Current Path : /usr/local/lib/python2.5/test/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/local/lib/python2.5/test/test_generators.pyc |
³ò h”Rc @ sù d Z d Z d Z d Z d Z d „ Z d „ Z d „ Z d f d „ ƒ YZ d f d „ ƒ YZ d Z d Z d Z d Z h e d <e d <e d <e d <e d <e d <e d <e d <e d <Z e d „ Z e d j o e d ƒ n d S( sÜ Let's try a simple generator: >>> def f(): ... yield 1 ... yield 2 >>> for i in f(): ... print i 1 2 >>> g = f() >>> g.next() 1 >>> g.next() 2 "Falling off the end" stops the generator: >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 2, in g StopIteration "return" also stops the generator: >>> def f(): ... yield 1 ... return ... yield 2 # never reached ... >>> g = f() >>> g.next() 1 >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 3, in f StopIteration >>> g.next() # once stopped, can't be resumed Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration "raise StopIteration" stops the generator too: >>> def f(): ... yield 1 ... raise StopIteration ... yield 2 # never reached ... >>> g = f() >>> g.next() 1 >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration However, they are not exactly equivalent: >>> def g1(): ... try: ... return ... except: ... yield 1 ... >>> list(g1()) [] >>> def g2(): ... try: ... raise StopIteration ... except: ... yield 42 >>> print list(g2()) [42] This may be surprising at first: >>> def g3(): ... try: ... return ... finally: ... yield 1 ... >>> list(g3()) [1] Let's create an alternate range() function implemented as a generator: >>> def yrange(n): ... for i in range(n): ... yield i ... >>> list(yrange(5)) [0, 1, 2, 3, 4] Generators always return to the most recent caller: >>> def creator(): ... r = yrange(5) ... print "creator", r.next() ... return r ... >>> def caller(): ... r = creator() ... for i in r: ... print "caller", i ... >>> caller() creator 0 caller 1 caller 2 caller 3 caller 4 Generators can call other generators: >>> def zrange(n): ... for i in yrange(n): ... yield i ... >>> list(zrange(5)) [0, 1, 2, 3, 4] sq Specification: Yield Restriction: A generator cannot be resumed while it is actively running: >>> def g(): ... i = me.next() ... yield i >>> me = g() >>> me.next() Traceback (most recent call last): ... File "<string>", line 2, in g ValueError: generator already executing Specification: Return Note that return isn't always equivalent to raising StopIteration: the difference lies in how enclosing try/except constructs are treated. For example, >>> def f1(): ... try: ... return ... except: ... yield 1 >>> print list(f1()) [] because, as in any function, return simply exits, but >>> def f2(): ... try: ... raise StopIteration ... except: ... yield 42 >>> print list(f2()) [42] because StopIteration is captured by a bare "except", as is any exception. Specification: Generators and Exception Propagation >>> def f(): ... return 1//0 >>> def g(): ... yield f() # the zero division exception propagates ... yield 42 # and we'll never get here >>> k = g() >>> k.next() Traceback (most recent call last): File "<stdin>", line 1, in ? File "<stdin>", line 2, in g File "<stdin>", line 2, in f ZeroDivisionError: integer division or modulo by zero >>> k.next() # and the generator cannot be resumed Traceback (most recent call last): File "<stdin>", line 1, in ? StopIteration >>> Specification: Try/Except/Finally >>> def f(): ... try: ... yield 1 ... try: ... yield 2 ... 1//0 ... yield 3 # never get here ... except ZeroDivisionError: ... yield 4 ... yield 5 ... raise ... except: ... yield 6 ... yield 7 # the "raise" above stops this ... except: ... yield 8 ... yield 9 ... try: ... x = 12 ... finally: ... yield 10 ... yield 11 >>> print list(f()) [1, 2, 4, 5, 8, 9, 10, 11] >>> Guido's binary tree example. >>> # A binary tree class. >>> class Tree: ... ... def __init__(self, label, left=None, right=None): ... self.label = label ... self.left = left ... self.right = right ... ... def __repr__(self, level=0, indent=" "): ... s = level*indent + repr(self.label) ... if self.left: ... s = s + "\n" + self.left.__repr__(level+1, indent) ... if self.right: ... s = s + "\n" + self.right.