Current Path : /sys/netinet/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/netinet/sctp_asconf.c |
/*- * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/netinet/sctp_asconf.c 238613 2012-07-19 09:32:59Z tuexen $"); #include <netinet/sctp_os.h> #include <netinet/sctp_var.h> #include <netinet/sctp_sysctl.h> #include <netinet/sctp_pcb.h> #include <netinet/sctp_header.h> #include <netinet/sctputil.h> #include <netinet/sctp_output.h> #include <netinet/sctp_asconf.h> #include <netinet/sctp_timer.h> /* * debug flags: * SCTP_DEBUG_ASCONF1: protocol info, general info and errors * SCTP_DEBUG_ASCONF2: detailed info */ static void sctp_asconf_get_source_ip(struct mbuf *m, struct sockaddr *sa) { struct ip *iph; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: { /* IPv4 source */ sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_port = 0; sin->sin_addr.s_addr = iph->ip_src.s_addr; break; } #endif #ifdef INET6 case (IPV6_VERSION >> 4): { /* IPv6 source */ struct ip6_hdr *ip6; sin6 = (struct sockaddr_in6 *)sa; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_port = 0; ip6 = mtod(m, struct ip6_hdr *); sin6->sin6_addr = ip6->ip6_src; break; } #endif /* INET6 */ default: break; } return; } /* * draft-ietf-tsvwg-addip-sctp * * An ASCONF parameter queue exists per asoc which holds the pending address * operations. Lists are updated upon receipt of ASCONF-ACK. * * A restricted_addrs list exists per assoc to hold local addresses that are * not (yet) usable by the assoc as a source address. These addresses are * either pending an ASCONF operation (and exist on the ASCONF parameter * queue), or they are permanently restricted (the peer has returned an * ERROR indication to an ASCONF(ADD), or the peer does not support ASCONF). * * Deleted addresses are always immediately removed from the lists as they will * (shortly) no longer exist in the kernel. We send ASCONFs as a courtesy, * only if allowed. */ /* * ASCONF parameter processing. * response_required: set if a reply is required (eg. SUCCESS_REPORT). * returns a mbuf to an "error" response parameter or NULL/"success" if ok. * FIX: allocating this many mbufs on the fly is pretty inefficient... */ static struct mbuf * sctp_asconf_success_response(uint32_t id) { struct mbuf *m_reply = NULL; struct sctp_asconf_paramhdr *aph; m_reply = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_paramhdr), 0, M_DONTWAIT, 1, MT_DATA); if (m_reply == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_success_response: couldn't get mbuf!\n"); return (NULL); } aph = mtod(m_reply, struct sctp_asconf_paramhdr *); aph->correlation_id = id; aph->ph.param_type = htons(SCTP_SUCCESS_REPORT); aph->ph.param_length = sizeof(struct sctp_asconf_paramhdr); SCTP_BUF_LEN(m_reply) = aph->ph.param_length; aph->ph.param_length = htons(aph->ph.param_length); return (m_reply); } static struct mbuf * sctp_asconf_error_response(uint32_t id, uint16_t cause, uint8_t * error_tlv, uint16_t tlv_length) { struct mbuf *m_reply = NULL; struct sctp_asconf_paramhdr *aph; struct sctp_error_cause *error; uint8_t *tlv; m_reply = sctp_get_mbuf_for_msg((sizeof(struct sctp_asconf_paramhdr) + tlv_length + sizeof(struct sctp_error_cause)), 0, M_DONTWAIT, 1, MT_DATA); if (m_reply == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_error_response: couldn't get mbuf!\n"); return (NULL); } aph = mtod(m_reply, struct sctp_asconf_paramhdr *); error = (struct sctp_error_cause *)(aph + 1); aph->correlation_id = id; aph->ph.param_type = htons(SCTP_ERROR_CAUSE_IND); error->code = htons(cause); error->length = tlv_length + sizeof(struct sctp_error_cause); aph->ph.param_length = error->length + sizeof(struct sctp_asconf_paramhdr); if (aph->ph.param_length > MLEN) { SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_error_response: tlv_length (%xh) too big\n", tlv_length); sctp_m_freem(m_reply); /* discard */ return (NULL); } if (error_tlv != NULL) { tlv = (uint8_t *) (error + 1); memcpy(tlv, error_tlv, tlv_length); } SCTP_BUF_LEN(m_reply) = aph->ph.param_length; error->length = htons(error->length); aph->ph.param_length = htons(aph->ph.param_length); return (m_reply); } static struct mbuf * sctp_process_asconf_add_ip(struct mbuf *m, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int send_hb, int response_required) { struct sctp_nets *net; struct mbuf *m_reply = NULL; struct sockaddr_storage sa_source, sa_store; struct sctp_paramhdr *ph; uint16_t param_type, param_length, aparam_length; struct sockaddr *sa; int zero_address = 0; int bad_address = 0; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); param_length = ntohs(ph->param_length); sa = (struct sockaddr *)&sa_store; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = (struct sockaddr_in *)&sa_store; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_port = stcb->rport; sin->sin_addr.s_addr = v4addr->addr; if ((sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { bad_address = 1; } if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: adding "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = (struct sockaddr_in6 *)&sa_store; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_port = stcb->rport; memcpy((caddr_t)&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { bad_address = 1; } if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: adding "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_INVALID_PARAM, (uint8_t *) aph, aparam_length); return (m_reply); } /* end switch */ /* if 0.0.0.0/::0, add the source address instead */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { sa = (struct sockaddr *)&sa_source; sctp_asconf_get_source_ip(m, sa); SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: using source addr "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); } /* add the address */ if (bad_address) { m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_INVALID_PARAM, (uint8_t *) aph, aparam_length); } else if (sctp_add_remote_addr(stcb, sa, &net, SCTP_DONOT_SETSCOPE, SCTP_ADDR_DYNAMIC_ADDED) != 0) { SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_add_ip: error adding address\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_RESOURCE_SHORTAGE, (uint8_t *) aph, aparam_length); } else { /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_ADD_IP, stcb, 0, sa, SCTP_SO_NOT_LOCKED); if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, stcb->sctp_ep, stcb, net); sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, stcb->sctp_ep, stcb, net); if (send_hb) { sctp_send_hb(stcb, net, SCTP_SO_NOT_LOCKED); } } return (m_reply); } static int sctp_asconf_del_remote_addrs_except(struct sctp_tcb *stcb, struct sockaddr *src) { struct sctp_nets *src_net, *net; /* make sure the source address exists as a destination net */ src_net = sctp_findnet(stcb, src); if (src_net == NULL) { /* not found */ return (-1); } /* delete all destination addresses except the source */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net != src_net) { /* delete this address */ sctp_remove_net(stcb, net); SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_del_remote_addrs_except: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, (struct sockaddr *)&net->ro._l_addr); /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_DELETE_IP, stcb, 0, (struct sockaddr *)&net->ro._l_addr, SCTP_SO_NOT_LOCKED); } } return (0); } static struct mbuf * sctp_process_asconf_delete_ip(struct mbuf *m, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int response_required) { struct mbuf *m_reply = NULL; struct sockaddr_storage sa_source, sa_store; struct sctp_paramhdr *ph; uint16_t param_type, param_length, aparam_length; struct sockaddr *sa; int zero_address = 0; int result; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif /* get the source IP address for src and 0.0.0.0/::0 delete checks */ sctp_asconf_get_source_ip(m, (struct sockaddr *)&sa_source); aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); param_length = ntohs(ph->param_length); sa = (struct sockaddr *)&sa_store; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = (struct sockaddr_in *)&sa_store; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_port = stcb->rport; sin->sin_addr.s_addr = v4addr->addr; if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = (struct sockaddr_in6 *)&sa_store; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_port = stcb->rport; memcpy(&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: deleting "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *) aph, aparam_length); return (m_reply); } /* make sure the source address is not being deleted */ if (sctp_cmpaddr(sa, (struct sockaddr *)&sa_source)) { /* trying to delete the source address! */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: tried to delete source addr\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_DELETING_SRC_ADDR, (uint8_t *) aph, aparam_length); return (m_reply); } /* if deleting 0.0.0.0/::0, delete all addresses except src addr */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { result = sctp_asconf_del_remote_addrs_except(stcb, (struct sockaddr *)&sa_source); if (result) { /* src address did not exist? */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: src addr does not exist?\n"); /* what error to reply with?? */ m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_REQUEST_REFUSED, (uint8_t *) aph, aparam_length); } else if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } return (m_reply); } /* delete the address */ result = sctp_del_remote_addr(stcb, sa); /* * note if result == -2, the address doesn't exist in the asoc but * since it's being deleted anyways, we just ack the delete -- but * this probably means something has already gone awry */ if (result == -1) { /* only one address in the asoc */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_delete_ip: tried to delete last IP addr!