Current Path : /sys/mips/sibyte/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/mips/sibyte/sb_zbpci.c |
/*- * Copyright (c) 2009 Neelkanth Natu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/param.h> #include <sys/types.h> #include <sys/kernel.h> #include <sys/systm.h> #include <sys/module.h> #include <sys/bus.h> #include <sys/rman.h> #include <sys/pcpu.h> #include <sys/smp.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/vm_kern.h> #include <vm/vm_extern.h> #include <vm/pmap.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcib_private.h> #include <machine/pmap.h> #include <machine/resource.h> #include <machine/bus.h> #include "pcib_if.h" #include "sb_bus_space.h" #include "sb_scd.h" __FBSDID("$FreeBSD: release/9.1.0/sys/mips/sibyte/sb_zbpci.c 218909 2011-02-21 09:01:34Z brucec $"); static struct { vm_offset_t vaddr; vm_paddr_t paddr; } zbpci_config_space[MAXCPU]; static const vm_paddr_t CFG_PADDR_BASE = 0xFE000000; static const u_long PCI_IOSPACE_ADDR = 0xFC000000; static const u_long PCI_IOSPACE_SIZE = 0x02000000; #define PCI_MATCH_BYTE_LANES_START 0x40000000 #define PCI_MATCH_BYTE_LANES_END 0x5FFFFFFF #define PCI_MATCH_BYTE_LANES_SIZE 0x20000000 #define PCI_MATCH_BIT_LANES_MASK (1 << 29) #define PCI_MATCH_BIT_LANES_START 0x60000000 #define PCI_MATCH_BIT_LANES_END 0x7FFFFFFF #define PCI_MATCH_BIT_LANES_SIZE 0x20000000 static struct rman port_rman; static int zbpci_probe(device_t dev) { device_set_desc(dev, "Broadcom/Sibyte PCI I/O Bridge"); return (0); } static int zbpci_attach(device_t dev) { int n, rid, size; vm_offset_t va; struct resource *res; /* * Reserve the physical memory window used to map PCI I/O space. */ rid = 0; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, PCI_IOSPACE_ADDR, PCI_IOSPACE_ADDR + PCI_IOSPACE_SIZE - 1, PCI_IOSPACE_SIZE, 0); if (res == NULL) panic("Cannot allocate resource for PCI I/O space mapping."); port_rman.rm_start = 0; port_rman.rm_end = PCI_IOSPACE_SIZE - 1; port_rman.rm_type = RMAN_ARRAY; port_rman.rm_descr = "PCI I/O ports"; if (rman_init(&port_rman) != 0 || rman_manage_region(&port_rman, 0, PCI_IOSPACE_SIZE - 1) != 0) panic("%s: port_rman", __func__); /* * Reserve the physical memory that is used to read/write to the * pci config space but don't activate it. We are using a page worth * of KVA as a window over this region. */ rid = 1; size = (PCI_BUSMAX + 1) * (PCI_SLOTMAX + 1) * (PCI_FUNCMAX + 1) * 256; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, CFG_PADDR_BASE, CFG_PADDR_BASE + size - 1, size, 0); if (res == NULL) panic("Cannot allocate resource for config space accesses."); /* * Allocate the entire "match bit lanes" address space. */ #if _BYTE_ORDER == _BIG_ENDIAN rid = 2; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, PCI_MATCH_BIT_LANES_START, PCI_MATCH_BIT_LANES_END, PCI_MATCH_BIT_LANES_SIZE, 0); if (res == NULL) panic("Cannot allocate resource for pci match bit lanes."); #endif /* _BYTE_ORDER ==_BIG_ENDIAN */ /* * Allocate KVA for accessing PCI config space. */ va = kmem_alloc_nofault(kernel_map, PAGE_SIZE * mp_ncpus); if (va == 0) { device_printf(dev, "Cannot allocate virtual addresses for " "config space access.\n"); return (ENOMEM); } for (n = 0; n < mp_ncpus; ++n) zbpci_config_space[n].vaddr = va + n * PAGE_SIZE; /* * Sibyte has the PCI bus hierarchy rooted at bus 0 and HT-PCI * hierarchy rooted at bus 1. */ if (device_add_child(dev, "pci", 0) == NULL) panic("zbpci_attach: could not add pci bus 0.\n"); if (device_add_child(dev, "pci", 1) == NULL) panic("zbpci_attach: could not add pci bus 1.\n"); if (bootverbose) device_printf(dev, "attached.