Current Path : /usr/local/include/php/ext/sqlite/libsqlite/src/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/local/include/php/ext/sqlite/libsqlite/src/sqliteInt.h |
/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.6.4.2 2005/12/20 15:26:26 iliaa Exp $ */ #include "config.h" #include "sqlite.h" #include "hash.h" #include "parse.h" #include "btree.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> /* ** The maximum number of in-memory pages to use for the main database ** table and for temporary tables. */ #define MAX_PAGES 2000 #define TEMP_PAGES 500 /* ** If the following macro is set to 1, then NULL values are considered ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT ** compound queries. No other SQL database engine (among those tested) ** works this way except for OCELOT. But the SQL92 spec implies that ** this is how things should work. ** ** If the following macro is set to 0, then NULLs are indistinct for ** SELECT DISTINCT and for UNION. */ #define NULL_ALWAYS_DISTINCT 0 /* ** If the following macro is set to 1, then NULL values are considered ** distinct when determining whether or not two entries are the same ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this ** is the way things are suppose to work. ** ** If the following macro is set to 0, the NULLs are indistinct for ** a UNIQUE index. In this mode, you can only have a single NULL entry ** for a column declared UNIQUE. This is the way Informix and SQL Server ** work. */ #define NULL_DISTINCT_FOR_UNIQUE 1 /* ** The maximum number of attached databases. This must be at least 2 ** in order to support the main database file (0) and the file used to ** hold temporary tables (1). And it must be less than 256 because ** an unsigned character is used to stored the database index. */ #define MAX_ATTACHED 10 /* ** The next macro is used to determine where TEMP tables and indices ** are stored. Possible values: ** ** 0 Always use a temporary files ** 1 Use a file unless overridden by "PRAGMA temp_store" ** 2 Use memory unless overridden by "PRAGMA temp_store" ** 3 Always use memory */ #ifndef TEMP_STORE # define TEMP_STORE 1 #endif /* ** When building SQLite for embedded systems where memory is scarce, ** you can define one or more of the following macros to omit extra ** features of the library and thus keep the size of the library to ** a minimum. */ /* #define SQLITE_OMIT_AUTHORIZATION 1 */ /* #define SQLITE_OMIT_INMEMORYDB 1 */ /* #define SQLITE_OMIT_VACUUM 1 */ /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ /* ** Integers of known sizes. These typedefs might change for architectures ** where the sizes very. Preprocessor macros are available so that the ** types can be conveniently redefined at compile-type. Like this: ** ** cc '-DUINTPTR_TYPE=long long int' ... */ #ifndef UINT32_TYPE # define UINT32_TYPE unsigned int #endif #ifndef UINT16_TYPE # define UINT16_TYPE unsigned short int #endif #ifndef INT16_TYPE # define INT16_TYPE short int #endif #ifndef UINT8_TYPE # define UINT8_TYPE unsigned char #endif #ifndef INT8_TYPE # define INT8_TYPE signed char #endif #ifndef INTPTR_TYPE # if SQLITE_PTR_SZ==4 # define INTPTR_TYPE int # else # define INTPTR_TYPE long long # endif #endif typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ typedef INT16_TYPE i16; /* 2-byte signed integer */ typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ typedef UINT8_TYPE i8; /* 1-byte signed integer */ typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */ /* ** Defer sourcing vdbe.h until after the "u8" typedef is defined. */ #include "vdbe.h" /* ** Most C compilers these days recognize "long double", don't they? ** Just in case we encounter one that does not, we will create a macro ** for long double so that it can be easily changed to just "double". */ #ifndef LONGDOUBLE_TYPE # define LONGDOUBLE_TYPE long double #endif /* ** This macro casts a pointer to an integer. Useful for doing ** pointer arithmetic. */ #define Addr(X) ((uptr)X) /* ** The maximum number of bytes of data that can be put into a single ** row of a single table. The upper bound on this limit is 16777215 ** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB ** here because the overflow page chain is inefficient for really big ** records and we want to discourage people from thinking that ** multi-megabyte records are OK. If your needs are different, you can ** change this define and recompile to increase or decrease the record ** size. ** ** The 16777198 is computed as follows: 238 bytes of payload on the ** original pages plus 16448 overflow pages each holding 1020 bytes of ** data. */ #define MAX_BYTES_PER_ROW 1048576 /* #define MAX_BYTES_PER_ROW 16777198 */ /* ** If memory allocation problems are found, recompile with ** ** -DMEMORY_DEBUG=1 ** ** to enable some sanity checking on malloc() and free(). To ** check for memory leaks, recompile with ** ** -DMEMORY_DEBUG=2 ** ** and a line of text will be written to standard error for ** each malloc() and free(). This output can be analyzed ** by an AWK script to determine if there are any leaks. */ #ifdef MEMORY_DEBUG # define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__) # define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__) # define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) # define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) void sqliteStrRealloc(char**); #else # define sqliteRealloc_(X,Y) sqliteRealloc(X,Y) # define sqliteStrRealloc(X) #endif /* ** This variable gets set if malloc() ever fails. After it gets set, ** the SQLite library shuts down permanently. */ extern int sqlite_malloc_failed; /* ** The following global variables are used for testing and debugging ** only. They only work if MEMORY_DEBUG is defined. */ #ifdef MEMORY_DEBUG extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ extern int sqlite_nFree; /* Number of sqliteFree() calls */ extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ #endif /* ** Name of the master database table. The master database table ** is a special table that holds the names and attributes of all ** user tables and indices. */ #define MASTER_NAME "sqlite_master" #define TEMP_MASTER_NAME "sqlite_temp_master" /* ** The name of the schema table. */ #define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME) /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) (sizeof(X)/sizeof(X[0])) /* ** Forward references to structures */ typedef struct Column Column; typedef struct Table Table; typedef struct Index Index; typedef struct Instruction Instruction; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct Parse Parse; typedef struct Token Token; typedef struct IdList IdList; typedef struct SrcList SrcList; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; typedef struct Select Select; typedef struct AggExpr AggExpr; typedef struct FuncDef FuncDef; typedef struct Trigger Trigger; typedef struct TriggerStep TriggerStep; typedef struct TriggerStack TriggerStack; typedef struct FKey FKey; typedef struct Db Db; typedef struct AuthContext AuthContext; /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zName; /* Name of this database */ Btree *pBt; /* The B*Tree structure for this database file */ int schema_cookie; /* Database schema version number for this file */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash aFKey; /* Foreign keys indexed by to-table */ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u16 flags; /* Flags associated with this database */ void *pAux; /* Auxiliary data. Usually NULL */ void (*xFreeAux)(void*); /* Routine to free pAux */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) /* ** Allowed values for the DB.flags field. ** ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint ** opcode is emitted for a database. This prevents multiple occurances ** of those opcodes for the same database in the same program. Similarly, ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted, ** and prevents duplicate OP_VerifyCookies from taking up space and slowing ** down execution. ** ** The DB_SchemaLoaded flag is set after the database schema has been ** read into internal hash tables. ** ** DB_UnresetViews means that one or more views have column names that ** have been filled out. If the schema changes, these column names might ** changes and so the view will need to be reset. */ #define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */ #define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */ #define DB_SchemaLoaded 0x0004 /* The schema has been loaded */ #define DB_UnresetViews 0x0008 /* Some views have defined column names */ /* ** Each database is an instance of the following structure. ** ** The sqlite.file_format is initialized by the database file ** and helps determines how the data in the database file is ** represented. This field allows newer versions of the library ** to read and write older databases. The various file formats ** are as follows: ** ** file_format==1 Version 2.1.0. ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY. ** file_format==3 Version 2.6.0. Fix empty-string index bug. ** file_format==4 Version 2.7.0. Add support for separate numeric and ** text datatypes. ** ** The sqlite.temp_store determines where temporary database files ** are stored. If 1, then a file is created to hold those tables. If ** 2, then they are held in memory. 0 means use the default value in ** the TEMP_STORE macro. ** ** The sqlite.lastRowid records the last insert rowid generated by an ** insert statement. Inserts on views do not affect its value. Each ** trigger has its own context, so that lastRowid can be updated inside ** triggers as usual. The previous value will be restored once the trigger ** exits. Upon entering a before or instead of trigger, lastRowid is no ** longer (since after version 2.8.12) reset to -1. ** ** The sqlite.nChange does not count changes within triggers and keeps no ** context. It is reset at start of sqlite_exec. ** The sqlite.lsChange represents the number of changes made by the last ** insert, update, or delete statement. It remains constant throughout the ** length of a statement and is then updated by OP_SetCounts. It keeps a ** context stack just like lastRowid so that the count of changes ** within a trigger is not seen outside the trigger. Changes to views do not ** affect the value of lsChange. ** The sqlite.csChange keeps track of the number of current changes (since ** the last statement) and is used to update sqlite_lsChange. */ struct sqlite { int nDb; /* Number of backends currently in use */ Db *aDb; /* All backends */ Db aDbStatic[2]; /* Static space for the 2 default backends */ int flags; /* Miscellanous flags. See below */ u8 file_format; /* What file format version is this database? */ u8 safety_level; /* How aggressive at synching data to disk */ u8 want_to_close; /* Close after all VDBEs are deallocated */ u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */ u8 onError; /* Default conflict algorithm */ int next_cookie; /* Next value of aDb[0].schema_cookie */ int cache_size; /* Number of pages to use in the cache */ int nTable; /* Number of tables in the database */ void *pBusyArg; /* 1st Argument to the busy callback */ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ void *pCommitArg; /* Argument to xCommitCallback() */ int (*xCommitCallback)(void*);/* Invoked at every commit. */ Hash aFunc; /* All functions that can be in SQL exprs */ int lastRowid; /* ROWID of most recent insert (see above) */ int priorNewRowid; /* Last randomly generated ROWID */ int magic; /* Magic number for detect library misuse */ int nChange; /* Number