\n"); m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_DELETING_LAST_ADDR, (uint8_t *) aph, aparam_length); } else { if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_DELETE_IP, stcb, 0, sa, SCTP_SO_NOT_LOCKED); } return (m_reply); } static struct mbuf * sctp_process_asconf_set_primary(struct mbuf *m, struct sctp_asconf_paramhdr *aph, struct sctp_tcb *stcb, int response_required) { struct mbuf *m_reply = NULL; struct sockaddr_storage sa_source, sa_store; struct sctp_paramhdr *ph; uint16_t param_type, param_length, aparam_length; struct sockaddr *sa; int zero_address = 0; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *v4addr; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *v6addr; #endif aparam_length = ntohs(aph->ph.param_length); ph = (struct sctp_paramhdr *)(aph + 1); param_type = ntohs(ph->param_type); param_length = ntohs(ph->param_length); sa = (struct sockaddr *)&sa_store; switch (param_type) { #ifdef INET case SCTP_IPV4_ADDRESS: if (param_length != sizeof(struct sctp_ipv4addr_param)) { /* invalid param size */ return (NULL); } v4addr = (struct sctp_ipv4addr_param *)ph; sin = (struct sockaddr_in *)&sa_store; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = v4addr->addr; if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (param_length != sizeof(struct sctp_ipv6addr_param)) { /* invalid param size */ return (NULL); } v6addr = (struct sctp_ipv6addr_param *)ph; sin6 = (struct sockaddr_in6 *)&sa_store; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); memcpy((caddr_t)&sin6->sin6_addr, v6addr->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); break; #endif default: m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *) aph, aparam_length); return (m_reply); } /* if 0.0.0.0/::0, use the source address instead */ if (zero_address && SCTP_BASE_SYSCTL(sctp_nat_friendly)) { sa = (struct sockaddr *)&sa_source; sctp_asconf_get_source_ip(m, sa); SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: using source addr "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); } /* set the primary address */ if (sctp_set_primary_addr(stcb, sa, NULL) == 0) { SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: primary address set\n"); /* notify upper layer */ sctp_ulp_notify(SCTP_NOTIFY_ASCONF_SET_PRIMARY, stcb, 0, sa, SCTP_SO_NOT_LOCKED); if ((stcb->asoc.primary_destination->dest_state & SCTP_ADDR_REACHABLE) && (!(stcb->asoc.primary_destination->dest_state & SCTP_ADDR_PF)) && (stcb->asoc.alternate)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } if (response_required) { m_reply = sctp_asconf_success_response(aph->correlation_id); } /* * Mobility adaptation. Ideally, when the reception of SET * PRIMARY with DELETE IP ADDRESS of the previous primary * destination, unacknowledged DATA are retransmitted * immediately to the new primary destination for seamless * handover. If the destination is UNCONFIRMED and marked to * REQ_PRIM, The retransmission occur when reception of the * HEARTBEAT-ACK. (See sctp_handle_heartbeat_ack in * sctp_input.c) Also, when change of the primary * destination, it is better that all subsequent new DATA * containing already queued DATA are transmitted to the new * primary destination. (by micchie) */ if ((sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) && sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED) && (stcb->asoc.primary_destination->dest_state & SCTP_ADDR_UNCONFIRMED) == 0) { sctp_timer_stop(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTP_TIMER + SCTP_LOC_7); if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_assoc_immediate_retrans(stcb, stcb->asoc.primary_destination); } if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE)) { sctp_move_chunks_from_net(stcb, stcb->asoc.deleted_primary); } sctp_delete_prim_timer(stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); } } else { /* couldn't set the requested primary address! */ SCTPDBG(SCTP_DEBUG_ASCONF1, "process_asconf_set_primary: set primary failed!\n"); /* must have been an invalid address, so report */ m_reply = sctp_asconf_error_response(aph->correlation_id, SCTP_CAUSE_UNRESOLVABLE_ADDR, (uint8_t *) aph, aparam_length); } return (m_reply); } /* * handles an ASCONF chunk. * if all parameters are processed ok, send a plain (empty) ASCONF-ACK */ void sctp_handle_asconf(struct mbuf *m, unsigned int offset, struct sctp_asconf_chunk *cp, struct sctp_tcb *stcb, int first) { struct sctp_association *asoc; uint32_t serial_num; struct mbuf *n, *m_ack, *m_result, *m_tail; struct sctp_asconf_ack_chunk *ack_cp; struct sctp_asconf_paramhdr *aph, *ack_aph; struct sctp_ipv6addr_param *p_addr; unsigned int asconf_limit, cnt; int error = 0; /* did an error occur? */ /* asconf param buffer */ uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; struct sctp_asconf_ack *ack, *ack_next; /* verify minimum length */ if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_asconf_chunk)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: chunk too small = %xh\n", ntohs(cp->ch.chunk_length)); return; } asoc = &stcb->asoc; serial_num = ntohl(cp->serial_number); if (SCTP_TSN_GE(asoc->asconf_seq_in, serial_num)) { /* got a duplicate ASCONF */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: got duplicate serial number = %xh\n", serial_num); return; } else if (serial_num != (asoc->asconf_seq_in + 1)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: incorrect serial number = %xh (expected next = %xh)\n", serial_num, asoc->asconf_seq_in + 1); return; } /* it's the expected "next" sequence number, so process it */ asoc->asconf_seq_in = serial_num; /* update sequence */ /* get length of all the param's in the ASCONF */ asconf_limit = offset + ntohs(cp->ch.chunk_length); SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: asconf_limit=%u, sequence=%xh\n", asconf_limit, serial_num); if (first) { /* delete old cache */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: Now processing first ASCONF. Try to delete old cache\n"); TAILQ_FOREACH_SAFE(ack, &asoc->asconf_ack_sent, next, ack_next) { if (ack->serial_number == serial_num) break; SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: delete old(%u) < first(%u)\n", ack->serial_number, serial_num); TAILQ_REMOVE(&asoc->asconf_ack_sent, ack, next); if (ack->data != NULL) { sctp_m_freem(ack->data); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asconf_ack), ack); } } m_ack = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_ack_chunk), 0, M_DONTWAIT, 1, MT_DATA); if (m_ack == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get mbuf!\n"); return; } m_tail = m_ack; /* current reply chain's tail */ /* fill in ASCONF-ACK header */ ack_cp = mtod(m_ack, struct sctp_asconf_ack_chunk *); ack_cp->ch.chunk_type = SCTP_ASCONF_ACK; ack_cp->ch.chunk_flags = 0; ack_cp->serial_number = htonl(serial_num); /* set initial lengths (eg. just an ASCONF-ACK), ntohx at the end! */ SCTP_BUF_LEN(m_ack) = sizeof(struct sctp_asconf_ack_chunk); ack_cp->ch.chunk_length = sizeof(struct sctp_asconf_ack_chunk); /* skip the lookup address parameter */ offset += sizeof(struct sctp_asconf_chunk); p_addr = (struct sctp_ipv6addr_param *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *) & aparam_buf); if (p_addr == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get lookup addr!\n"); /* respond with a missing/invalid mandatory parameter error */ return; } /* param_length is already validated in process_control... */ offset += ntohs(p_addr->ph.param_length); /* skip lookup addr */ /* get pointer to first asconf param in ASCONF-ACK */ ack_aph = (struct sctp_asconf_paramhdr *)(mtod(m_ack, caddr_t)+sizeof(struct sctp_asconf_ack_chunk)); if (ack_aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "Gak in asconf2\n"); return; } /* get pointer to first asconf param in ASCONF */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), (uint8_t *) & aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "Empty ASCONF received?\n"); goto send_reply; } /* process through all parameters */ cnt = 0; while (aph != NULL) { unsigned int param_length, param_type; param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (offset + param_length > asconf_limit) { /* parameter goes beyond end of chunk! */ sctp_m_freem(m_ack); return; } m_result = NULL; if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: param length (%u) larger than buffer size!\n", param_length); sctp_m_freem(m_ack); return; } if (param_length <= sizeof(struct sctp_paramhdr)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: param length (%u) too short\n", param_length); sctp_m_freem(m_ack); } /* get the entire parameter */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, param_length, aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: couldn't get entire param\n"); sctp_m_freem(m_ack); return; } switch (param_type) { case SCTP_ADD_IP_ADDRESS: asoc->peer_supports_asconf = 1; m_result = sctp_process_asconf_add_ip(m, aph, stcb, (cnt < SCTP_BASE_SYSCTL(sctp_hb_maxburst)), error); cnt++; break; case SCTP_DEL_IP_ADDRESS: asoc->peer_supports_asconf = 1; m_result = sctp_process_asconf_delete_ip(m, aph, stcb, error); break; case SCTP_ERROR_CAUSE_IND: /* not valid in an ASCONF chunk */ break; case SCTP_SET_PRIM_ADDR: asoc->peer_supports_asconf = 1; m_result = sctp_process_asconf_set_primary(m, aph, stcb, error); break; case SCTP_NAT_VTAGS: SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: sees a NAT VTAG state parameter\n"); break; case SCTP_SUCCESS_REPORT: /* not valid in an ASCONF chunk */ break; case SCTP_ULP_ADAPTATION: /* FIX */ break; default: if ((param_type & 0x8000) == 0) { /* Been told to STOP at this param */ asconf_limit = offset; /* * FIX FIX - We need to call * sctp_arethere_unrecognized_parameters() * to get a operr and send it for any * param's with the 0x4000 bit set OR do it * here ourselves... note we still must STOP * if the 0x8000 bit is clear. */ } /* unknown/invalid param type */ break; } /* switch */ /* add any (error) result to the reply mbuf chain */ if (m_result != NULL) { SCTP_BUF_NEXT(m_tail) = m_result; m_tail = m_result; /* update lengths, make sure it's aligned too */ SCTP_BUF_LEN(m_result) = SCTP_SIZE32(SCTP_BUF_LEN(m_result)); ack_cp->ch.chunk_length += SCTP_BUF_LEN(m_result); /* set flag to force success reports */ error = 1; } offset += SCTP_SIZE32(param_length); /* update remaining ASCONF message length to process */ if (offset >= asconf_limit) { /* no more data in the mbuf chain */ break; } /* get pointer to next asconf param */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), (uint8_t *) & aparam_buf); if (aph == NULL) { /* can't get an asconf paramhdr */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: can't get asconf param hdr!\n"); /* FIX ME - add error here... */ } } send_reply: ack_cp->ch.chunk_length = htons(ack_cp->ch.chunk_length); /* save the ASCONF-ACK reply */ ack = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_asconf_ack), struct sctp_asconf_ack); if (ack == NULL) { sctp_m_freem(m_ack); return; } ack->serial_number = serial_num; ack->last_sent_to = NULL; ack->data = m_ack; ack->len = 0; for (n = m_ack; n != NULL; n = SCTP_BUF_NEXT(n)) { ack->len += SCTP_BUF_LEN(n); } TAILQ_INSERT_TAIL(&stcb->asoc.asconf_ack_sent, ack, next); /* see if last_control_chunk_from is set properly (use IP src addr) */ if (stcb->asoc.last_control_chunk_from == NULL) { /* * this could happen if the source address was just newly * added */ struct sockaddr_storage addr; struct sockaddr *src = (struct sockaddr *)&addr; SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: looking up net for IP source address\n"); sctp_asconf_get_source_ip(m, src); SCTPDBG(SCTP_DEBUG_ASCONF1, "Looking for IP source: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, src); /* look up the from address */ stcb->asoc.last_control_chunk_from = sctp_findnet(stcb, src); #ifdef SCTP_DEBUG if (stcb->asoc.last_control_chunk_from == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf: IP source address not found?!