Current Path : /sys/sparc64/sparc64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/sparc64/sparc64/vm_machdep.c |
/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * Copyright (c) 2001 Jake Burkholder. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * from: FreeBSD: src/sys/i386/i386/vm_machdep.c,v 1.167 2001/07/12 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/sparc64/sparc64/vm_machdep.c 223801 2011-07-05 18:55:56Z marius $"); #include "opt_pmap.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/mutex.h> #include <sys/proc.h> #include <sys/sysent.h> #include <sys/sf_buf.h> #include <sys/sched.h> #include <sys/sysctl.h> #include <sys/unistd.h> #include <sys/vmmeter.h> #include <dev/ofw/openfirm.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/pmap.h> #include <vm/vm_kern.h> #include <vm/vm_map.h> #include <vm/vm_page.h> #include <vm/vm_pageout.h> #include <vm/vm_param.h> #include <vm/uma.h> #include <vm/uma_int.h> #include <machine/cache.h> #include <machine/cpu.h> #include <machine/fp.h> #include <machine/frame.h> #include <machine/fsr.h> #include <machine/md_var.h> #include <machine/ofw_machdep.h> #include <machine/ofw_mem.h> #include <machine/pcb.h> #include <machine/tlb.h> #include <machine/tstate.h> #ifndef NSFBUFS #define NSFBUFS (512 + maxusers * 16) #endif static void sf_buf_init(void *arg); SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL); /* * Expanded sf_freelist head. Really an SLIST_HEAD() in disguise, with the * sf_freelist head with the sf_lock mutex. */ static struct { SLIST_HEAD(, sf_buf) sf_head; struct mtx sf_lock; } sf_freelist; static u_int sf_buf_alloc_want; PMAP_STATS_VAR(uma_nsmall_alloc); PMAP_STATS_VAR(uma_nsmall_alloc_oc); PMAP_STATS_VAR(uma_nsmall_free); void cpu_exit(struct thread *td) { struct proc *p; p = td->td_proc; p->p_md.md_sigtramp = NULL; if (p->p_md.md_utrap != NULL) { utrap_free(p->p_md.md_utrap); p->p_md.md_utrap = NULL; } } void cpu_thread_exit(struct thread *td) { } void cpu_thread_clean(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~0x3fUL); pcb->pcb_nsaved = 0; td->td_frame = (struct trapframe *)pcb - 1; td->td_pcb = pcb; } void cpu_thread_free(struct thread *td) { } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_set_syscall_retval(struct thread *td, int error) { switch (error) { case 0: td->td_frame->tf_out[0] = td->td_retval[0]; td->td_frame->tf_out[1] = td->td_retval[1]; td->td_frame->tf_tstate &= ~TSTATE_XCC_C; break; case ERESTART: /* * Undo the tpc advancement we have done on syscall * enter, we want to reexecute the system call. */ td->td_frame->tf_tpc = td->td_pcb->pcb_tpc; td->td_frame->tf_tnpc -= 4; break; case EJUSTRETURN: break; default: if (td->td_proc->p_sysent->sv_errsize) { if (error >= td->td_proc->p_sysent->sv_errsize) error = -1; /* XXX */ else error = td->td_proc->p_sysent->sv_errtbl[error]; } td->td_frame->tf_out[0] = error; td->td_frame->tf_tstate |= TSTATE_XCC_C; break; } } void cpu_set_upcall(struct thread *td, struct thread *td0) { struct trapframe *tf; struct frame *fr; struct pcb *pcb; bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); pcb = td->td_pcb; tf = td->td_frame; fr = (struct frame *)tf - 1; fr->fr_local[0] = (u_long)fork_return; fr->fr_local[1] = (u_long)td; fr->fr_local[2] = (u_long)tf; pcb->pcb_pc = (u_long)fork_trampoline - 8; pcb->pcb_sp = (u_long)fr - SPOFF; /* Setup to release the spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_pil = 0; } void cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { struct trapframe *tf; uint64_t sp; if (td == curthread) flushw(); tf = td->td_frame; sp = (uint64_t)stack->ss_sp + stack->ss_size; tf->tf_out[0] = (uint64_t)arg; tf->tf_out[6] = sp - SPOFF - sizeof(struct frame); tf->tf_tpc = (uint64_t)entry; tf->tf_tnpc = tf->tf_tpc + 4; td->td_retval[0] = tf->tf_out[0]; td->td_retval[1] = tf->tf_out[1]; } int cpu_set_user_tls(struct thread *td, void *tls_base) { if (td == curthread) flushw(); td->td_frame->tf_global[7] = (uint64_t)tls_base; return (0); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags) { struct trapframe *tf; struct frame *fp; struct pcb *pcb1; struct pcb *pcb2; vm_offset_t sp; int error; int i; KASSERT(td1 == curthread || td1 == &thread0, ("cpu_fork: p1 not curproc and not proc0")); if ((flags & RFPROC) == 0) return; p2->p_md.md_sigtramp = td1->td_proc->p_md.md_sigtramp; p2->p_md.md_utrap = utrap_hold(td1->td_proc->p_md.md_utrap); /* The pcb must be aligned on a 64-byte boundary. */ pcb1 = td1->td_pcb; pcb2 = (struct pcb *)((td2->td_kstack + td2->td_kstack_pages * PAGE_SIZE - sizeof(struct pcb)) & ~0x3fUL); td2->td_pcb = pcb2; /* * Ensure that p1's pcb is up to date. */ critical_enter(); if ((td1->td_frame->tf_fprs & FPRS_FEF) != 0) savefpctx(pcb1->pcb_ufp); critical_exit(); /* Make sure the copied windows are spilled. */ flushw(); /* Copy the pcb (this will copy the windows saved in the pcb, too). */ bcopy(pcb1, pcb2, sizeof(*pcb1)); /* * If we're creating a new user process and we're sharing the address * space, the parent's top most frame must be saved in the pcb. The * child will pop the frame when it returns to user mode, and may * overwrite it with its own data causing much suffering for the * parent. We check if its already in the pcb, and if not copy it * in. Its unlikely that the copyin will fail, but if so there's not * much we can do. The parent will likely crash soon anyway in that * case. */ if ((flags & RFMEM) != 0 && td1 != &thread0) { sp = td1->td_frame->tf_sp; for (i = 0; i < pcb1->pcb_nsaved; i++) { if (pcb1->pcb_rwsp[i] == sp) break; } if (i == pcb1->pcb_nsaved) { error = copyin((caddr_t)sp + SPOFF, &pcb1->pcb_rw[i], sizeof(struct rwindow)); if (error == 0) { pcb1->pcb_rwsp[i] = sp; pcb1->pcb_nsaved++; } } } /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ tf = (struct trapframe *)pcb2 - 1; bcopy(td1->td_frame, tf, sizeof(*tf)); tf->tf_out[0] = 0; /* Child returns zero */ tf->tf_out[1] = 0; tf->tf_tstate &= ~TSTATE_XCC_C; /* success */ tf->tf_fprs = 0; td2->td_frame = tf; fp = (struct frame *)tf - 1; fp->fr_local[0] = (u_long)fork_return; fp->fr_local[1] = (u_long)td2; fp->fr_local[2] = (u_long)tf; /* Terminate stack traces at this frame. */ fp->fr_pc = fp->fr_fp = 0; pcb2->pcb_sp = (u_long)fp - SPOFF; pcb2->pcb_pc = (u_long)fork_trampoline - 8; /* Setup to release the spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_pil = 0; /* * Now, cpu_switch() can schedule the new process. */ } void cpu_reset(void) { static char bspec[64] = ""; phandle_t chosen; static struct { cell_t name; cell_t nargs; cell_t nreturns; cell_t bootspec; } args = { (cell_t)"boot", 1, 0, (cell_t)bspec }; if ((chosen = OF_finddevice("/chosen")) != 0) { if (OF_getprop(chosen, "bootpath", bspec, sizeof(bspec)) == -1) bspec[0] = '\0'; bspec[sizeof(bspec) - 1] = '\0'; } cpu_shutdown(&args); } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(struct