\n"); return (bus_generic_attach(dev)); } static struct resource * zbpci_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource *res; /* * Handle PCI I/O port resources here and pass everything else to nexus. */ if (type != SYS_RES_IOPORT) { res = bus_generic_alloc_resource(bus, child, type, rid, start, end, count, flags); return (res); } res = rman_reserve_resource(&port_rman, start, end, count, flags, child); if (res == NULL) return (NULL); rman_set_rid(res, *rid); /* Activate the resource is requested */ if (flags & RF_ACTIVE) { if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } } return (res); } static int zbpci_activate_resource(device_t bus, device_t child, int type, int rid, struct resource *res) { int error; void *vaddr; u_long orig_paddr, paddr, psize; paddr = rman_get_start(res); psize = rman_get_size(res); orig_paddr = paddr; #if _BYTE_ORDER == _BIG_ENDIAN /* * The CFE allocates PCI memory resources that map to the * "match byte lanes" address space. This address space works * best for DMA transfers because it does not do any automatic * byte swaps when data crosses the pci-cpu interface. * * This also makes it sub-optimal for accesses to PCI device * registers because it exposes the little-endian nature of * the PCI bus to the big-endian CPU. The Sibyte has another * address window called the "match bit lanes" window which * automatically swaps bytes when data crosses the pci-cpu * interface. * * We "assume" that any bus_space memory accesses done by the * CPU to a PCI device are register/configuration accesses and * are done through the "match bit lanes" window. Any DMA * transfers will continue to be through the "match byte lanes" * window because the PCI BAR registers will not be changed. */ if (type == SYS_RES_MEMORY) { if (paddr >= PCI_MATCH_BYTE_LANES_START && paddr + psize - 1 <= PCI_MATCH_BYTE_LANES_END) { paddr |= PCI_MATCH_BIT_LANES_MASK; rman_set_start(res, paddr); rman_set_end(res, paddr + psize - 1); } } #endif if (type != SYS_RES_IOPORT) { error = bus_generic_activate_resource(bus, child, type, rid, res); #if _BYTE_ORDER == _BIG_ENDIAN if (type == SYS_RES_MEMORY) { rman_set_start(res, orig_paddr); rman_set_end(res, orig_paddr + psize - 1); } #endif return (error); } /* * Map the I/O space resource through the memory window starting * at PCI_IOSPACE_ADDR. */ vaddr = pmap_mapdev(paddr + PCI_IOSPACE_ADDR, psize); rman_set_virtual(res, vaddr); rman_set_bustag(res, mips_bus_space_generic); rman_set_bushandle(res, (bus_space_handle_t)vaddr); return (rman_activate_resource(res)); } static int zbpci_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { int error; if (type != SYS_RES_IOPORT) return (bus_generic_release_resource(bus, child, type, rid, r)); if (rman_get_flags(r) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, r); if (error) return (error); } return (rman_release_resource(r)); } static int zbpci_deactivate_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { vm_offset_t va; if (type != SYS_RES_IOPORT) { return (bus_generic_deactivate_resource(bus, child, type, rid, r)); } va = (vm_offset_t)rman_get_virtual(r); pmap_unmapdev(va, rman_get_size(r)); return (rman_deactivate_resource(r)); } static int zbpci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { switch (which) { case PCIB_IVAR_DOMAIN: *result = 0; /* single PCI domain */ return (0); case PCIB_IVAR_BUS: *result = device_get_unit(child); /* PCI bus 0 or 1 */ return (0); default: return (ENOENT); } } /* * We rely on the CFE to have configured the intline correctly to point to * one of PCI-A/PCI-B/PCI-C/PCI-D in the interupt mapper. */ static int zbpci_route_interrupt(device_t pcib, device_t dev, int pin) { return (PCI_INVALID_IRQ); } /* * This function is expected to be called in a critical section since it * changes the per-cpu pci config space va-to-pa mappings. */ static vm_offset_t zbpci_config_space_va(int bus, int slot, int func, int reg, int bytes) { int cpu; vm_offset_t va_page; vm_paddr_t pa, pa_page; if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX && reg <= PCI_REGMAX && (bytes == 1 || bytes == 2 || bytes == 4) && ((reg & (bytes - 1)) == 0)) { cpu = PCPU_GET(cpuid); va_page = zbpci_config_space[cpu].vaddr; pa = CFG_PADDR_BASE | (bus << 16) | (slot << 11) | (func << 8) | reg; #if _BYTE_ORDER == _BIG_ENDIAN pa = pa ^ (4 - bytes); #endif pa_page = pa & ~(PAGE_SIZE - 1); if (zbpci_config_space[cpu].paddr != pa_page) { pmap_kremove(va_page); pmap_kenter_attr(va_page, pa_page, PTE_C_UNCACHED); zbpci_config_space[cpu].paddr = pa_page; } return (va_page + (pa - pa_page)); } else { return (0); } } static uint32_t zbpci_read_config(device_t dev, u_int b, u_int s, u_int f, u_int r, int w) { uint32_t data; vm_offset_t va; critical_enter(); va = zbpci_config_space_va(b, s, f, r, w); if (va == 0) { panic("zbpci_read_config: invalid %d/%d/%d[%d] %d\n", b, s, f, r, w); } switch (w) { case 4: data = *(uint32_t *)va; break; case 2: data = *(uint16_t *)va; break; case 1: data = *(uint8_t *)va; break; default: panic("zbpci_read_config: invalid width %d\n", w); } critical_exit(); return (data); } static void zbpci_write_config(device_t d, u_int b, u_int s, u_int f, u_int r, uint32_t data, int w) { vm_offset_t va; critical_enter(); va = zbpci_config_space_va(b, s, f, r, w); if (va == 0) { panic("zbpci_write_config: invalid %d/%d/%d[%d] %d/%d\n", b, s, f, r, data, w); } switch (w) { case 4: *(uint32_t *)va = data; break; case 2: *(uint16_t *)va = data; break; case 1: *(uint8_t *)va = data; break; default: panic("zbpci_write_config: invalid width %d\n", w); } critical_exit(); } static device_method_t zbpci_methods[] ={ /* Device interface */ DEVMETHOD(device_probe, zbpci_probe), DEVMETHOD(device_attach, zbpci_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, bus_generic_resume), /* Bus interface */ DEVMETHOD(bus_read_ivar, zbpci_read_ivar), DEVMETHOD(bus_write_ivar, bus_generic_write_ivar), DEVMETHOD(bus_alloc_resource, zbpci_alloc_resource), DEVMETHOD(bus_activate_resource, zbpci_activate_resource), DEVMETHOD(bus_deactivate_resource, zbpci_deactivate_resource), DEVMETHOD(bus_release_resource, zbpci_release_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_add_child, bus_generic_add_child), /* pcib interface */ DEVMETHOD(pcib_maxslots, pcib_maxslots), DEVMETHOD(pcib_read_config, zbpci_read_config), DEVMETHOD(pcib_write_config, zbpci_write_config), DEVMETHOD(pcib_route_interrupt, zbpci_route_interrupt), { 0, 0 } }; /* * The "zbpci" class inherits from the "pcib" base class. Therefore in * addition to drivers that belong to the "zbpci" class we will also * consider drivers belonging to the "pcib" when probing children of * "zbpci". */ DEFINE_CLASS_1(zbpci, zbpci_driver, zbpci_methods, 0, pcib_driver); static devclass_t zbpci_devclass; DRIVER_MODULE(zbpci, zbbus, zbpci_driver, zbpci_devclass, 0, 0); /* * Big endian bus space routines */ #if _BYTE_ORDER == _BIG_ENDIAN /* * The CPU correctly deals with the big-endian to little-endian swap if * we are accessing 4 bytes at a time. However if we want to read 1 or 2 * bytes then we need to fudge the address generated by the CPU such that * it generates the right byte enables on the PCI bus. */ static bus_addr_t sb_match_bit_lane_addr(bus_addr_t addr, int bytes) { vm_offset_t pa; pa = vtophys(addr); if (pa >= PCI_MATCH_BIT_LANES_START && pa <= PCI_MATCH_BIT_LANES_END) return (addr ^ (4 - bytes)); else return (addr); } uint8_t sb_big_endian_read8(bus_addr_t addr) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 1); return (readb(addr2)); } uint16_t sb_big_endian_read16(bus_addr_t addr) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 2); return (readw(addr2)); } uint32_t sb_big_endian_read32(bus_addr_t addr) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 4); return (readl(addr2)); } void sb_big_endian_write8(bus_addr_t addr, uint8_t val) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 1); writeb(addr2, val); } void sb_big_endian_write16(bus_addr_t addr, uint16_t val) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 2); writew(addr2, val); } void sb_big_endian_write32(bus_addr_t addr, uint32_t val) { bus_addr_t addr2; addr2 = sb_match_bit_lane_addr(addr, 4); writel(addr2, val); } #endif /* _BIG_ENDIAN */