\n"); } #endif } } /* * does the address match? returns 0 if not, 1 if so */ static uint32_t sctp_asconf_addr_match(struct sctp_asconf_addr *aa, struct sockaddr *sa) { switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* XXX scopeid */ struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; if ((aa->ap.addrp.ph.param_type == SCTP_IPV6_ADDRESS) && (memcmp(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)) == 0)) { return (1); } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; if ((aa->ap.addrp.ph.param_type == SCTP_IPV4_ADDRESS) && (memcmp(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)) == 0)) { return (1); } break; } #endif default: break; } return (0); } /* * does the address match? returns 0 if not, 1 if so */ static uint32_t sctp_addr_match(struct sctp_paramhdr *ph, struct sockaddr *sa) { uint16_t param_type, param_length; param_type = ntohs(ph->param_type); param_length = ntohs(ph->param_length); switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* XXX scopeid */ struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; struct sctp_ipv6addr_param *v6addr; v6addr = (struct sctp_ipv6addr_param *)ph; if ((param_type == SCTP_IPV6_ADDRESS) && param_length == sizeof(struct sctp_ipv6addr_param) && (memcmp(&v6addr->addr, &sin6->sin6_addr, sizeof(struct in6_addr)) == 0)) { return (1); } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; struct sctp_ipv4addr_param *v4addr; v4addr = (struct sctp_ipv4addr_param *)ph; if ((param_type == SCTP_IPV4_ADDRESS) && param_length == sizeof(struct sctp_ipv4addr_param) && (memcmp(&v4addr->addr, &sin->sin_addr, sizeof(struct in_addr)) == 0)) { return (1); } break; } #endif default: break; } return (0); } /* * Cleanup for non-responded/OP ERR'd ASCONF */ void sctp_asconf_cleanup(struct sctp_tcb *stcb, struct sctp_nets *net) { /* mark peer as ASCONF incapable */ stcb->asoc.peer_supports_asconf = 0; /* * clear out any existing asconfs going out */ sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_2); stcb->asoc.asconf_seq_out_acked = stcb->asoc.asconf_seq_out; /* remove the old ASCONF on our outbound queue */ sctp_toss_old_asconf(stcb); } /* * cleanup any cached source addresses that may be topologically * incorrect after a new address has been added to this interface. */ static void sctp_asconf_nets_cleanup(struct sctp_tcb *stcb, struct sctp_ifn *ifn) { struct sctp_nets *net; /* * Ideally, we want to only clear cached routes and source addresses * that are topologically incorrect. But since there is no easy way * to know whether the newly added address on the ifn would cause a * routing change (i.e. a new egress interface would be chosen) * without doing a new routing lookup and source address selection, * we will (for now) just flush any cached route using a different * ifn (and cached source addrs) and let output re-choose them * during the next send on that net. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* * clear any cached route (and cached source address) if the * route's interface is NOT the same as the address change. * If it's the same interface, just clear the cached source * address. */ if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro) && ((ifn == NULL) || (SCTP_GET_IF_INDEX_FROM_ROUTE(&net->ro) != ifn->ifn_index))) { /* clear any cached route */ RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } /* clear any cached source address */ if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } } } void sctp_assoc_immediate_retrans(struct sctp_tcb *stcb, struct sctp_nets *dstnet) { int error; if (dstnet->dest_state & SCTP_ADDR_UNCONFIRMED) { return; } if (stcb->asoc.deleted_primary == NULL) { return; } if (!TAILQ_EMPTY(&stcb->asoc.sent_queue)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "assoc_immediate_retrans: Deleted primary is "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &stcb->asoc.deleted_primary->ro._l_addr.sa); SCTPDBG(SCTP_DEBUG_ASCONF1, "Current Primary is "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &stcb->asoc.primary_destination->ro._l_addr.sa); sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, stcb->asoc.deleted_primary, SCTP_FROM_SCTP_TIMER + SCTP_LOC_8); stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } SCTP_TCB_LOCK_ASSERT(stcb); error = sctp_t3rxt_timer(stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); if (error) { SCTP_INP_DECR_REF(stcb->sctp_ep); return; } SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, stcb->sctp_ep, stcb, stcb->asoc.deleted_primary); #endif sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); if ((stcb->asoc.num_send_timers_up == 0) && (stcb->asoc.sent_queue_cnt > 0)) { struct sctp_tmit_chunk *chk; chk = TAILQ_FIRST(&stcb->asoc.sent_queue); sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo); } } return; } static int sctp_asconf_queue_mgmt(struct sctp_tcb *, struct sctp_ifa *, uint16_t); void sctp_net_immediate_retrans(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_tmit_chunk *chk; SCTPDBG(SCTP_DEBUG_ASCONF1, "net_immediate_retrans: RTO is %d\n", net->RTO); sctp_timer_stop(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_TIMER + SCTP_LOC_5); stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->error_count = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->whoTo == net) { if (chk->sent < SCTP_DATAGRAM_RESEND) { chk->sent = SCTP_DATAGRAM_RESEND; sctp_ucount_incr(stcb->asoc.sent_queue_retran_cnt); sctp_flight_size_decrease(chk); sctp_total_flight_decrease(stcb, chk); net->marked_retrans++; stcb->asoc.marked_retrans++; } } } if (net->marked_retrans) { sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); } } static void sctp_path_check_and_react(struct sctp_tcb *stcb, struct sctp_ifa *newifa) { struct sctp_nets *net; int addrnum, changed; /* * If number of local valid addresses is 1, the valid address is * probably newly added address. Several valid addresses in this * association. A source address may not be changed. Additionally, * they can be configured on a same interface as "alias" addresses. * (by micchie) */ addrnum = sctp_local_addr_count(stcb); SCTPDBG(SCTP_DEBUG_ASCONF1, "p_check_react(): %d local addresses\n", addrnum); if (addrnum == 1) { TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* clear any cached route and source address */ if (net->ro.ro_rt) { RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } /* Retransmit unacknowledged DATA chunks immediately */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_net_immediate_retrans(stcb, net); } /* also, SET PRIMARY is maybe already sent */ } return; } /* Multiple local addresses exsist in the association. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* clear any cached route and source address */ if (net->ro.ro_rt) { RTFREE(net->ro.ro_rt); net->ro.ro_rt = NULL; } if (net->src_addr_selected) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } /* * Check if the nexthop is corresponding to the new address. * If the new address is corresponding to the current * nexthop, the path will be changed. If the new address is * NOT corresponding to the current nexthop, the path will * not be changed. */ SCTP_RTALLOC((sctp_route_t *) & net->ro, stcb->sctp_ep->def_vrf_id); if (net->ro.ro_rt == NULL) continue; changed = 0; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: if (sctp_v4src_match_nexthop(newifa, (sctp_route_t *) & net->ro)) { changed = 1; } break; #endif #ifdef INET6 case AF_INET6: if (sctp_v6src_match_nexthop( &newifa->address.sin6, (sctp_route_t *) & net->ro)) { changed = 1; } break; #endif default: break; } /* * if the newly added address does not relate routing * information, we skip. */ if (changed == 0) continue; /* Retransmit unacknowledged DATA chunks immediately */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_net_immediate_retrans(stcb, net); } /* Send SET PRIMARY for this new address */ if (net == stcb->asoc.primary_destination) { (void)sctp_asconf_queue_mgmt(stcb, newifa, SCTP_SET_PRIM_ADDR); } } } /* * process an ADD/DELETE IP ack from peer. * addr: corresponding sctp_ifa to the address being added/deleted. * type: SCTP_ADD_IP_ADDRESS or SCTP_DEL_IP_ADDRESS. * flag: 1=success, 0=failure. */ static void sctp_asconf_addr_mgmt_ack(struct sctp_tcb *stcb, struct sctp_ifa *addr, uint32_t flag) { /* * do the necessary asoc list work- if we get a failure indication, * leave the address on the assoc's restricted list. If we get a * success indication, remove the address from the restricted list. */ /* * Note: this will only occur for ADD_IP_ADDRESS, since * DEL_IP_ADDRESS is never actually added to the list... */ if (flag) { /* success case, so remove from the restricted list */ sctp_del_local_addr_restricted(stcb, addr); if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { sctp_path_check_and_react(stcb, addr); return; } /* clear any cached/topologically incorrect source addresses */ sctp_asconf_nets_cleanup(stcb, addr->ifn_p); } /* else, leave it on the list */ } /* * add an asconf add/delete/set primary IP address parameter to the queue. * type = SCTP_ADD_IP_ADDRESS, SCTP_DEL_IP_ADDRESS, SCTP_SET_PRIM_ADDR. * returns 0 if queued, -1 if not queued/removed. * NOTE: if adding, but a delete for the same address is already scheduled * (and not yet sent out), simply remove it from queue. Same for deleting * an address already scheduled for add. If a duplicate operation is found, * ignore the new one. */ static int sctp_asconf_queue_mgmt(struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type) { struct sctp_asconf_addr *aa, *aa_next; struct sockaddr *sa; /* make sure the request isn't already in the queue */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { /* address match? */ if (sctp_asconf_addr_match(aa, &ifa->address.sa) == 0) continue; /* * is the request already in queue but not sent? pass the * request already sent in order to resolve the following * case: 1. arrival of ADD, then sent 2. arrival of DEL. we * can't remove the ADD request already sent 3. arrival of * ADD */ if (aa->ap.aph.ph.param_type == type && aa->sent == 0) { return (-1); } /* is the negative request already in queue, and not sent */ if ((aa->sent == 0) && (type == SCTP_ADD_IP_ADDRESS) && (aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS)) { /* add requested, delete already queued */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); /* remove the ifa from the restricted list */ sctp_del_local_addr_restricted(stcb, ifa); /* free the asconf param */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_mgmt: add removes queued entry\n"); return (-1); } if ((aa->sent == 0) && (type == SCTP_DEL_IP_ADDRESS) && (aa->ap.aph.ph.param_type == SCTP_ADD_IP_ADDRESS)) { /* delete requested, add already queued */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); /* remove the aa->ifa from the restricted list */ sctp_del_local_addr_restricted(stcb, aa->ifa); /* free the asconf param */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_mgmt: delete removes queued entry\n"); return (-1); } } /* for each aa */ /* adding new request to the queue */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_queue_mgmt: failed to get memory!