of rows changed (see above) */ int lsChange; /* Last statement change count (see above) */ int csChange; /* Current statement change count (see above) */ struct sqliteInitInfo { /* Information used during initialization */ int iDb; /* When back is being initialized */ int newTnum; /* Rootpage of table being initialized */ u8 busy; /* TRUE if currently initializing */ } init; struct Vdbe *pVdbe; /* List of active virtual machines */ void (*xTrace)(void*,const char*); /* Trace function */ void *pTraceArg; /* Argument to the trace function */ #ifndef SQLITE_OMIT_AUTHORIZATION int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ int nProgressOps; /* Number of opcodes for progress callback */ #endif }; /* ** Possible values for the sqlite.flags and or Db.flags fields. ** ** On sqlite.flags, the SQLITE_InTrans value means that we have ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement ** transaction is active on that particular database file. */ #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ #define SQLITE_Initialized 0x00000002 /* True after initialization */ #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ /* DELETE, or UPDATE and return */ /* the count using a callback. */ #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ /* result set is empty */ #define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */ /* in 4th argument of callback */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ /* ** Each SQL function is defined by an instance of the following ** structure. A pointer to this structure is stored in the sqlite.aFunc ** hash table. When multiple functions have the same name, the hash table ** points to a linked list of these structures. */ struct FuncDef { void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */ void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */ void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */ signed char nArg; /* Number of arguments. -1 means unlimited */ signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */ /* -2=TEXT. -3=SQLITE_ARGS */ u8 includeTypes; /* Add datatypes to args of xFunc and xStep */ void *pUserData; /* User data parameter */ FuncDef *pNext; /* Next function with same name */ }; /* ** information about each column of an SQL table is held in an instance ** of this structure. */ struct Column { char *zName; /* Name of this column */ char *zDflt; /* Default value of this column */ char *zType; /* Data type for this column */ u8 notNull; /* True if there is a NOT NULL constraint */ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ u8 sortOrder; /* Some combination of SQLITE_SO_... values */ u8 dottedName; /* True if zName contains a "." character */ }; /* ** The allowed sort orders. ** ** The TEXT and NUM values use bits that do not overlap with DESC and ASC. ** That way the two can be combined into a single number. */ #define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ #define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ #define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */ #define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ #define SQLITE_SO_ASC 0 /* Sort in ascending order */ #define SQLITE_SO_DESC 1 /* Sort in descending order */ #define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ /* ** Each SQL table is represented in memory by an instance of the ** following structure. ** ** Table.zName is the name of the table. The case of the original ** CREATE TABLE statement is stored, but case is not significant for ** comparisons. ** ** Table.nCol is the number of columns in this table. Table.aCol is a ** pointer to an array of Column structures, one for each column. ** ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of ** the column that is that key. Otherwise Table.iPKey is negative. Note ** that the datatype of the PRIMARY KEY must be INTEGER for this field to ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid ** is generated for each row of the table. Table.hasPrimKey is true if ** the table has any PRIMARY KEY, INTEGER or otherwise. ** ** Table.tnum is the page number for the root BTree page of the table in the ** database file. If Table.iDb is the index of the database table backend ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that ** holds temporary tables and indices. If Table.isTransient ** is true, then the table is stored in a file that is automatically deleted ** when the VDBE cursor to the table is closed. In this case Table.tnum ** refers VDBE cursor number that holds the table open, not to the root ** page number. Transient tables are used to hold the results of a ** sub-query that appears instead of a real table name in the FROM clause ** of a SELECT statement. */ struct Table { char *zName; /* Name of the table */ int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ Index *pIndex; /* List of SQL indexes on this table. */ int tnum; /* Root BTree node for this table (see note above) */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ u8 readOnly; /* True if this table should not be written by the user */ u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ u8 isTransient; /* True if automatically deleted when VDBE finishes */ u8 hasPrimKey; /* True if there exists a primary key */ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ Trigger *pTrigger; /* List of SQL triggers on this table */ FKey *pFKey; /* Linked list of all foreign keys in this table */ }; /* ** Each foreign key constraint is an instance of the following structure. ** ** A foreign key is associated with two tables. The "from" table is ** the table that contains the REFERENCES clause that creates the foreign ** key. The "to" table is the table that is named in the REFERENCES clause. ** Consider this example: ** ** CREATE TABLE ex1( ** a INTEGER PRIMARY KEY, ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) ** ); ** ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". ** ** Each REFERENCES clause generates an instance of the following structure ** which is attached to the from-table. The to-table need not exist when ** the from-table is created. The existance of the to-table is not checked ** until an attempt is made to insert data into the from-table. ** ** The sqlite.aFKey hash table stores pointers to this structure ** given the name of a to-table. For each to-table, all foreign keys ** associated with that table are on a linked list using the FKey.pNextTo ** field. */ struct FKey { Table *pFrom; /* The table that constains the REFERENCES clause */ FKey *pNextFrom; /* Next foreign key in pFrom */ char *zTo; /* Name of table that the key points to */ FKey *pNextTo; /* Next foreign key that points to zTo */ int nCol; /* Number of columns in this key */ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ int iFrom; /* Index of column in pFrom */ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ } *aCol; /* One entry for each of nCol column s */ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ u8 insertConf; /* How to resolve conflicts that occur on INSERT */ }; /* ** SQLite supports many different ways to resolve a contraint ** error. ROLLBACK processing means that a constraint violation ** causes the operation in process to fail and for the current transaction ** to be rolled back. ABORT processing means the operation in process ** fails and any prior changes from that one operation are backed out, ** but the transaction is not rolled back. FAIL processing means that ** the operation in progress stops and returns an error code. But prior ** changes due to the same operation are not backed out and no rollback ** occurs. IGNORE means that the particular row that caused the constraint ** error is not inserted or updated. Processing continues and no error ** is returned. REPLACE means that preexisting database rows that caused ** a UNIQUE constraint violation are removed so that the new insert or ** update can proceed. Processing continues and no error is reported. ** ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the ** referenced table row is propagated into the row that holds the ** foreign key. ** ** The following symbolic values are used to record which type ** of action to take. */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ #define OE_Fail 3 /* Stop the operation but leave all prior changes */ #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ #define OE_SetNull 7 /* Set the foreign key value to NULL */ #define OE_SetDflt 8 /* Set the foreign key value to its default */ #define OE_Cascade 9 /* Cascade the changes */ #define OE_Default 99 /* Do whatever the default action is */ /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose ** we have the following table and index: ** ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); ** CREATE INDEX Ex2 ON Ex1(c3,c1); ** ** In the Table structure describing Ex1, nCol==3 because there are ** three columns in the table. In the Index structure describing ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. ** The second column to be indexed (c1) has an index of 0 in ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. ** ** The Index.onError field determines whether or not the indexed columns ** must be unique and what to do if they are not. When Index.onError=OE_None, ** it means this is not a unique index. Otherwise it is a unique index ** and the value of Index.onError indicate the which conflict resolution ** algorithm to employ whenever an attempt is made to insert a non-unique ** element. */ struct Index { char *zName; /* Name of this index */ int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** Note if Token.z==0 then Token.dyn and Token.n are undefined and ** may contain random values. Do not make any assuptions about Token.dyn ** and Token.n when Token.z==0. */ struct Token { const char *z; /* Text of the token. Not NULL-terminated! */ unsigned dyn : 1; /* True for malloced memory, false for static */ unsigned n : 31; /* Number of characters in this token */ }; /* ** Each node of an expression in the parse tree is an instance ** of this structure. ** ** Expr.op is the opcode. The integer parser token codes are reused ** as opcodes here. For example, the parser defines TK_GE to be an integer ** code representing the ">=" operator. This same integer code is reused ** to represent the greater-than-or-equal-to operator in the expression ** tree. ** ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list ** of argument if the expression is a function. ** ** Expr.token is the operator token for this node. For some expressions ** that have subexpressions, Expr.token can be the complete text that gave ** rise to the Expr. In the latter case, the token is marked as being ** a compound token. ** ** An expression of the form ID or ID.ID refers to a column in a table. ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is ** the integer cursor number of a VDBE cursor pointing to that table and ** Expr.iColumn is the column number for the specific column. If the ** expression is used as a result in an aggregate SELECT, then the ** value is also stored in the Expr.iAgg column in the aggregate so that ** it can be accessed after all aggregates are computed. ** ** If the expression is a function, the Expr.iTable is an integer code ** representing which function. If the expression is an unbound variable ** marker (a question mark character '?' in the original SQL) then the ** Expr.iTable holds the index number for that variable. ** ** The Expr.pSelect field points to a SELECT statement. The SELECT might ** be the right operand of an IN operator. Or, if a scalar SELECT appears ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only ** operand. */ struct Expr { u8 op; /* Operation performed by this node */ u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */ u8 iDb; /* Database referenced by this expression */ u8 flags; /* Various flags. See below */ Expr *pLeft, *pRight; /* Left and right subnodes */ ExprList *pList; /* A list of expressions used as function arguments ** or in "<expr> IN (<expr-list)" */ Token token; /* An operand token */ Token span; /* Complete text of the expression */ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the ** iColumn-th field of the iTable-th table. */ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull ** result from the iAgg-th element of the aggregator */ Select *pSelect; /* When the expression is a sub-select. Also the ** right side of "<expr> IN (<select>)" */ }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ /* ** These macros can be used to test, set, or clear bits in the ** Expr.flags field. */ #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) #define ExprSetProperty(E,P) (E)->flags|=(P) #define ExprClearProperty(E,P) (E)->flags&=~(P) /* ** A list of expressions. Each expression may optionally have a ** name. An expr/name combination can be used in several ways, such ** as the list of "expr AS ID" fields following a "SELECT" or in the ** list of "ID = expr" items in an UPDATE. A list of expressions can ** also be used as the argument to a function, in which case the a.zName ** field is not used. */ struct ExprList { int nExpr; /* Number of expressions on the list */ int nAlloc; /* Number of entries allocated below */ struct ExprList_item { Expr *pExpr; /* The list of expressions */ char *zName; /* Token associated with this expression */ u8 sortOrder; /* 1 for DESC or 0 for ASC */ u8 isAgg; /* True if this is an aggregate like count(*) */ u8 done; /* A flag to indicate when processing is finished */ } *a; /* One entry for each expression */ }; /* ** An instance of this structure can hold a simple list of identifiers, ** such as the list "a,b,c" in the following statements: ** ** INSERT INTO t(a,b,c) VALUES ...; ** CREATE INDEX idx ON t(a,b,c); ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; ** ** The IdList.a.idx field is used when the IdList represents the list of ** column names after a table name in an INSERT statement. In the statement ** ** INSERT INTO t(a,b,c) ... ** ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. */ struct IdList { int nId; /* Number of identifiers on the list */ int nAlloc; /* Number of entries allocated for a[] below */ struct IdList_item { char *zName; /* Name of the identifier */ int idx; /* Index in some Table.aCol[] of a column named zName */ } *a; }; /* ** The following structure describes the FROM clause of a SELECT statement. ** Each table or subquery in the FROM clause is a separate element of ** the SrcList.a[] array. ** ** With the addition of multiple database support, the following structure ** can also be used to describe a particular table such as the table that ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, ** such a table must be a simple name: ID. But in SQLite, the table can ** now be identified by a database name, a dot, then the table name: ID.ID. */ struct SrcList { i16 nSrc; /* Number of tables or subqueries in the FROM clause */ i16 nAlloc; /* Number of entries allocated in a[] below */ struct SrcList_item { char *zDatabase; /* Name of database holding this table */ char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ int jointype; /* Type of join between this table and the next */ int iCursor; /* The VDBE cursor number used to access this table */ Expr *pOn; /* The ON clause of a join */ IdList *pUsing; /* The USING clause of a join */ } a[1]; /* One entry for each identifier on the list */ }; /* ** Permitted values of the SrcList.a.jointype field */ #define JT_INNER 0x0001 /* Any kind of inner or cross join */ #define JT_NATURAL 0x0002 /* True for a "natural" join */ #define JT_LEFT 0x0004 /* Left outer join */ #define JT_RIGHT 0x0008 /* Right outer join */ #define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ #define JT_ERROR 0x0020 /* unknown or unsupported join type */ /* ** For each nested loop in a WHERE clause implementation, the WhereInfo ** structure contains a single instance of this structure. This structure ** is intended to be private the the where.c module and should not be ** access or modified by other modules. */ struct WhereLevel { int iMem; /* Memory cell used by this level */ Index *pIdx; /* Index used */ int iCur; /* Cursor number used for this index */ int score; /* How well this indexed scored */ int brk; /* Jump here to break out of the loop */ int cont; /* Jump here to continue with the next loop cycle */ int op, p1, p2; /* Opcode used to terminate the loop */ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int top; /* First instruction of interior of the loop */ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ int bRev; /* Do the scan in the reverse direction */ }; /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. */ struct WhereInfo { Parse *pParse; SrcList *pTabList; /* List of tables in the join */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int nLevel; /* Number of nested loop */ int savedNTab; /* Value of pParse->nTab before WhereBegin() */ int peakNTab; /* Value of pParse->nTab after WhereBegin() */ WhereLevel a[1]; /* Information about each nest loop in the WHERE */ }; /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** The zSelect field is used when the Select structure must be persistent. ** Normally, the expression tree points to tokens in the original input ** string that encodes the select. But if the Select structure must live ** longer than its input string (for example when it is used to describe ** a