__repr__(level+1, indent) ... return s ... ... def __iter__(self): ... return inorder(self) >>> # Create a Tree from a list. >>> def tree(list): ... n = len(list) ... if n == 0: ... return [] ... i = n // 2 ... return Tree(list[i], tree(list[:i]), tree(list[i+1:])) >>> # Show it off: create a tree. >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") >>> # A recursive generator that generates Tree labels in in-order. >>> def inorder(t): ... if t: ... for x in inorder(t.left): ... yield x ... yield t.label ... for x in inorder(t.right): ... yield x >>> # Show it off: create a tree. >>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ") >>> # Print the nodes of the tree in in-order. >>> for x in t: ... print x, A B C D E F G H I J K L M N O P Q R S T U V W X Y Z >>> # A non-recursive generator. >>> def inorder(node): ... stack = [] ... while node: ... while node.left: ... stack.append(node) ... node = node.left ... yield node.label ... while not node.right: ... try: ... node = stack.pop() ... except IndexError: ... return ... yield node.label ... node = node.right >>> # Exercise the non-recursive generator. >>> for x in t: ... print x, A B C D E F G H I J K L M N O P Q R S T U V W X Y Z sÎ The difference between yielding None and returning it. >>> def g(): ... for i in range(3): ... yield None ... yield None ... return >>> list(g()) [None, None, None, None] Ensure that explicitly raising StopIteration acts like any other exception in try/except, not like a return. >>> def g(): ... yield 1 ... try: ... raise StopIteration ... except: ... yield 2 ... yield 3 >>> list(g()) [1, 2, 3] Next one was posted to c.l.py. >>> def gcomb(x, k): ... "Generate all combinations of k elements from list x." ... ... if k > len(x): ... return ... if k == 0: ... yield [] ... else: ... first, rest = x[0], x[1:] ... # A combination does or doesn't contain first. ... # If it does, the remainder is a k-1 comb of rest. ... for c in gcomb(rest, k-1): ... c.insert(0, first) ... yield c ... # If it doesn't contain first, it's a k comb of rest. ... for c in gcomb(rest, k): ... yield c >>> seq = range(1, 5) >>> for k in range(len(seq) + 2): ... print "%d-combs of %s:" % (k, seq) ... for c in gcomb(seq, k): ... print " ", c 0-combs of [1, 2, 3, 4]: [] 1-combs of [1, 2, 3, 4]: [1] [2] [3] [4] 2-combs of [1, 2, 3, 4]: [1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4] 3-combs of [1, 2, 3, 4]: [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4] 4-combs of [1, 2, 3, 4]: [1, 2, 3, 4] 5-combs of [1, 2, 3, 4]: From the Iterators list, about the types of these things. >>> def g(): ... yield 1 ... >>> type(g) <type 'function'> >>> i = g() >>> type(i) <type 'generator'> >>> [s for s in dir(i) if not s.startswith('_')] ['close', 'gi_frame', 'gi_running', 'next', 'send', 'throw'] >>> print i.next.__doc__ x.next() -> the next value, or raise StopIteration >>> iter(i) is i True >>> import types >>> isinstance(i, types.GeneratorType) True And more, added later. >>> i.gi_running 0 >>> type(i.gi_frame) <type 'frame'> >>> i.gi_running = 42 Traceback (most recent call last): ... TypeError: readonly attribute >>> def g(): ... yield me.gi_running >>> me = g() >>> me.gi_running 0 >>> me.next() 1 >>> me.gi_running 0 A clever union-find implementation from c.l.py, due to David Eppstein. Sent: Friday, June 29, 2001 12:16 PM To: python-list@python.org Subject: Re: PEP 255: Simple Generators >>> class disjointSet: ... def __init__(self, name): ... self.name = name ... self.parent = None ... self.generator = self.generate() ... ... def generate(self): ... while not self.parent: ... yield self ... for x in self.parent.generator: ... yield x ... ... def find(self): ... return self.generator.next() ... ... def union(self, parent): ... if self.parent: ... raise ValueError("Sorry, I'm not a root!") ... self.parent = parent ... ... def __str__(self): ... return self.name >>> names = "ABCDEFGHIJKLM" >>> sets = [disjointSet(name) for name in names] >>> roots = sets[:] >>> import random >>> gen = random.WichmannHill(42) >>> while 1: ... for s in sets: ... print "%s->%s" % (s, s.find()), ... print ... if len(roots) > 1: ... s1 = gen.choice(roots) ... roots.remove(s1) ... s2 = gen.choice(roots) ... s1.union(s2) ... print "merged", s1, "into", s2 ... else: ... break A->A B->B C->C D->D E->E F->F G->G H->H I->I J->J K->K L->L M->M merged D into G A->A B->B C->C D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M merged C into F A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->L M->M merged L into A A->A B->B C->F D->G E->E F->F G->G H->H I->I J->J K->K L->A M->M merged H into E A->A B->B C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M merged B into E A->A B->E C->F D->G E->E F->F G->G H->E I->I J->J K->K L->A M->M merged J into G A->A B->E C->F D->G E->E F->F G->G H->E I->I J->G K->K L->A M->M merged E into G A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->M merged M into G A->A B->G C->F D->G E->G F->F G->G H->G I->I J->G K->K L->A M->G merged I into K A->A B->G C->F D->G E->G F->F G->G H->G I->K J->G K->K L->A M->G merged K into