Current Path : /usr/local/lib/perl5/site_perl/5.8.9/Crypt/DSA/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/local/lib/perl5/site_perl/5.8.9/Crypt/DSA/Util.pm |
# $Id: Util.pm 1938 2006-05-03 06:20:36Z btrott $ package Crypt::DSA::Util; use strict; use Math::BigInt lib => 'GMP'; use Fcntl; use Carp qw( croak ); use vars qw( @EXPORT_OK @ISA ); use Exporter; @EXPORT_OK = qw( bitsize bin2mp mp2bin mod_inverse mod_exp makerandom isprime ); @ISA = qw( Exporter ); ## Nicked from Crypt::RSA::DataFormat. ## Copyright (c) 2001, Vipul Ved Prakash. sub bitsize { length(Math::BigInt->new($_[0])->as_bin) - 2; } sub bin2mp { my $s = shift; $s eq '' ? Math::BigInt->new(0) : Math::BigInt->new("0b" . unpack("B*", $s)); } sub mp2bin { my $p = Math::BigInt->new(shift); my $base = Math::BigInt->new(256); my $res = ''; while ($p != 0) { my $r = $p % $base; $p = ($p-$r) / $base; $res = chr($r) . $res; } $res; } sub mod_exp { my($a, $exp, $n) = @_; $a->copy->bmodpow($exp, $n); } sub mod_inverse { my($a, $n) = @_; $a->copy->bmodinv($n); } sub makerandom { my %param = @_; my $size = $param{Size}; my $bytes = int($size / 8) + 1; my $r = ''; if ( sysopen my $fh, '/dev/random', O_RDONLY ) { my $read = 0; while ($read < $bytes) { my $got = sysread $fh, my($chunk), $bytes - $read; next unless $got; die "Error: $!" if $got == -1; $r .= $chunk; $read = length $r; } close $fh; } elsif ( require Data::Random ) { $r .= Data::Random::rand_chars( set=>'numeric' ) for 1..$bytes; } else { croak "makerandom requires /dev/random or Data::Random"; } my $down = $size - 1; $r = unpack 'H*', pack 'B*', '0' x ( $size % 8 ? 8 - $size % 8 : 0 ) . '1' . unpack "b$down", $r; Math::BigInt->new('0x' . $r); } # For testing, let us choose our isprime function: *isprime = \&isprime_algorithms_with_perl; # from the book "Mastering Algorithms with Perl" by Jon Orwant, # Jarkko Hietaniemi, and John Macdonald sub isprime_algorithms_with_perl { use integer; my $n = shift; my $n1 = $n - 1; my $one = $n - $n1; # not just 1, but a bigint my $witness = $one * 100; # find the power of two for the top bit of $n1 my $p2 = $one; my $p2index = -1; ++$p2index, $p2 *= 2 while $p2 <= $n1; $p2 /= 2; # number of interations: 5 for 260-bit numbers, go up to 25 for smaller my $last_witness = 5; $last_witness += (260 - $p2index) / 13 if $p2index < 260; for my $witness_count (1..$last_witness) { $witness *= 1024; $witness += int(rand(1024)); # XXXX use good rand $witness = $witness % $n if $witness > $n; $witness = $one * 100, redo if $witness == 0; my $prod = $one; my $n1bits = $n1; my $p2next = $p2; # compute $witness ** ($n - 1) while (1) { my $rootone = $prod == 1 || $prod == $n1; $prod = ($prod * $prod) % $n; return 0 if $prod == 1 && ! $rootone; if ($n1bits >= $p2next) { $prod = ($prod * $witness) % $n; $n1bits -= $p2next; } last if $p2next == 1; $p2next /= 2; } return 0 unless $prod == 1; } return 1; } sub isprime_gp_pari { my $n = shift; my $sn = "$n"; die if $sn =~ /\D/; my $is_prime = `echo "isprime($sn)" | gp -f -q`; die "No gp installed?" if $?; chomp $is_prime; return $is_prime; } sub isprime_paranoid { my $n = shift; my $perl = isprime_algorithms_with_perl($n); my $pari = isprime_gp_pari($n); die "Perl vs. PARI don't match on '$n'\n" unless $perl == $pari; return $perl; } 1; __END__ =head1 NAME Crypt::DSA::Util - DSA Utility functions =head1 SYNOPSIS use Crypt::DSA::Util qw( func1 func2 ... ); =head1 DESCRIPTION I<Crypt::DSA::Util> contains a set of exportable utility functions used through the I<Crypt::DSA> set of libraries. =head2 bitsize($n) Returns the number of bits in the I<Math::Pari> integer object I<$n>. =head2 bin2mp($string) Given a string I<$string> of any length, treats the string as a base-256 representation of an integer, and returns that integer, a I<Math::Pari> object. =head2 mp2bin($int) Given a biginteger I<$int> (a I<Math::Pari> object), linearizes the integer into an octet string, and returns the octet string. =head2 mod_exp($a, $exp, $n) Computes $a ^ $exp mod $n and returns the value. The calculations are done using I<Math::Pari>, and the return value is a I<Math::Pari> object. =head2 mod_inverse($a, $n) Computes the multiplicative inverse of $a mod $n and returns the value. The calculations are done using I<Math::Pari>, and the return value is a I<Math::Pari> object. =head1 AUTHOR & COPYRIGHTS Please see the Crypt::DSA manpage for author, copyright, and license information. =cut