VIEW) we have to make a copy of the input string so that the nodes ** of the expression tree will have something to point to. zSelect is used ** to hold that copy. ** ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. ** If there is a LIMIT clause, the parser sets nLimit to the value of the ** limit and nOffset to the value of the offset (or 0 if there is not ** offset). But later on, nLimit and nOffset become the memory locations ** in the VDBE that record the limit and offset counters. */ struct Select { ExprList *pEList; /* The fields of the result */ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ u8 isDistinct; /* True if the DISTINCT keyword is present */ SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ char *zSelect; /* Complete text of the SELECT command */ }; /* ** The results of a select can be distributed in several ways. */ #define SRT_Callback 1 /* Invoke a callback with each row of result */ #define SRT_Mem 2 /* Store result in a memory cell */ #define SRT_Set 3 /* Store result as unique keys in a table */ #define SRT_Union 5 /* Store result as keys in a table */ #define SRT_Except 6 /* Remove result from a UNION table */ #define SRT_Table 7 /* Store result as data with a unique key */ #define SRT_TempTable 8 /* Store result in a trasient table */ #define SRT_Discard 9 /* Do not save the results anywhere */ #define SRT_Sorter 10 /* Store results in the sorter */ #define SRT_Subroutine 11 /* Call a subroutine to handle results */ /* ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") ** we have to do some additional analysis of expressions. An instance ** of the following structure holds information about a single subexpression ** somewhere in the SELECT statement. An array of these structures holds ** all the information we need to generate code for aggregate ** expressions. ** ** Note that when analyzing a SELECT containing aggregates, both ** non-aggregate field variables and aggregate functions are stored ** in the AggExpr array of the Parser structure. ** ** The pExpr field points to an expression that is part of either the ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY ** clause. The expression will be freed when those clauses are cleaned ** up. Do not try to delete the expression attached to AggExpr.pExpr. ** ** If AggExpr.pExpr==0, that means the expression is "count(*)". */ struct AggExpr { int isAgg; /* if TRUE contains an aggregate function */ Expr *pExpr; /* The expression */ FuncDef *pFunc; /* Information about the aggregate function */ }; /* ** An SQL parser context. A copy of this structure is passed through ** the parser and down into all the parser action routine in order to ** carry around information that is global to the entire parse. */ struct Parse { sqlite *db; /* The main database structure */ int rc; /* Return code from execution */ char *zErrMsg; /* An error message */ Token sErrToken; /* The token at which the error occurred */ Token sFirstToken; /* The first token parsed */ Token sLastToken; /* The last token parsed */ const char *zTail; /* All SQL text past the last semicolon parsed */ Table *pNewTable; /* A table being constructed by CREATE TABLE */ Vdbe *pVdbe; /* An engine for executing database bytecode */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 explain; /* True if the EXPLAIN flag is found on the query */ u8 nameClash; /* A permanent table name clashes with temp table name */ u8 useAgg; /* If true, extract field values from the aggregator ** while generating expressions. Normally false */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int nSet; /* Number of sets used so far */ int nAgg; /* Number of aggregate expressions */ int nVar; /* Number of '?' variables seen in the SQL so far */ AggExpr *aAgg; /* An array of aggregate expressions */ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ TriggerStack *trigStack; /* Trigger actions being coded */ }; /* ** An instance of the following structure can be declared on a stack and used ** to save the Parse.zAuthContext value so that it can be restored later. */ struct AuthContext { const char *zAuthContext; /* Put saved Parse.zAuthContext here */ Parse *pParse; /* The Parse structure */ }; /* ** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete */ #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ #define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite* that represents the * database). This allows Trigger structures to be retrieved by name. * 2. All triggers associated with a single table form a linked list, using the * pNext member of struct Trigger. A pointer to the first element of the * linked list is stored as the "pTrigger" member of the associated * struct Table. * * The "step_list" member points to the first element of a linked list * containing the SQL statements specified as the trigger program. */ struct Trigger { char *name; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ u8 iDb; /* Database containing this trigger */ u8 iTabDb; /* Database containing Trigger.table */ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, the <column-list> is stored here */ int foreach; /* One of TK_ROW or TK_STATEMENT */ Token nameToken; /* Token containing zName. Use during parsing only */ TriggerStep *step_list; /* Link list of trigger program steps */ Trigger *pNext; /* Next trigger associated with the table */ }; /* * An instance of struct TriggerStep is used to store a single SQL statement * that is a part of a trigger-program. * * Instances of struct TriggerStep are stored in a singly linked list (linked * using the "pNext" member) referenced by the "step_list" member of the * associated struct Trigger instance. The first element of the linked list is * the first step of the trigger-program. * * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or * "SELECT" statement. The meanings of the other members is determined by the * value of "op" as follows: * * (op == TK_INSERT) * orconf -> stores the ON CONFLICT algorithm * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then * this stores a pointer to the SELECT statement. Otherwise NULL. * target -> A token holding the name of the table to insert into. * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then * this stores values to be inserted. Otherwise NULL. * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... * statement, then this stores the column-names to be * inserted into. * * (op == TK_DELETE) * target -> A token holding the name of the table to delete from. * pWhere -> The WHERE clause of the DELETE statement if one is specified. * Otherwise NULL. * * (op == TK_UPDATE) * target -> A token holding the name of the table to update rows of. * pWhere -> The WHERE clause of the UPDATE statement if one is specified. * Otherwise NULL. * pExprList -> A list of the columns to update and the expressions to update * them to. See sqliteUpdate() documentation of "pChanges" * argument. * */ struct TriggerStep { int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ int orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* Valid for SELECT and sometimes INSERT steps (when pExprList == 0) */ Token target; /* Valid for DELETE, UPDATE, INSERT steps */ Expr *pWhere; /* Valid for DELETE, UPDATE steps */ ExprList *pExprList; /* Valid for UPDATE statements and sometimes INSERT steps (when pSelect == 0) */ IdList *pIdList; /* Valid for INSERT statements only */ TriggerStep * pNext; /* Next in the link-list */ }; /* * An instance of struct TriggerStack stores information required during code * generation of a single trigger program. While the trigger program is being * coded, its associated TriggerStack instance is pointed to by the * "pTriggerStack" member of the Parse structure. * * The pTab member points to the table that triggers are being coded on. The * newIdx member contains the index of the vdbe cursor that points at the temp * table that stores the new.* references. If new.* references are not valid * for the trigger being coded (for example an ON DELETE trigger), then newIdx * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. * * The ON CONFLICT policy to be used for the trigger program steps is stored * as the orconf member. If this is OE_Default, then the ON CONFLICT clause * specified for individual triggers steps is used. * * struct TriggerStack has a "pNext" member, to allow linked lists to be * constructed. When coding nested triggers (triggers fired by other triggers) * each nested trigger stores its parent trigger's TriggerStack as the "pNext" * pointer. Once the nested trigger has been coded, the pNext value is restored * to the pTriggerStack member of the Parse stucture and coding of the parent * trigger continues. * * Before a nested trigger is coded, the linked list pointed to by the * pTriggerStack is scanned to ensure that the trigger is not about to be coded * recursively. If this condition is detected, the nested trigger is not coded. */ struct TriggerStack { Table *pTab; /* Table that triggers are currently being coded on */ int newIdx; /* Index of vdbe cursor to "new" temp table */ int oldIdx; /* Index of vdbe cursor to "old" temp table */ int orconf; /* Current orconf policy */ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ Trigger *pTrigger; /* The trigger currently being coded */ TriggerStack *pNext; /* Next trigger down on the trigger stack */ }; /* ** The following structure contains information used by the sqliteFix... ** routines as they walk the parse tree to make database references ** explicit. */ typedef struct DbFixer DbFixer; struct DbFixer { Parse *pParse; /* The parsing context. Error messages written here */ const char *zDb; /* Make sure all objects are contained in this database */ const char *zType; /* Type of the container - used for error messages */ const Token *pName; /* Name of the container - used for error messages */ }; /* * This global flag is set for performance testing of triggers. When it is set * SQLite will perform the overhead of building new and old trigger references * even when no triggers exist */ extern int always_code_trigger_setup; /* ** Internal function prototypes */ int sqliteStrICmp(const char *, const char *); int sqliteStrNICmp(const char *, const char *, int); int sqliteHashNoCase(const char *, int); int sqliteIsNumber(const char*); int sqliteCompare(const char *, const char *); int sqliteSortCompare(const char *, const char *); void sqliteRealToSortable(double r, char *); #ifdef MEMORY_DEBUG void *sqliteMalloc_(int,int,char*,int); void sqliteFree_(void*,char*,int); void *sqliteRealloc_(void*,int,char*,int); char *sqliteStrDup_(const char*,char*,int); char *sqliteStrNDup_(const char*, int,char*,int); void sqliteCheckMemory(void*,int); #else void *sqliteMalloc(int); void *sqliteMallocRaw(int); void sqliteFree(void*); void *sqliteRealloc(void*,int); char *sqliteStrDup(const char*); char *sqliteStrNDup(const char*, int); # define sqliteCheckMemory(a,b) #endif char *sqliteMPrintf(const char*, ...); char *sqliteVMPrintf(const char*, va_list); void sqliteSetString(char **, ...); void sqliteSetNString(char **, ...); void sqliteErrorMsg(Parse*, const char*, ...); void sqliteDequote(char*); int sqliteKeywordCode(const char*, int); int sqliteRunParser(Parse*, const char*, char **); void sqliteExec(Parse*); Expr *sqliteExpr(int, Expr*, Expr*, Token*); void sqliteExprSpan(Expr*,Token*,Token*); Expr *sqliteExprFunction(ExprList*, Token*); void sqliteExprDelete(Expr*); ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); void sqliteExprListDelete(ExprList*); int sqliteInit(sqlite*, char**); void sqlitePragma(Parse*,Token*,Token*,int); void