A A->A B->G C->F D->G E->G F->F G->G H->G I->A J->G K->A L->A M->G merged F into A A->A B->G C->A D->G E->G F->A G->G H->G I->A J->G K->A L->A M->G merged A into G A->G B->G C->G D->G E->G F->G G->G H->G I->G J->G K->G L->G M->G sª Build up to a recursive Sieve of Eratosthenes generator. >>> def firstn(g, n): ... return [g.next() for i in range(n)] >>> def intsfrom(i): ... while 1: ... yield i ... i += 1 >>> firstn(intsfrom(5), 7) [5, 6, 7, 8, 9, 10, 11] >>> def exclude_multiples(n, ints): ... for i in ints: ... if i % n: ... yield i >>> firstn(exclude_multiples(3, intsfrom(1)), 6) [1, 2, 4, 5, 7, 8] >>> def sieve(ints): ... prime = ints.next() ... yield prime ... not_divisible_by_prime = exclude_multiples(prime, ints) ... for p in sieve(not_divisible_by_prime): ... yield p >>> primes = sieve(intsfrom(2)) >>> firstn(primes, 20) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] Another famous problem: generate all integers of the form 2**i * 3**j * 5**k in increasing order, where i,j,k >= 0. Trickier than it may look at first! Try writing it without generators, and correctly, and without generating 3 internal results for each result output. >>> def times(n, g): ... for i in g: ... yield n * i >>> firstn(times(10, intsfrom(1)), 10) [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] >>> def merge(g, h): ... ng = g.next() ... nh = h.next() ... while 1: ... if ng < nh: ... yield ng ... ng = g.next() ... elif ng > nh: ... yield nh ... nh = h.next() ... else: ... yield ng ... ng = g.next() ... nh = h.next() The following works, but is doing a whale of a lot of redundant work -- it's not clear how to get the internal uses of m235 to share a single generator. Note that me_times2 (etc) each need to see every element in the result sequence. So this is an example where lazy lists are more natural (you can look at the head of a lazy list any number of times). >>> def m235(): ... yield 1 ... me_times2 = times(2, m235()) ... me_times3 = times(3, m235()) ... me_times5 = times(5, m235()) ... for i in merge(merge(me_times2, ... me_times3), ... me_times5): ... yield i Don't print "too many" of these -- the implementation above is extremely inefficient: each call of m235() leads to 3 recursive calls, and in turn each of those 3 more, and so on, and so on, until we've descended enough levels to satisfy the print stmts. Very odd: when I printed 5 lines of results below, this managed to screw up Win98's malloc in "the usual" way, i.e. the heap grew over 4Mb so Win98 started fragmenting address space, and it *looked* like a very slow leak. >>> result = m235() >>> for i in range(3): ... print firstn(result, 15) [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] Heh. Here's one way to get a shared list, complete with an excruciating namespace renaming trick. The *pretty* part is that the times() and merge() functions can be reused as-is, because they only assume their stream arguments are iterable -- a LazyList is the same as a generator to times(). >>> class LazyList: ... def __init__(self, g): ... self.sofar = [] ... self.fetch = g.next ... ... def __getitem__(self, i): ... sofar, fetch = self.sofar, self.fetch ... while i >= len(sofar): ... sofar.append(fetch()) ... return sofar[i] >>> def m235(): ... yield 1 ... # Gack: m235 below actually refers to a LazyList. ... me_times2 = times(2, m235) ... me_times3 = times(3, m235) ... me_times5 = times(5, m235) ... for i in merge(merge(me_times2, ... me_times3), ... me_times5): ... yield i Print as many of these as you like -- *this* implementation is memory- efficient. >>> m235 = LazyList(m235()) >>> for i in range(5): ... print [m235[j] for j in range(15*i, 15*(i+1))] [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] Ye olde Fibonacci generator, LazyList style. >>> def fibgen(a, b): ... ... def sum(g, h): ... while 1: ... yield g.next() + h.next() ... ... def tail(g): ... g.next() # throw first away ... for x in g: ... yield x ... ... yield a ... yield b ... for s in sum(iter(fib), ... tail(iter(fib))): ... yield s >>> fib = LazyList(fibgen(1, 2)) >>> firstn(iter(fib), 17) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] Running after your tail with itertools.tee (new in version 2.4) The algorithms "m235" (Hamming) and Fibonacci presented above are both examples of a whole family of FP (functional programming) algorithms where a function produces and returns a list while the production algorithm suppose the list as already produced by recursively calling itself. For these algorithms to work, they must: - produce at least a first element without presupposing the existence of