\n"); return (-1); } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ap.aph.ph.param_type = type; aa->ifa = ifa; atomic_add_int(&ifa->refcount, 1); /* correlation_id filled in during send routine later... */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&ifa->address.sa; sa = (struct sockaddr *)sin6; aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv6addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv6addr_param); memcpy(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)); break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&ifa->address.sa; sa = (struct sockaddr *)sin; aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv4addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv4addr_param); memcpy(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)); break; } #endif default: /* invalid family! */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); sctp_free_ifa(ifa); return (-1); } aa->sent = 0; /* clear sent flag */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); #ifdef SCTP_DEBUG if (SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_ASCONF2) { if (type == SCTP_ADD_IP_ADDRESS) { SCTP_PRINTF("asconf_queue_mgmt: inserted asconf ADD_IP_ADDRESS: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, sa); } else if (type == SCTP_DEL_IP_ADDRESS) { SCTP_PRINTF("asconf_queue_mgmt: appended asconf DEL_IP_ADDRESS: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, sa); } else { SCTP_PRINTF("asconf_queue_mgmt: appended asconf SET_PRIM_ADDR: "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, sa); } } #endif return (0); } /* * add an asconf operation for the given ifa and type. * type = SCTP_ADD_IP_ADDRESS, SCTP_DEL_IP_ADDRESS, SCTP_SET_PRIM_ADDR. * returns 0 if completed, -1 if not completed, 1 if immediate send is * advisable. */ static int sctp_asconf_queue_add(struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type) { uint32_t status; int pending_delete_queued = 0; /* see if peer supports ASCONF */ if (stcb->asoc.peer_supports_asconf == 0) { return (-1); } /* * if this is deleting the last address from the assoc, mark it as * pending. */ if ((type == SCTP_DEL_IP_ADDRESS) && !stcb->asoc.asconf_del_pending && (sctp_local_addr_count(stcb) < 2)) { /* set the pending delete info only */ stcb->asoc.asconf_del_pending = 1; stcb->asoc.asconf_addr_del_pending = ifa; atomic_add_int(&ifa->refcount, 1); SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_add: mark delete last address pending\n"); return (-1); } /* queue an asconf parameter */ status = sctp_asconf_queue_mgmt(stcb, ifa, type); /* * if this is an add, and there is a delete also pending (i.e. the * last local address is being changed), queue the pending delete * too. */ if ((type == SCTP_ADD_IP_ADDRESS) && stcb->asoc.asconf_del_pending && (status == 0)) { /* queue in the pending delete */ if (sctp_asconf_queue_mgmt(stcb, stcb->asoc.asconf_addr_del_pending, SCTP_DEL_IP_ADDRESS) == 0) { SCTPDBG(SCTP_DEBUG_ASCONF2, "asconf_queue_add: queing pending delete\n"); pending_delete_queued = 1; /* clear out the pending delete info */ stcb->asoc.asconf_del_pending = 0; sctp_free_ifa(stcb->asoc.asconf_addr_del_pending); stcb->asoc.asconf_addr_del_pending = NULL; } } if (pending_delete_queued) { struct sctp_nets *net; /* * since we know that the only/last address is now being * changed in this case, reset the cwnd/rto on all nets to * start as a new address and path. Also clear the error * counts to give the assoc the best chance to complete the * address change. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->RTO = 0; net->error_count = 0; } stcb->asoc.overall_error_count = 0; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_THRESHOLD_LOGGING) { sctp_misc_ints(SCTP_THRESHOLD_CLEAR, stcb->asoc.overall_error_count, 0, SCTP_FROM_SCTP_ASCONF, __LINE__); } /* queue in an advisory set primary too */ (void)sctp_asconf_queue_mgmt(stcb, ifa, SCTP_SET_PRIM_ADDR); /* let caller know we should send this out immediately */ status = 1; } return (status); } /*- * add an asconf delete IP address parameter to the queue by sockaddr and * possibly with no sctp_ifa available. This is only called by the routine * that checks the addresses in an INIT-ACK against the current address list. * returns 0 if completed, non-zero if not completed. * NOTE: if an add is already scheduled (and not yet sent out), simply * remove it from queue. If a duplicate operation is found, ignore the * new one. */ static int sctp_asconf_queue_sa_delete(struct sctp_tcb *stcb, struct sockaddr *sa) { struct sctp_ifa *ifa; struct sctp_asconf_addr *aa, *aa_next; uint32_t vrf_id; if (stcb == NULL) { return (-1); } /* see if peer supports ASCONF */ if (stcb->asoc.peer_supports_asconf == 0) { return (-1); } /* make sure the request isn't already in the queue */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { /* address match? */ if (sctp_asconf_addr_match(aa, sa) == 0) continue; /* is the request already in queue (sent or not) */ if (aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS) { return (-1); } /* is the negative request already in queue, and not sent */ if (aa->sent == 1) continue; if (aa->ap.aph.ph.param_type == SCTP_ADD_IP_ADDRESS) { /* add already queued, so remove existing entry */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aa, next); sctp_del_local_addr_restricted(stcb, aa->ifa); /* free the entry */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); return (-1); } } /* for each aa */ /* find any existing ifa-- NOTE ifa CAN be allowed to be NULL */ if (stcb) { vrf_id = stcb->asoc.vrf_id; } else { vrf_id = SCTP_DEFAULT_VRFID; } ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); /* adding new request to the queue */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_queue_sa_delete: failed to get memory!\n"); return (-1); } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ap.aph.ph.param_type = SCTP_DEL_IP_ADDRESS; aa->ifa = ifa; if (ifa) atomic_add_int(&ifa->refcount, 1); /* correlation_id filled in during send routine later... */ switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { /* IPv6 address */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv6addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv6addr_param); memcpy(&aa->ap.addrp.addr, &sin6->sin6_addr, sizeof(struct in6_addr)); break; } #endif #ifdef INET case AF_INET: { /* IPv4 address */ struct sockaddr_in *sin = (struct sockaddr_in *)sa; aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = (sizeof(struct sctp_ipv4addr_param)); aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_paramhdr) + sizeof(struct sctp_ipv4addr_param); memcpy(&aa->ap.addrp.addr, &sin->sin_addr, sizeof(struct in_addr)); break; } #endif default: /* invalid family! */ SCTP_FREE(aa, SCTP_M_ASC_ADDR); if (ifa) sctp_free_ifa(ifa); return (-1); } aa->sent = 0; /* clear sent flag */ /* delete goes to the back of the queue */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); /* sa_ignore MEMLEAK {memory is put on the tailq} */ return (0); } /* * find a specific asconf param on our "sent" queue */ static struct sctp_asconf_addr * sctp_asconf_find_param(struct sctp_tcb *stcb, uint32_t correlation_id) { struct sctp_asconf_addr *aa; TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->ap.aph.correlation_id == correlation_id && aa->sent == 1) { /* found it */ return (aa); } } /* didn't find it */ return (NULL); } /* * process an SCTP_ERROR_CAUSE_IND for a ASCONF-ACK parameter and do * notifications based on the error response */ static void sctp_asconf_process_error(struct sctp_tcb *stcb, struct sctp_asconf_paramhdr *aph) { struct sctp_error_cause *eh; struct sctp_paramhdr *ph; uint16_t param_type; uint16_t error_code; eh = (struct sctp_error_cause *)(aph + 1); ph = (struct sctp_paramhdr *)(eh + 1); /* validate lengths */ if (htons(eh->length) + sizeof(struct sctp_error_cause) > htons(aph->ph.param_length)) { /* invalid error cause length */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_process_error: cause element too long\n"); return; } if (htons(ph->param_length) + sizeof(struct sctp_paramhdr) > htons(eh->length)) { /* invalid included TLV length */ SCTPDBG(SCTP_DEBUG_ASCONF1, "asconf_process_error: included TLV too long\n"); return; } /* which error code ? */ error_code = ntohs(eh->code); param_type = ntohs(aph->ph.param_type); /* FIX: this should go back up the REMOTE_ERROR ULP notify */ switch (error_code) { case SCTP_CAUSE_RESOURCE_SHORTAGE: /* we allow ourselves to "try again" for this error */ break; default: /* peer can't handle it... */ switch (param_type) { case SCTP_ADD_IP_ADDRESS: case SCTP_DEL_IP_ADDRESS: stcb->asoc.peer_supports_asconf = 0; break; case SCTP_SET_PRIM_ADDR: stcb->asoc.peer_supports_asconf = 0; break; default: break; } } } /* * process an asconf queue param. * aparam: parameter to process, will be removed from the queue. * flag: 1=success case, 0=failure case */ static void sctp_asconf_process_param_ack(struct sctp_tcb *stcb, struct sctp_asconf_addr *aparam, uint32_t flag) { uint16_t param_type; /* process this param */ param_type = aparam->ap.aph.ph.param_type; switch (param_type) { case SCTP_ADD_IP_ADDRESS: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: added IP address\n"); sctp_asconf_addr_mgmt_ack(stcb, aparam->ifa, flag); break; case SCTP_DEL_IP_ADDRESS: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: deleted IP address\n"); /* nothing really to do... lists already updated */ break; case SCTP_SET_PRIM_ADDR: SCTPDBG(SCTP_DEBUG_ASCONF1, "process_param_ack: set primary IP address\n"); /* nothing to do... peer may start using this addr */ if (flag == 0) stcb->asoc.peer_supports_asconf = 0; break; default: /* should NEVER happen */ break; } /* remove the param and free it */ TAILQ_REMOVE(&stcb->asoc.asconf_queue, aparam, next); if (aparam->ifa) sctp_free_ifa(aparam->ifa); SCTP_FREE(aparam, SCTP_M_ASC_ADDR); } /* * cleanup from a bad asconf ack parameter */ static void sctp_asconf_ack_clear(struct sctp_tcb *stcb) { /* assume peer doesn't really know how to do asconfs */ stcb->asoc.peer_supports_asconf = 0; /* XXX we could free the pending queue here */ } void sctp_handle_asconf_ack(struct mbuf *m, int offset, struct sctp_asconf_ack_chunk *cp, struct sctp_tcb *stcb, struct sctp_nets *net, int *abort_no_unlock) { struct sctp_association *asoc; uint32_t serial_num; uint16_t ack_length; struct sctp_asconf_paramhdr *aph; struct sctp_asconf_addr *aa, *aa_next; uint32_t last_error_id = 0; /* last error correlation id */ uint32_t id; struct sctp_asconf_addr *ap; /* asconf param buffer */ uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; /* verify minimum length */ if (ntohs(cp->ch.chunk_length) < sizeof(struct sctp_asconf_ack_chunk)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: chunk too small = %xh\n", ntohs(cp->ch.chunk_length)); return; } asoc = &stcb->asoc; serial_num = ntohl(cp->serial_number); /* * NOTE: we may want to handle this differently- currently, we will * abort when we get an ack for the expected serial number + 1 (eg. * we didn't send it), process an ack normally if it is the expected * serial number, and re-send the previous ack for *ALL* other * serial numbers */ /* * if the serial number is the next expected, but I didn't send it, * abort the asoc, since someone probably just hijacked us... */ if (serial_num == (asoc->asconf_seq_out + 1)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: got unexpected next serial number! Aborting asoc!