sqliteResetInternalSchema(sqlite*, int); void sqliteBeginParse(Parse*,int); void sqliteRollbackInternalChanges(sqlite*); void sqliteCommitInternalChanges(sqlite*); Table *sqliteResultSetOfSelect(Parse*,char*,Select*); void sqliteOpenMasterTable(Vdbe *v, int); void sqliteStartTable(Parse*,Token*,Token*,int,int); void sqliteAddColumn(Parse*,Token*); void sqliteAddNotNull(Parse*, int); void sqliteAddPrimaryKey(Parse*, IdList*, int); void sqliteAddColumnType(Parse*,Token*,Token*); void sqliteAddDefaultValue(Parse*,Token*,int); int sqliteCollateType(const char*, int); void sqliteAddCollateType(Parse*, int); void sqliteEndTable(Parse*,Token*,Select*); void sqliteCreateView(Parse*,Token*,Token*,Select*,int); int sqliteViewGetColumnNames(Parse*,Table*); void sqliteDropTable(Parse*, Token*, int); void sqliteDeleteTable(sqlite*, Table*); void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); IdList *sqliteIdListAppend(IdList*, Token*); int sqliteIdListIndex(IdList*,const char*); SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*); void sqliteSrcListAddAlias(SrcList*, Token*); void sqliteSrcListAssignCursors(Parse*, SrcList*); void sqliteIdListDelete(IdList*); void sqliteSrcListDelete(SrcList*); void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*); void sqliteDropIndex(Parse*, SrcList*); void sqliteAddKeyType(Vdbe*, ExprList*); void sqliteAddIdxKeyType(Vdbe*, Index*); int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*); Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, int,int,int); void sqliteSelectDelete(Select*); void sqliteSelectUnbind(Select*); Table *sqliteSrcListLookup(Parse*, SrcList*); int sqliteIsReadOnly(Parse*, Table*, int); void sqliteDeleteFrom(Parse*, SrcList*, Expr*); void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int); WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**); void sqliteWhereEnd(WhereInfo*); void sqliteExprCode(Parse*, Expr*); int sqliteExprCodeExprList(Parse*, ExprList*, int); void sqliteExprIfTrue(Parse*, Expr*, int, int); void sqliteExprIfFalse(Parse*, Expr*, int, int); Table *sqliteFindTable(sqlite*,const char*, const char*); Table *sqliteLocateTable(Parse*,const char*, const char*); Index *sqliteFindIndex(sqlite*,const char*, const char*); void sqliteUnlinkAndDeleteIndex(sqlite*,Index*); void sqliteCopy(Parse*, SrcList*, Token*, Token*, int); void sqliteVacuum(Parse*, Token*); int sqliteRunVacuum(char**, sqlite*); int sqliteGlobCompare(const unsigned char*,const unsigned char*); int sqliteLikeCompare(const unsigned char*,const unsigned char*); char *sqliteTableNameFromToken(Token*); int sqliteExprCheck(Parse*, Expr*, int, int*); int sqliteExprType(Expr*); int sqliteExprCompare(Expr*, Expr*); int sqliteFuncId(Token*); int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*); int sqliteExprAnalyzeAggregates(Parse*, Expr*); Vdbe *sqliteGetVdbe(Parse*); void sqliteRandomness(int, void*); void sqliteRollbackAll(sqlite*); void sqliteCodeVerifySchema(Parse*, int); void sqliteBeginTransaction(Parse*, int); void sqliteCommitTransaction(Parse*); void sqliteRollbackTransaction(Parse*); int sqliteExprIsConstant(Expr*); int sqliteExprIsInteger(Expr*, int*); int sqliteIsRowid(const char*); void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int); void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*); void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int); int sqliteOpenTableAndIndices(Parse*, Table*, int); void sqliteBeginWriteOperation(Parse*, int, int); void sqliteEndWriteOperation(Parse*); Expr *sqliteExprDup(Expr*); void sqliteTokenCopy(Token*, Token*); ExprList *sqliteExprListDup(ExprList*); SrcList *sqliteSrcListDup(SrcList*); IdList *sqliteIdListDup(IdList*); Select *sqliteSelectDup(Select*); FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int); void sqliteRegisterBuiltinFunctions(sqlite*); void sqliteRegisterDateTimeFunctions(sqlite*); int sqliteSafetyOn(sqlite*); int sqliteSafetyOff(sqlite*); int sqliteSafetyCheck(sqlite*); void sqliteChangeCookie(sqlite*, Vdbe*); void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int); void sqliteFinishTrigger(Parse*, TriggerStep*, Token*); void sqliteDropTrigger(Parse*, SrcList*); void sqliteDropTriggerPtr(Parse*, Trigger*, int); int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*); int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, int, int); void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); void sqliteDeleteTriggerStep(TriggerStep*); TriggerStep *sqliteTriggerSelectStep(Select*); TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int); TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*); void sqliteDeleteTrigger(Trigger*); int sqliteJoinType(Parse*, Token*, Token*, Token*); void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int); void sqliteDeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION void sqliteAuthRead(Parse*,Expr*,SrcList*); int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*); void sqliteAuthContextPush(Parse*, AuthContext*, const char*); void sqliteAuthContextPop(AuthContext*); #else # define sqliteAuthRead(a,b,c) # define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK # define sqliteAuthContextPush(a,b,c) # define sqliteAuthContextPop(a) ((void)(a)) #endif void sqliteAttach(Parse*, Token*, Token*, Token*); void sqliteDetach(Parse*, Token*); int sqliteBtreeFactory(const sqlite *db, const char *zFilename, int mode, int nPg, Btree **ppBtree); int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*); int sqliteFixSrcList(DbFixer*, SrcList*); int sqliteFixSelect(DbFixer*, Select*); int sqliteFixExpr(DbFixer*, Expr*); int sqliteFixExprList(DbFixer*, ExprList*); int sqliteFixTriggerStep(DbFixer*, TriggerStep*); double sqliteAtoF(const char *z, const char **); char *sqlite_snprintf(int,char*,const char*,...); int sqliteFitsIn32Bits(const char *);