thread *td, void (*func)(void *), void *arg) { struct frame *fp; struct pcb *pcb; pcb = td->td_pcb; fp = (struct frame *)(pcb->pcb_sp + SPOFF); fp->fr_local[0] = (u_long)func; fp->fr_local[1] = (u_long)arg; } int is_physical_memory(vm_paddr_t addr) { struct ofw_mem_region *mr; for (mr = sparc64_memreg; mr < sparc64_memreg + sparc64_nmemreg; mr++) if (addr >= mr->mr_start && addr < mr->mr_start + mr->mr_size) return (1); return (0); } /* * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) */ static void sf_buf_init(void *arg) { struct sf_buf *sf_bufs; vm_offset_t sf_base; int i; nsfbufs = NSFBUFS; TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs); mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF); SLIST_INIT(&sf_freelist.sf_head); sf_base = kmem_alloc_nofault(kernel_map, nsfbufs * PAGE_SIZE); sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, M_NOWAIT | M_ZERO); for (i = 0; i < nsfbufs; i++) { sf_bufs[i].kva = sf_base + i * PAGE_SIZE; SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list); } sf_buf_alloc_want = 0; } /* * Get an sf_buf from the freelist. Will block if none are available. */ struct sf_buf * sf_buf_alloc(struct vm_page *m, int flags) { struct sf_buf *sf; int error; mtx_lock(&sf_freelist.sf_lock); while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) { if (flags & SFB_NOWAIT) break; sf_buf_alloc_want++; mbstat.sf_allocwait++; error = msleep(&sf_freelist, &sf_freelist.sf_lock, (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0); sf_buf_alloc_want--; /* * If we got a signal, don't risk going back to sleep. */ if (error) break; } if (sf != NULL) { SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list); sf->m = m; nsfbufsused++; nsfbufspeak = imax(nsfbufspeak, nsfbufsused); pmap_qenter(sf->kva, &sf->m, 1); } mtx_unlock(&sf_freelist.sf_lock); return (sf); } /* * Release resources back to the system. */ void sf_buf_free(struct sf_buf *sf) { pmap_qremove(sf->kva, 1); mtx_lock(&sf_freelist.sf_lock); SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list); nsfbufsused--; if (sf_buf_alloc_want > 0) wakeup(&sf_freelist); mtx_unlock(&sf_freelist.sf_lock); } void swi_vm(void *v) { /* Nothing to do here - busdma bounce buffers are not implemented. */ } void * uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { static vm_pindex_t color; vm_paddr_t pa; vm_page_t m; int pflags; void *va; PMAP_STATS_INC(uma_nsmall_alloc); *flags = UMA_SLAB_PRIV; if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; else pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; if (wait & M_ZERO) pflags |= VM_ALLOC_ZERO; for (;;) { m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ); if (m == NULL) { if (wait & M_NOWAIT) return (NULL); else VM_WAIT; } else break; } pa = VM_PAGE_TO_PHYS(m); if (dcache_color_ignore == 0 && m->md.color != DCACHE_COLOR(pa)) { KASSERT(m->md.colors[0] == 0 && m->md.colors[1] == 0, ("uma_small_alloc: free page %p still has mappings!", m)); PMAP_STATS_INC(uma_nsmall_alloc_oc); m->md.color = DCACHE_COLOR(pa); dcache_page_inval(pa); } va = (void *)TLB_PHYS_TO_DIRECT(pa); if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) cpu_block_zero(va, PAGE_SIZE); return (va); } void uma_small_free(void *mem, int size, u_int8_t flags) { vm_page_t m; PMAP_STATS_INC(uma_nsmall_free); m = PHYS_TO_VM_PAGE(TLB_DIRECT_TO_PHYS((vm_offset_t)mem)); m->wire_count--; vm_page_free(m); atomic_subtract_int(&cnt.v_wire_count, 1); }