\n"); sctp_abort_an_association(stcb->sctp_ep, stcb, NULL, SCTP_SO_NOT_LOCKED); *abort_no_unlock = 1; return; } if (serial_num != asoc->asconf_seq_out_acked + 1) { /* got a duplicate/unexpected ASCONF-ACK */ SCTPDBG(SCTP_DEBUG_ASCONF1, "handle_asconf_ack: got duplicate/unexpected serial number = %xh (expected = %xh)\n", serial_num, asoc->asconf_seq_out_acked + 1); return; } if (serial_num == asoc->asconf_seq_out - 1) { /* stop our timer */ sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net, SCTP_FROM_SCTP_ASCONF + SCTP_LOC_3); } /* process the ASCONF-ACK contents */ ack_length = ntohs(cp->ch.chunk_length) - sizeof(struct sctp_asconf_ack_chunk); offset += sizeof(struct sctp_asconf_ack_chunk); /* process through all parameters */ while (ack_length >= sizeof(struct sctp_asconf_paramhdr)) { unsigned int param_length, param_type; /* get pointer to next asconf parameter */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); if (aph == NULL) { /* can't get an asconf paramhdr */ sctp_asconf_ack_clear(stcb); return; } param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (param_length > ack_length) { sctp_asconf_ack_clear(stcb); return; } if (param_length < sizeof(struct sctp_paramhdr)) { sctp_asconf_ack_clear(stcb); return; } /* get the complete parameter... */ if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "param length (%u) larger than buffer size!\n", param_length); sctp_asconf_ack_clear(stcb); return; } aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(m, offset, param_length, aparam_buf); if (aph == NULL) { sctp_asconf_ack_clear(stcb); return; } /* correlation_id is transparent to peer, no ntohl needed */ id = aph->correlation_id; switch (param_type) { case SCTP_ERROR_CAUSE_IND: last_error_id = id; /* find the corresponding asconf param in our queue */ ap = sctp_asconf_find_param(stcb, id); if (ap == NULL) { /* hmm... can't find this in our queue! */ break; } /* process the parameter, failed flag */ sctp_asconf_process_param_ack(stcb, ap, 0); /* process the error response */ sctp_asconf_process_error(stcb, aph); break; case SCTP_SUCCESS_REPORT: /* find the corresponding asconf param in our queue */ ap = sctp_asconf_find_param(stcb, id); if (ap == NULL) { /* hmm... can't find this in our queue! */ break; } /* process the parameter, success flag */ sctp_asconf_process_param_ack(stcb, ap, 1); break; default: break; } /* switch */ /* update remaining ASCONF-ACK message length to process */ ack_length -= SCTP_SIZE32(param_length); if (ack_length <= 0) { /* no more data in the mbuf chain */ break; } offset += SCTP_SIZE32(param_length); } /* while */ /* * if there are any "sent" params still on the queue, these are * implicitly "success", or "failed" (if we got an error back) ... * so process these appropriately * * we assume that the correlation_id's are monotonically increasing * beginning from 1 and that we don't have *that* many outstanding * at any given time */ if (last_error_id == 0) last_error_id--;/* set to "max" value */ TAILQ_FOREACH_SAFE(aa, &stcb->asoc.asconf_queue, next, aa_next) { if (aa->sent == 1) { /* * implicitly successful or failed if correlation_id * < last_error_id, then success else, failure */ if (aa->ap.aph.correlation_id < last_error_id) sctp_asconf_process_param_ack(stcb, aa, 1); else sctp_asconf_process_param_ack(stcb, aa, 0); } else { /* * since we always process in order (FIFO queue) if * we reach one that hasn't been sent, the rest * should not have been sent either. so, we're * done... */ break; } } /* update the next sequence number to use */ asoc->asconf_seq_out_acked++; /* remove the old ASCONF on our outbound queue */ sctp_toss_old_asconf(stcb); if (!TAILQ_EMPTY(&stcb->asoc.asconf_queue)) { #ifdef SCTP_TIMER_BASED_ASCONF /* we have more params, so restart our timer */ sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, net); #else /* we have more params, so send out more */ sctp_send_asconf(stcb, net, SCTP_ADDR_NOT_LOCKED); #endif } } #ifdef INET6 static uint32_t sctp_is_scopeid_in_nets(struct sctp_tcb *stcb, struct sockaddr *sa) { struct sockaddr_in6 *sin6, *net6; struct sctp_nets *net; if (sa->sa_family != AF_INET6) { /* wrong family */ return (0); } sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) == 0) { /* not link local address */ return (0); } /* hunt through our destination nets list for this scope_id */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (((struct sockaddr *)(&net->ro._l_addr))->sa_family != AF_INET6) continue; net6 = (struct sockaddr_in6 *)&net->ro._l_addr; if (IN6_IS_ADDR_LINKLOCAL(&net6->sin6_addr) == 0) continue; if (sctp_is_same_scope(sin6, net6)) { /* found one */ return (1); } } /* didn't find one */ return (0); } #endif /* * address management functions */ static void sctp_addr_mgmt_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_ifa *ifa, uint16_t type, int addr_locked) { int status; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0 || sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { /* subset bound, no ASCONF allowed case, so ignore */ return; } /* * note: we know this is not the subset bound, no ASCONF case eg. * this is boundall or subset bound w/ASCONF allowed */ /* first, make sure it's a good address family */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: break; #endif #ifdef INET case AF_INET: break; #endif default: return; } #ifdef INET6 /* make sure we're "allowed" to add this type of addr */ if (ifa->address.sa.sa_family == AF_INET6) { /* invalid if we're not a v6 endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) return; /* is the v6 addr really valid ? */ if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { return; } } #endif /* put this address on the "pending/do not use yet" list */ sctp_add_local_addr_restricted(stcb, ifa); /* * check address scope if address is out of scope, don't queue * anything... note: this would leave the address on both inp and * asoc lists */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* we skip unspecifed addresses */ return; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (stcb->asoc.local_scope == 0) { return; } /* is it the right link local scope? */ if (sctp_is_scopeid_in_nets(stcb, &ifa->address.sa) == 0) { return; } } if (stcb->asoc.site_scope == 0 && IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) { return; } break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; struct in6pcb *inp6; inp6 = (struct in6pcb *)&inp->ip_inp.inp; /* invalid if we are a v6 only endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) return; sin = (struct sockaddr_in *)&ifa->address.sa; if (sin->sin_addr.s_addr == 0) { /* we skip unspecifed addresses */ return; } if (stcb->asoc.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { return; } break; } #endif default: /* else, not AF_INET or AF_INET6, so skip */ return; } /* queue an asconf for this address add/delete */ if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { /* does the peer do asconf? */ if (stcb->asoc.peer_supports_asconf) { /* queue an asconf for this addr */ status = sctp_asconf_queue_add(stcb, ifa, type); /* * if queued ok, and in the open state, send out the * ASCONF. If in the non-open state, these will be * sent when the state goes open. */ if (status == 0 && SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, inp, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, addr_locked); #endif } } } } int sctp_asconf_iterator_ep(struct sctp_inpcb *inp, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l; int cnt_invalid = 0; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: /* invalid if we're not a v6 endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } break; #endif #ifdef INET case AF_INET: { /* invalid if we are a v6 only endpoint */ struct in6pcb *inp6; inp6 = (struct in6pcb *)&inp->ip_inp.inp; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) { cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } break; } #endif default: /* invalid address family */ cnt_invalid++; if (asc->cnt == cnt_invalid) return (1); } } return (0); } static int sctp_asconf_iterator_ep_end(struct sctp_inpcb *inp, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_ifa *ifa; struct sctp_asconf_iterator *asc; struct sctp_laddr *laddr, *nladdr, *l; /* Only for specific case not bound all */ asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; if (l->action == SCTP_ADD_IP_ADDRESS) { LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { laddr->action = 0; break; } } } else if (l->action == SCTP_DEL_IP_ADDRESS) { LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { /* remove only after all guys are done */ if (laddr->ifa == ifa) { sctp_del_local_addr_ep(inp, ifa); } } } } return (0); } void sctp_asconf_iterator_stcb(struct sctp_inpcb *inp, struct sctp_tcb *stcb, void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l; int cnt_invalid = 0; int type, status; int num_queued = 0; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH(l, &asc->list_of_work, sctp_nxt_addr) { ifa = l->ifa; type = l->action; /* address's vrf_id must be the vrf_id of the assoc */ if (ifa->vrf_id != stcb->asoc.vrf_id) { continue; } /* Same checks again for assoc */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: { /* invalid if we're not a v6 endpoint */ struct sockaddr_in6 *sin6; if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; } sin6 = (struct sockaddr_in6 *)&ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* we skip unspecifed addresses */ continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (stcb->asoc.local_scope == 0) { continue; } /* is it the right link local scope? */ if (sctp_is_scopeid_in_nets(stcb, &ifa->address.sa) == 0) { continue; } } break; } #endif #ifdef INET case AF_INET: { /* invalid if we are a v6 only endpoint */ struct in6pcb *inp6; struct sockaddr_in *sin; inp6 = (struct in6pcb *)&inp->ip_inp.inp; /* invalid if we are a v6 only endpoint */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) continue; sin = (struct sockaddr_in *)&ifa->address.sa; if (sin->sin_addr.s_addr == 0) { /* we skip unspecifed addresses */ continue; } if (stcb->asoc.