i) (PIC_TIMER_MAXVAL_1_BASE + (i)) #define PIC_TIMER_COUNT_0(i) (PIC_TIMER_COUNT_0_BASE + (i)) #define PIC_TIMER_COUNT_1(i) (PIC_TIMER_COUNT_0_BASE + (i)) #define PIC_TIMER_HZ 66000000U /* * We use a simple mapping form PIC interrupts to CPU IRQs. * The PIC interrupts 0-31 are mapped to CPU irq's 8-39. * this leaves the lower 0-7 for the cpu interrupts (like * count/compare, msgrng) and 40-63 for IPIs */ #define PIC_IRQ_BASE 8 #define PIC_INTR_TO_IRQ(i) (PIC_IRQ_BASE + (i)) #define PIC_IRQ_TO_INTR(i) ((i) - PIC_IRQ_BASE) #define PIC_WD_IRQ (PIC_IRQ_BASE + PIC_IRT_WD_INDEX) #define PIC_TIMER_IRQ(i) (PIC_IRQ_BASE + PIC_IRT_TIMER_INDEX(i)) #define PIC_CLOCK_IRQ PIC_TIMER_IRQ(PIC_CLOCK_TIMER) #define PIC_UART_0_IRQ (PIC_IRQ_BASE + PIC_IRT_UART_0_INDEX) #define PIC_UART_1_IRQ (PIC_IRQ_BASE + PIC_IRT_UART_1_INDEX) #define PIC_I2C_0_IRQ (PIC_IRQ_BASE + PIC_IRT_I2C_0_INDEX) #define PIC_I2C_1_IRQ (PIC_IRQ_BASE + PIC_IRT_I2C_1_INDEX) #define PIC_PCMCIA_IRQ (PIC_IRQ_BASE + PIC_IRT_PCMCIA_INDEX) #define PIC_GPIO_IRQ (PIC_IRQ_BASE + PIC_IRT_GPIO_INDEX) #define PIC_HYPER_IRQ (PIC_IRQ_BASE + PIC_IRT_HYPER_INDEX) #define PIC_PCIX_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIX_INDEX) #define PIC_GMAC_0_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC0_INDEX) #define PIC_GMAC_1_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC1_INDEX) #define PIC_GMAC_2_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC2_INDEX) #define PIC_GMAC_3_IRQ (PIC_IRQ_BASE + PIC_IRT_GMAC3_INDEX) #define PIC_XGS_0_IRQ (PIC_IRQ_BASE + PIC_IRT_XGS0_INDEX) #define PIC_XGS_1_IRQ (PIC_IRQ_BASE + PIC_IRT_XGS1_INDEX) #define PIC_HYPER_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_HYPER_FATAL_INDEX) #define PIC_PCIX_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIX_FATAL_INDEX) #define PIC_BRIDGE_AERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_INDEX) #define PIC_BRIDGE_BERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_BERR_INDEX) #define PIC_BRIDGE_TB_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_TB_INDEX) #define PIC_BRIDGE_AERR_NMI_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_AERR_NMI_INDEX) #define PIC_BRIDGE_ERR_IRQ (PIC_IRQ_BASE + PIC_IRT_BRIDGE_ERR_INDEX) #define PIC_PCIE_LINK0_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK0_INDEX) #define PIC_PCIE_LINK1_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK1_INDEX) #define PIC_PCIE_LINK2_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK2_INDEX) #define PIC_PCIE_LINK3_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_LINK3_INDEX) #define PIC_PCIE_B0_LINK2_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK2_INDEX) #define PIC_PCIE_B0_LINK3_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_B0_LINK3_INDEX) #define PIC_PCIE_INT_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_INT_INDEX) #define PIC_PCIE_FATAL_IRQ (PIC_IRQ_BASE + PIC_IRT_PCIE_FATAL_INDEX) #define PIC_GPIO_B_IRQ (PIC_IRQ_BASE + PIC_IRT_GPIO_B_INDEX) #define PIC_USB_IRQ (PIC_IRQ_BASE + PIC_IRT_USB_INDEX) #define PIC_IRQ_IS_PICINTR(irq) ((irq) >= PIC_IRQ_BASE && \ (irq) < PIC_IRQ_BASE + PIC_NUM_IRTS) #define PIC_IS_EDGE_TRIGGERED(i) ((i) >= PIC_IRT_TIMER_INDEX(0) && \ (i) <= PIC_IRT_TIMER_INDEX(7)) extern struct mtx xlr_pic_lock; static __inline uint32_t pic_read_control(void) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); uint32_t reg; mtx_lock_spin(&xlr_pic_lock); reg = xlr_read_reg(mmio, PIC_CTRL); mtx_unlock_spin(&xlr_pic_lock); return (reg); } static __inline void pic_write_control(uint32_t control) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); mtx_lock_spin(&xlr_pic_lock); xlr_write_reg(mmio, PIC_CTRL, control); mtx_unlock_spin(&xlr_pic_lock); } static __inline void pic_update_control(uint32_t control) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); mtx_lock_spin(&xlr_pic_lock); xlr_write_reg(mmio, PIC_CTRL, (control | xlr_read_reg(mmio, PIC_CTRL))); mtx_unlock_spin(&xlr_pic_lock); } static __inline void pic_ack(int picintr) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); xlr_write_reg(mmio, PIC_INT_ACK, 1U << picintr); } static __inline void pic_send_ipi(int cpu, int ipi) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); int tid, pid; tid = cpu & 0x3; pid = (cpu >> 2) & 0x7; xlr_write_reg(mmio, PIC_IPI, (pid << 20) | (tid << 16) | ipi); } static __inline void pic_setup_intr(int picintr, int irq, uint32_t cpumask, int level) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); mtx_lock_spin(&xlr_pic_lock); xlr_write_reg(mmio, PIC_IRT_0(picintr), cpumask); xlr_write_reg(mmio, PIC_IRT_1(picintr), ((1 << 31) | (level << 30) | (1 << 6) | irq)); mtx_unlock_spin(&xlr_pic_lock); } static __inline void pic_init_timer(int timer) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); uint32_t val; mtx_lock_spin(&xlr_pic_lock); val = xlr_read_reg(mmio, PIC_CTRL); val |= (1 << (8 + timer)); xlr_write_reg(mmio, PIC_CTRL, val); mtx_unlock_spin(&xlr_pic_lock); } static __inline void pic_set_timer(int timer, uint64_t maxval) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); xlr_write_reg(mmio, PIC_TIMER_MAXVAL_0(timer), (maxval & 0xffffffff)); xlr_write_reg(mmio, PIC_TIMER_MAXVAL_1(timer), (maxval >> 32) & 0xffffffff); } static __inline uint32_t pic_timer_count32(int timer) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); return (xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer))); } /* * The timer can wrap 32 bits between the two reads, so we * need additional logic to detect that. */ static __inline uint64_t pic_timer_count(int timer) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); uint32_t tu1, tu2, tl; tu1 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer)); tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer)); tu2 = xlr_read_reg(mmio, PIC_TIMER_COUNT_1(timer)); if (tu2 != tu1) tl = xlr_read_reg(mmio, PIC_TIMER_COUNT_0(timer)); return (((uint64_t)tu2 << 32) | tl); } #endif /* _RMI_PIC_H_ */