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp6)) { cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; } break; } #endif default: /* invalid address family */ cnt_invalid++; if (asc->cnt == cnt_invalid) return; else continue; break; } if (type == SCTP_ADD_IP_ADDRESS) { /* prevent this address from being used as a source */ sctp_add_local_addr_restricted(stcb, ifa); } else if (type == SCTP_DEL_IP_ADDRESS) { struct sctp_nets *net; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_rtentry_t *rt; /* delete this address if cached */ if (net->ro._s_addr == ifa) { sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; rt = net->ro.ro_rt; if (rt) { RTFREE(rt); net->ro.ro_rt = NULL; } /* * Now we deleted our src address, * should we not also now reset the * cwnd/rto to start as if its a new * address? */ stcb->asoc.cc_functions.sctp_set_initial_cc_param(stcb, net); net->RTO = 0; } } } else if (type == SCTP_SET_PRIM_ADDR) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* must validate the ifa is in the ep */ if (sctp_is_addr_in_ep(stcb->sctp_ep, ifa) == 0) { continue; } } else { /* Need to check scopes for this guy */ if (sctp_is_address_in_scope(ifa, stcb->asoc.ipv4_addr_legal, stcb->asoc.ipv6_addr_legal, stcb->asoc.loopback_scope, stcb->asoc.ipv4_local_scope, stcb->asoc.local_scope, stcb->asoc.site_scope, 0) == 0) { continue; } } } /* queue an asconf for this address add/delete */ if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF) && stcb->asoc.peer_supports_asconf) { /* queue an asconf for this addr */ status = sctp_asconf_queue_add(stcb, ifa, type); /* * if queued ok, and in the open state, update the * count of queued params. If in the non-open * state, these get sent when the assoc goes open. */ if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { if (status >= 0) { num_queued++; } } } } /* * If we have queued params in the open state, send out an ASCONF. */ if (num_queued > 0) { sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); } } void sctp_asconf_iterator_end(void *ptr, uint32_t val SCTP_UNUSED) { struct sctp_asconf_iterator *asc; struct sctp_ifa *ifa; struct sctp_laddr *l, *nl; asc = (struct sctp_asconf_iterator *)ptr; LIST_FOREACH_SAFE(l, &asc->list_of_work, sctp_nxt_addr, nl) { ifa = l->ifa; if (l->action == SCTP_ADD_IP_ADDRESS) { /* Clear the defer use flag */ ifa->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } sctp_free_ifa(ifa); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), l); SCTP_DECR_LADDR_COUNT(); } SCTP_FREE(asc, SCTP_M_ASC_IT); } /* * sa is the sockaddr to ask the peer to set primary to. * returns: 0 = completed, -1 = error */ int32_t sctp_set_primary_ip_address_sa(struct sctp_tcb *stcb, struct sockaddr *sa) { uint32_t vrf_id; struct sctp_ifa *ifa; /* find the ifa for the desired set primary */ vrf_id = stcb->asoc.vrf_id; ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); if (ifa == NULL) { /* Invalid address */ return (-1); } /* queue an ASCONF:SET_PRIM_ADDR to be sent */ if (!sctp_asconf_queue_add(stcb, ifa, SCTP_SET_PRIM_ADDR)) { /* set primary queuing succeeded */ SCTPDBG(SCTP_DEBUG_ASCONF1, "set_primary_ip_address_sa: queued on tcb=%p, ", stcb); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); #endif } } else { SCTPDBG(SCTP_DEBUG_ASCONF1, "set_primary_ip_address_sa: failed to add to queue on tcb=%p, ", stcb); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, sa); return (-1); } return (0); } void sctp_set_primary_ip_address(struct sctp_ifa *ifa) { struct sctp_inpcb *inp; /* go through all our PCB's */ LIST_FOREACH(inp, &SCTP_BASE_INFO(listhead), sctp_list) { struct sctp_tcb *stcb; /* process for all associations for this endpoint */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { /* queue an ASCONF:SET_PRIM_ADDR to be sent */ if (!sctp_asconf_queue_add(stcb, ifa, SCTP_SET_PRIM_ADDR)) { /* set primary queuing succeeded */ SCTPDBG(SCTP_DEBUG_ASCONF1, "set_primary_ip_address: queued on stcb=%p, ", stcb); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF1, &ifa->address.sa); if (SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); #endif } } } /* for each stcb */ } /* for each inp */ } int sctp_is_addr_pending(struct sctp_tcb *stcb, struct sctp_ifa *sctp_ifa) { struct sctp_tmit_chunk *chk, *nchk; unsigned int offset, asconf_limit; struct sctp_asconf_chunk *acp; struct sctp_asconf_paramhdr *aph; uint8_t aparam_buf[SCTP_PARAM_BUFFER_SIZE]; struct sctp_paramhdr *ph; int add_cnt, del_cnt; uint16_t last_param_type; add_cnt = del_cnt = 0; last_param_type = 0; TAILQ_FOREACH_SAFE(chk, &stcb->asoc.asconf_send_queue, sctp_next, nchk) { if (chk->data == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: No mbuf data?\n"); continue; } offset = 0; acp = mtod(chk->data, struct sctp_asconf_chunk *); offset += sizeof(struct sctp_asconf_chunk); asconf_limit = ntohs(acp->ch.chunk_length); ph = (struct sctp_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_paramhdr), aparam_buf); if (ph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: couldn't get lookup addr!\n"); continue; } offset += ntohs(ph->param_length); aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: Empty ASCONF will be sent?\n"); continue; } while (aph != NULL) { unsigned int param_length, param_type; param_type = ntohs(aph->ph.param_type); param_length = ntohs(aph->ph.param_length); if (offset + param_length > asconf_limit) { /* parameter goes beyond end of chunk! */ break; } if (param_length > sizeof(aparam_buf)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: param length (%u) larger than buffer size!\n", param_length); break; } if (param_length <= sizeof(struct sctp_paramhdr)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: param length(%u) too short\n", param_length); break; } aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, param_length, aparam_buf); if (aph == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "is_addr_pending: couldn't get entire param\n"); break; } ph = (struct sctp_paramhdr *)(aph + 1); if (sctp_addr_match(ph, &sctp_ifa->address.sa) != 0) { switch (param_type) { case SCTP_ADD_IP_ADDRESS: add_cnt++; break; case SCTP_DEL_IP_ADDRESS: del_cnt++; break; default: break; } last_param_type = param_type; } offset += SCTP_SIZE32(param_length); if (offset >= asconf_limit) { /* no more data in the mbuf chain */ break; } /* get pointer to next asconf param */ aph = (struct sctp_asconf_paramhdr *)sctp_m_getptr(chk->data, offset, sizeof(struct sctp_asconf_paramhdr), aparam_buf); } } /* * we want to find the sequences which consist of ADD -> DEL -> ADD * or DEL -> ADD */ if (add_cnt > del_cnt || (add_cnt == del_cnt && last_param_type == SCTP_ADD_IP_ADDRESS)) { return (1); } return (0); } static struct sockaddr * sctp_find_valid_localaddr(struct sctp_tcb *stcb, int addr_locked) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if (stcb->asoc.loopback_scope == 0 && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { /* Skip if loopback_scope not set */ continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (stcb->asoc.ipv4_addr_legal) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&sctp_ifa->address.sa; if (sin->sin_addr.s_addr == 0) { /* skip unspecifed addresses */ continue; } if (stcb->asoc.ipv4_local_scope == 0 && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) continue; if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) continue; /* * found a valid local v4 address to * use */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (&sctp_ifa->address.sa); } break; #endif #ifdef INET6 case AF_INET6: if (stcb->asoc.ipv6_addr_legal) { struct sockaddr_in6 *sin6; if (sctp_ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { continue; } sin6 = (struct sockaddr_in6 *)&sctp_ifa->address.sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * we skip unspecifed * addresses */ continue; } if (stcb->asoc.local_scope == 0 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) continue; if (stcb->asoc.site_scope == 0 && IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) continue; if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) continue; /* * found a valid local v6 address to * use */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (&sctp_ifa->address.sa); } break; #endif default: break; } } } /* no valid addresses found */ if (addr_locked == SCTP_ADDR_NOT_LOCKED) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } static struct sockaddr * sctp_find_valid_localaddr_ep(struct sctp_tcb *stcb) { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { continue; } /* is the address restricted ? */ if (sctp_is_addr_restricted(stcb, laddr->ifa) && (!sctp_is_addr_pending(stcb, laddr->ifa))) continue; /* found a valid local address to use */ return (&laddr->ifa->address.sa); } /* no valid addresses found */ return (NULL); } /* * builds an ASCONF chunk from queued ASCONF params. * returns NULL on error (no mbuf, no ASCONF params queued, etc). */ struct mbuf * sctp_compose_asconf(struct sctp_tcb *stcb, int *retlen, int addr_locked) { struct mbuf *m_asconf, *m_asconf_chk; struct sctp_asconf_addr *aa; struct sctp_asconf_chunk *acp; struct sctp_asconf_paramhdr *aph; struct sctp_asconf_addr_param *aap; uint32_t p_length; uint32_t correlation_id = 1; /* 0 is reserved... */ caddr_t ptr, lookup_ptr; uint8_t lookup_used = 0; /* are there any asconf params to send? */ TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->sent == 0) break; } if (aa == NULL) return (NULL); /* * get a chunk header mbuf and a cluster for the asconf params since * it's simpler to fill in the asconf chunk header lookup address on * the fly */ m_asconf_chk = sctp_get_mbuf_for_msg(sizeof(struct sctp_asconf_chunk), 0, M_DONTWAIT, 1, MT_DATA); if (m_asconf_chk == NULL) { /* no mbuf's */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: couldn't get chunk mbuf!\n"); return (NULL); } m_asconf = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_DONTWAIT, 1, MT_DATA); if (m_asconf == NULL) { /* no mbuf's */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: couldn't get mbuf!\n"); sctp_m_freem(m_asconf_chk); return (NULL); } SCTP_BUF_LEN(m_asconf_chk) = sizeof(struct sctp_asconf_chunk); SCTP_BUF_LEN(m_asconf) = 0; acp = mtod(m_asconf_chk, struct sctp_asconf_chunk *); bzero(acp, sizeof(struct sctp_asconf_chunk)); /* save pointers to lookup address and asconf params */ lookup_ptr = (caddr_t)(acp + 1); /* after the header */ ptr = mtod(m_asconf, caddr_t); /* beginning of cluster */ /* fill in chunk header info */ acp->ch.chunk_type = SCTP_ASCONF; acp->ch.chunk_flags = 0; acp->serial_number = htonl(stcb->asoc.asconf_seq_out); stcb->asoc.asconf_seq_out++; /* add parameters... up to smallest MTU allowed */ TAILQ_FOREACH(aa, &stcb->asoc.asconf_queue, next) { if (aa->sent) continue; /* get the parameter length */ p_length = SCTP_SIZE32(aa->ap.aph.ph.param_length); /* will it fit in current chunk? */ if (SCTP_BUF_LEN(m_asconf) + p_length > stcb->asoc.smallest_mtu) { /* won't fit, so we're done with this chunk */ break; } /* assign (and store) a correlation id */ aa->ap.aph.correlation_id = correlation_id++; /* * fill in address if we're doing a delete this is a simple * way for us to fill in the correlation address, which * should only be used by the peer if we're deleting our * source address and adding a new address (e.g. renumbering * case) */ if (lookup_used == 0 && (aa->special_del == 0) && aa->ap.aph.ph.param_type == SCTP_DEL_IP_ADDRESS) { struct sctp_ipv6addr_param *lookup; uint16_t p_size, addr_size; lookup = (struct sctp_ipv6addr_param *)lookup_ptr; lookup->ph.param_type = htons(aa->ap.addrp.ph.param_type); if (aa->ap.addrp.ph.param_type == SCTP_IPV6_ADDRESS) { /* copy IPv6 address */ p_size = sizeof(struct sctp_ipv6addr_param); addr_size = sizeof(struct in6_addr); } else { /* copy IPv4 address */ p_size = sizeof(struct sctp_ipv4addr_param); addr_size = sizeof(struct in_addr); } lookup->ph.param_length = htons(SCTP_SIZE32(p_size)); memcpy(lookup->addr, &aa->ap.addrp.addr, addr_size); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(p_size); lookup_used = 1; } /* copy into current space */ memcpy(ptr, &aa->ap, p_length); /* network elements and update lengths */ aph = (struct sctp_asconf_paramhdr *)ptr; aap = (struct sctp_asconf_addr_param *)ptr; /* correlation_id is transparent to peer, no htonl needed */ aph->ph.param_type = htons(aph->ph.param_type); aph->ph.param_length = htons(aph->ph.param_length); aap->addrp.ph.param_type = htons(aap->addrp.ph.param_type); aap->addrp.ph.param_length = htons(aap->addrp.ph.param_length); SCTP_BUF_LEN(m_asconf) += SCTP_SIZE32(p_length); ptr += SCTP_SIZE32(p_length); /* * these params are removed off the pending list upon * getting an ASCONF-ACK back from the peer, just set flag */ aa->sent = 1; } /* check to see if the lookup addr has been populated yet */ if (lookup_used == 0) { /* NOTE: if the address param is optional, can skip this... */ /* add any valid (existing) address... */ struct sctp_ipv6addr_param *lookup; uint16_t p_size, addr_size; struct sockaddr *found_addr; caddr_t addr_ptr; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) found_addr = sctp_find_valid_localaddr(stcb, addr_locked); else found_addr = sctp_find_valid_localaddr_ep(stcb); lookup = (struct sctp_ipv6addr_param *)lookup_ptr; if (found_addr != NULL) { switch (found_addr->sa_family) { #ifdef INET6 case AF_INET6: /* copy IPv6 address */ lookup->ph.param_type = htons(SCTP_IPV6_ADDRESS); p_size = sizeof(struct sctp_ipv6addr_param); addr_size = sizeof(struct in6_addr); addr_ptr = (caddr_t)&((struct sockaddr_in6 *) found_addr)->sin6_addr; break; #endif #ifdef INET case AF_INET: /* copy IPv4 address */ lookup->ph.param_type = htons(SCTP_IPV4_ADDRESS); p_size = sizeof(struct sctp_ipv4addr_param); addr_size = sizeof(struct in_addr); addr_ptr = (caddr_t)&((struct sockaddr_in *) found_addr)->sin_addr; break; #endif default: p_size = 0; addr_size = 0; addr_ptr = NULL; break; } lookup->ph.param_length = htons(SCTP_SIZE32(p_size)); memcpy(lookup->addr, addr_ptr, addr_size); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(p_size); } else { /* uh oh... don't have any address?? */ SCTPDBG(SCTP_DEBUG_ASCONF1, "compose_asconf: no lookup addr!\n"); /* XXX for now, we send a IPv4 address of 0.0.0.0 */ lookup->ph.param_type = htons(SCTP_IPV4_ADDRESS); lookup->ph.param_length = htons(SCTP_SIZE32(sizeof(struct sctp_ipv4addr_param))); bzero(lookup->addr, sizeof(struct in_addr)); SCTP_BUF_LEN(m_asconf_chk) += SCTP_SIZE32(sizeof(struct sctp_ipv4addr_param)); } } /* chain it all together */ SCTP_BUF_NEXT(m_asconf_chk) = m_asconf; *retlen = SCTP_BUF_LEN(m_asconf_chk) + SCTP_BUF_LEN(m_asconf); acp->ch.chunk_length = ntohs(*retlen); return (m_asconf_chk); } /* * section to handle address changes before an association is up eg. changes * during INIT/INIT-ACK/COOKIE-ECHO handshake */ /* * processes the (local) addresses in the INIT-ACK chunk */ static void sctp_process_initack_addresses(struct sctp_tcb *stcb, struct mbuf *m, unsigned int offset, unsigned int length) { struct sctp_paramhdr tmp_param, *ph; uint16_t plen, ptype; struct sctp_ifa *sctp_ifa; #ifdef INET6 struct sctp_ipv6addr_param addr6_store; struct sockaddr_in6 sin6; #endif #ifdef INET struct sctp_ipv4addr_param addr4_store; struct sockaddr_in sin; #endif struct sockaddr *sa; uint32_t vrf_id; SCTPDBG(SCTP_DEBUG_ASCONF2, "processing init-ack addresses\n"); if (stcb == NULL) /* Un-needed check for SA */ return; /* convert to upper bound */ length += offset; if ((offset + sizeof(struct sctp_paramhdr)) > length) { return; } /* init the addresses */ #ifdef INET6 bzero(&sin6, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(sin6); sin6.sin6_port = stcb->rport; #endif #ifdef INET bzero(&sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = stcb->rport; #endif /* go through the addresses in the init-ack */ ph = (struct sctp_paramhdr *) sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); while (ph != NULL) { ptype = ntohs(ph->param_type); plen = ntohs(ph->param_length); switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: { struct sctp_ipv6addr_param *a6p; /* get the entire IPv6 address param */ a6p = (struct sctp_ipv6addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv6addr_param), (uint8_t *) & addr6_store); if (plen != sizeof(struct sctp_ipv6addr_param) || a6p == NULL) { return; } memcpy(&sin6.sin6_addr, a6p->addr, sizeof(struct in6_addr)); sa = (struct sockaddr *)&sin6; break; } #endif #ifdef INET case SCTP_IPV4_ADDRESS: { struct sctp_ipv4addr_param *a4p; /* get the entire IPv4 address param */ a4p = (struct sctp_ipv4addr_param *)sctp_m_getptr(m, offset, sizeof(struct sctp_ipv4addr_param), (uint8_t *) & addr4_store); if (plen != sizeof(struct sctp_ipv4addr_param) || a4p == NULL) { return; } sin.sin_addr.s_addr = a4p->addr; sa = (struct sockaddr *)&sin; break; } #endif default: goto next_addr; } /* see if this address really (still) exists */ if (stcb) { vrf_id = stcb->asoc.vrf_id; } else { vrf_id = SCTP_DEFAULT_VRFID; } sctp_ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); if (sctp_ifa == NULL) { /* address doesn't exist anymore */ int status; /* are ASCONFs allowed ? */ if ((sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_DO_ASCONF)) && stcb->asoc.peer_supports_asconf) { /* queue an ASCONF DEL_IP_ADDRESS */ status = sctp_asconf_queue_sa_delete(stcb, sa); /* * if queued ok, and in correct state, send * out the ASCONF. */ if (status == 0 && SCTP_GET_STATE(&stcb->asoc) == SCTP_STATE_OPEN) { #ifdef SCTP_TIMER_BASED_ASCONF sctp_timer_start(SCTP_TIMER_TYPE_ASCONF, stcb->sctp_ep, stcb, stcb->asoc.primary_destination); #else sctp_send_asconf(stcb, NULL, SCTP_ADDR_NOT_LOCKED); #endif } } } next_addr: /* * Sanity check: Make sure the length isn't 0, otherwise * we'll be stuck in this loop for a long time... */ if (SCTP_SIZE32(plen) == 0) { SCTP_PRINTF("process_initack_addrs: bad len (%d) type=%xh\n", plen, ptype); return; } /* get next parameter */ offset += SCTP_SIZE32(plen); if ((offset + sizeof(struct sctp_paramhdr)) > length) return; ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); } /* while */ } /* FIX ME: need to verify return result for v6 address type if v6 disabled */ /* * checks to see if a specific address is in the initack address list returns * 1 if found, 0 if not */ static uint32_t sctp_addr_in_initack(struct mbuf *m, uint32_t offset, uint32_t length, struct sockaddr *sa) { struct sctp_paramhdr tmp_param, *ph; uint16_t plen, ptype; #ifdef INET struct sockaddr_in *sin; struct sctp_ipv4addr_param *a4p; struct sctp_ipv6addr_param addr4_store; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sctp_ipv6addr_param *a6p; struct sctp_ipv6addr_param addr6_store; struct sockaddr_in6 sin6_tmp; #endif switch (sa->sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: return (0); } SCTPDBG(SCTP_DEBUG_ASCONF2, "find_initack_addr: starting search for "); SCTPDBG_ADDR(SCTP_DEBUG_ASCONF2, sa); /* convert to upper bound */ length += offset; if ((offset + sizeof(struct sctp_paramhdr)) > length) { SCTPDBG(SCTP_DEBUG_ASCONF1, "find_initack_addr: invalid offset?\n"); return (0); } /* go through the addresses in the init-ack */ ph = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); while (ph != NULL) { ptype = ntohs(ph->param_type); plen = ntohs(ph->param_length); switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: if (sa->sa_family == AF_INET6) { /* get the entire IPv6 address param */ if (plen != sizeof(struct sctp_ipv6addr_param)) { break; } /* get the entire IPv6 address param */ a6p = (struct sctp_ipv6addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv6addr_param), (uint8_t *) & addr6_store); if (a6p == NULL) { return (0); } sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { /* create a copy and clear scope */ memcpy(&sin6_tmp, sin6, sizeof(struct sockaddr_in6)); sin6 = &sin6_tmp; in6_clearscope(&sin6->sin6_addr); } if (memcmp(&sin6->sin6_addr, a6p->addr, sizeof(struct in6_addr)) == 0) { /* found it */ return (1); } } break; #endif /* INET6 */ #ifdef INET case SCTP_IPV4_ADDRESS: if (sa->sa_family == AF_INET) { if (plen != sizeof(struct sctp_ipv4addr_param)) { break; } /* get the entire IPv4 address param */ a4p = (struct sctp_ipv4addr_param *) sctp_m_getptr(m, offset, sizeof(struct sctp_ipv4addr_param), (uint8_t *) & addr4_store); if (a4p == NULL) { return (0); } sin = (struct sockaddr_in *)sa; if (sin->sin_addr.s_addr == a4p->addr) { /* found it */ return (1); } } break; #endif default: break; } /* get next parameter */ offset += SCTP_SIZE32(plen); if (offset + sizeof(struct sctp_paramhdr) > length) { return (0); } ph = (struct sctp_paramhdr *) sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param); } /* while */ /* not found! */ return (0); } /* * makes sure that the current endpoint local addr list is consistent with * the new association (eg. subset bound, asconf allowed) adds addresses as * necessary */ static void sctp_check_address_list_ep(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr) { struct sctp_laddr *laddr; /* go through the endpoint list */ LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { /* be paranoid and validate the laddr */ if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "check_addr_list_ep: laddr->ifa is NULL"); continue; } if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "check_addr_list_ep: laddr->ifa->ifa_addr is NULL"); continue; } /* do i have it implicitly? */ if (sctp_cmpaddr(&laddr->ifa->address.sa, init_addr)) { continue; } /* check to see if in the init-ack */ if (!sctp_addr_in_initack(m, offset, length, &laddr->ifa->address.sa)) { /* try to add it */ sctp_addr_mgmt_assoc(stcb->sctp_ep, stcb, laddr->ifa, SCTP_ADD_IP_ADDRESS, SCTP_ADDR_NOT_LOCKED); } } } /* * makes sure that the current kernel address list is consistent with the new * association (with all addrs bound) adds addresses as necessary */ static void sctp_check_address_list_all(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr, uint16_t local_scope, uint16_t site_scope, uint16_t ipv4_scope, uint16_t loopback_scope) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; uint32_t vrf_id; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif if (stcb) { vrf_id = stcb->asoc.vrf_id; } else { return; } SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTP_IPI_ADDR_RUNLOCK(); return; } /* go through all our known interfaces */ LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if (loopback_scope == 0 && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { /* skip loopback interface */ continue; } /* go through each interface address */ LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { /* do i have it implicitly? */ if (sctp_cmpaddr(&sctp_ifa->address.sa, init_addr)) { continue; } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)&sctp_ifa->address.sin; if ((ipv4_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { /* private address not in scope */ continue; } break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)&sctp_ifa->address.sin6; if ((local_scope == 0) && (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr))) { continue; } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } break; #endif default: break; } /* check to see if in the init-ack */ if (!sctp_addr_in_initack(m, offset, length, &sctp_ifa->address.sa)) { /* try to add it */ sctp_addr_mgmt_assoc(stcb->sctp_ep, stcb, sctp_ifa, SCTP_ADD_IP_ADDRESS, SCTP_ADDR_LOCKED); } } /* end foreach ifa */ } /* end foreach ifn */ SCTP_IPI_ADDR_RUNLOCK(); } /* * validates an init-ack chunk (from a cookie-echo) with current addresses * adds addresses from the init-ack into our local address list, if needed * queues asconf adds/deletes addresses as needed and makes appropriate list * changes for source address selection m, offset: points to the start of the * address list in an init-ack chunk length: total length of the address * params only init_addr: address where my INIT-ACK was sent from */ void sctp_check_address_list(struct sctp_tcb *stcb, struct mbuf *m, int offset, int length, struct sockaddr *init_addr, uint16_t local_scope, uint16_t site_scope, uint16_t ipv4_scope, uint16_t loopback_scope) { /* process the local addresses in the initack */ sctp_process_initack_addresses(stcb, m, offset, length); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* bound all case */ sctp_check_address_list_all(stcb, m, offset, length, init_addr, local_scope, site_scope, ipv4_scope, loopback_scope); } else { /* subset bound case */ if (sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_DO_ASCONF)) { /* asconf's allowed */ sctp_check_address_list_ep(stcb, m, offset, length, init_addr); } /* else, no asconfs allowed, so what we sent is what we get */ } } /* * sctp_bindx() support */ uint32_t sctp_addr_mgmt_ep_sa(struct sctp_inpcb *inp, struct sockaddr *sa, uint32_t type, uint32_t vrf_id, struct sctp_ifa *sctp_ifap) { struct sctp_ifa *ifa; struct sctp_laddr *laddr, *nladdr; if (sa->sa_len == 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EINVAL); return (EINVAL); } if (sctp_ifap) { ifa = sctp_ifap; } else if (type == SCTP_ADD_IP_ADDRESS) { /* For an add the address MUST be on the system */ ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); } else if (type == SCTP_DEL_IP_ADDRESS) { /* For a delete we need to find it in the inp */ ifa = sctp_find_ifa_in_ep(inp, sa, SCTP_ADDR_NOT_LOCKED); } else { ifa = NULL; } if (ifa != NULL) { if (type == SCTP_ADD_IP_ADDRESS) { sctp_add_local_addr_ep(inp, ifa, type); } else if (type == SCTP_DEL_IP_ADDRESS) { if (inp->laddr_count < 2) { /* can't delete the last local address */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EINVAL); return (EINVAL); } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (ifa == laddr->ifa) { /* Mark in the delete */ laddr->action = type; } } } if (LIST_EMPTY(&inp->sctp_asoc_list)) { /* * There is no need to start the iterator if the inp * has no associations. */ if (type == SCTP_DEL_IP_ADDRESS) { LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { if (laddr->ifa == ifa) { sctp_del_local_addr_ep(inp, ifa); } } } } else { struct sctp_asconf_iterator *asc; struct sctp_laddr *wi; SCTP_MALLOC(asc, struct sctp_asconf_iterator *, sizeof(struct sctp_asconf_iterator), SCTP_M_ASC_IT); if (asc == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, ENOMEM); return (ENOMEM); } wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { SCTP_FREE(asc, SCTP_M_ASC_IT); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_ASCONF, ENOMEM); return (ENOMEM); } LIST_INIT(&asc->list_of_work); asc->cnt = 1; SCTP_INCR_LADDR_COUNT(); wi->ifa = ifa; wi->action = type; atomic_add_int(&ifa->refcount, 1); LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr); (void)sctp_initiate_iterator(sctp_asconf_iterator_ep, sctp_asconf_iterator_stcb, sctp_asconf_iterator_ep_end, SCTP_PCB_ANY_FLAGS, SCTP_PCB_ANY_FEATURES, SCTP_ASOC_ANY_STATE, (void *)asc, 0, sctp_asconf_iterator_end, inp, 0); } return (0); } else { /* invalid address! */ SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_ASCONF, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } } void sctp_asconf_send_nat_state_update(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_asconf_addr *aa; struct sctp_ifa *sctp_ifap; struct sctp_asconf_tag_param *vtag; #ifdef INET struct sockaddr_in *to; #endif #ifdef INET6 struct sockaddr_in6 *to6; #endif if (net == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: Missing net\n"); return; } if (stcb == NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: Missing stcb\n"); return; } /* * Need to have in the asconf: - vtagparam(my_vtag/peer_vtag) - * add(0.0.0.0) - del(0.0.0.0) - Any global addresses add(addr) */ SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } aa->special_del = 0; /* fill in asconf address parameter fields */ /* top level elements are "networked" during send */ aa->ifa = NULL; aa->sent = 0; /* clear sent flag */ vtag = (struct sctp_asconf_tag_param *)&aa->ap.aph; vtag->aph.ph.param_type = SCTP_NAT_VTAGS; vtag->aph.ph.param_length = sizeof(struct sctp_asconf_tag_param); vtag->local_vtag = htonl(stcb->asoc.my_vtag); vtag->remote_vtag = htonl(stcb->asoc.peer_vtag); TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } memset(aa, 0, sizeof(struct sctp_asconf_addr)); /* fill in asconf address parameter fields */ /* ADD(0.0.0.0) */ switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addrv4_param); aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv4addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif #ifdef INET6 case AF_INET6: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addr_param); aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv6addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif } SCTP_MALLOC(aa, struct sctp_asconf_addr *, sizeof(*aa), SCTP_M_ASC_ADDR); if (aa == NULL) { /* didn't get memory */ SCTPDBG(SCTP_DEBUG_ASCONF1, "sctp_asconf_send_nat_state_update: failed to get memory!\n"); return; } memset(aa, 0, sizeof(struct sctp_asconf_addr)); /* fill in asconf address parameter fields */ /* ADD(0.0.0.0) */ switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: aa->ap.aph.ph.param_type = SCTP_ADD_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addrv4_param); aa->ap.addrp.ph.param_type = SCTP_IPV4_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv4addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif #ifdef INET6 case AF_INET6: aa->ap.aph.ph.param_type = SCTP_DEL_IP_ADDRESS; aa->ap.aph.ph.param_length = sizeof(struct sctp_asconf_addr_param); aa->ap.addrp.ph.param_type = SCTP_IPV6_ADDRESS; aa->ap.addrp.ph.param_length = sizeof(struct sctp_ipv6addr_param); /* No need to add an address, we are using 0.0.0.0 */ TAILQ_INSERT_TAIL(&stcb->asoc.asconf_queue, aa, next); break; #endif } /* Now we must hunt the addresses and add all global addresses */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { struct sctp_vrf *vrf = NULL; struct sctp_ifn *sctp_ifnp; uint32_t vrf_id; vrf_id = stcb->sctp_ep->def_vrf_id; vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { goto skip_rest; } SCTP_IPI_ADDR_RLOCK(); LIST_FOREACH(sctp_ifnp, &vrf->ifnlist, next_ifn) { LIST_FOREACH(sctp_ifap, &sctp_ifnp->ifalist, next_ifa) { switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: to = &sctp_ifap->address.sin; if (IN4_ISPRIVATE_ADDRESS(&to->sin_addr)) { continue; } if (IN4_ISLOOPBACK_ADDRESS(&to->sin_addr)) { continue; } break; #endif #ifdef INET6 case AF_INET6: to6 = &sctp_ifap->address.sin6; if (IN6_IS_ADDR_LOOPBACK(&to6->sin6_addr)) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&to6->sin6_addr)) { continue; } break; #endif default: continue; } sctp_asconf_queue_mgmt(stcb, sctp_ifap, SCTP_ADD_IP_ADDRESS); } } SCTP_IPI_ADDR_RUNLOCK(); } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) /* * Address being deleted by the system, dont * list. */ continue; if (laddr->action == SCTP_DEL_IP_ADDRESS) { /* * Address being deleted on this ep don't * list. */ continue; } sctp_ifap = laddr->ifa; switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: to = &sctp_ifap->address.sin; if (IN4_ISPRIVATE_ADDRESS(&to->sin_addr)) { continue; } if (IN4_ISLOOPBACK_ADDRESS(&to->sin_addr)) { continue; } break; #endif #ifdef INET6 case AF_INET6: to6 = &sctp_ifap->address.sin6; if (IN6_IS_ADDR_LOOPBACK(&to6->sin6_addr)) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&to6->sin6_addr)) { continue; } break; #endif default: continue; } sctp_asconf_queue_mgmt(stcb, sctp_ifap, SCTP_ADD_IP_ADDRESS); } } skip_rest: /* Now we must send the asconf into the queue */ sctp_send_asconf(stcb, net, SCTP_ADDR_NOT_LOCKED); }