the rest of the list - produce their elements in a lazy manner To work efficiently, the beginning of the list must not be recomputed over and over again. This is ensured in most FP languages as a built-in feature. In python, we have to explicitly maintain a list of already computed results and abandon genuine recursivity. This is what had been attempted above with the LazyList class. One problem with that class is that it keeps a list of all of the generated results and therefore continually grows. This partially defeats the goal of the generator concept, viz. produce the results only as needed instead of producing them all and thereby wasting memory. Thanks to itertools.tee, it is now clear "how to get the internal uses of m235 to share a single generator". >>> from itertools import tee >>> def m235(): ... def _m235(): ... yield 1 ... for n in merge(times(2, m2), ... merge(times(3, m3), ... times(5, m5))): ... yield n ... m1 = _m235() ... m2, m3, m5, mRes = tee(m1, 4) ... return mRes >>> it = m235() >>> for i in range(5): ... print firstn(it, 15) [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24] [25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80] [81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192] [200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384] [400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675] The "tee" function does just what we want. It internally keeps a generated result for as long as it has not been "consumed" from all of the duplicated iterators, whereupon it is deleted. You can therefore print the hamming sequence during hours without increasing memory usage, or very little. The beauty of it is that recursive running-after-their-tail FP algorithms are quite straightforwardly expressed with this Python idiom. Ye olde Fibonacci generator, tee style. >>> def fib(): ... ... def _isum(g, h): ... while 1: ... yield g.next() + h.next() ... ... def _fib(): ... yield 1 ... yield 2 ... fibTail.next() # throw first away ... for res in _isum(fibHead, fibTail): ... yield res ... ... realfib = _fib() ... fibHead, fibTail, fibRes = tee(realfib, 3) ... return fibRes >>> firstn(fib(), 17) [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584] ss >>> def f(): ... return 22 ... yield 1 Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[0]>, line 3) >>> def f(): ... yield 1 ... return 22 Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[1]>, line 3) "return None" is not the same as "return" in a generator: >>> def f(): ... yield 1 ... return None Traceback (most recent call last): .. SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[2]>, line 3) These are fine: >>> def f(): ... yield 1 ... return >>> def f(): ... try: ... yield 1 ... finally: ... pass >>> def f(): ... try: ... try: ... 1//0 ... except ZeroDivisionError: ... yield 666 ... except: ... pass ... finally: ... pass >>> def f(): ... try: ... try: ... yield 12 ... 1//0 ... except ZeroDivisionError: ... yield 666 ... except: ... try: ... x = 12 ... finally: ... yield 12 ... except: ... return >>> list(f()) [12, 666] >>> def f(): ... yield >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... yield >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... yield 1 >>> type(f()) <type 'generator'> >>> def f(): ... if "": ... yield None >>> type(f()) <type 'generator'> >>> def f(): ... return ... try: ... if x==4: ... pass ... elif 0: ... try: ... 1//0 ... except SyntaxError: ... pass ... else: ... if 0: ... while 12: ... x += 1 ... yield 2 # don't blink ... f(a, b, c, d, e) ... else: ... pass ... except: ... x = 1 ... return >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... def g(): ... yield 1 ... >>> type(f()) <type 'NoneType'> >>> def f(): ... if 0: ... class C: ... def __init__(self): ... yield 1 ... def f(self): ... yield 2 >>> type(f()) <type 'NoneType'> >>> def f(): ... if 0: ... return ... if 0: ... yield 2 >>> type(f()) <type 'generator'> >>> def f(): ... if 0: ... lambda x: x # shouldn't trigger here ... return # or here ... def f(i): ... return 2*i # or here ... if 0: ... return 3 # but *this* sucks (line 8) ... if 0: ... yield 2 # because it's a generator (line 10) Traceback (most recent call last): SyntaxError: 'return' with argument inside generator (<doctest test.test_generators.__test__.syntax[24]>, line 10) This one caused a crash (see SF bug 567538): >>> def f(): ... for i in range(3): ... try: ... continue ... finally: ... yield i ... >>> g = f() >>> print g.next() 0 >>> print g.next() 1 >>> print g.next() 2 >>> print g.next() Traceback (most recent call last): StopIteration c # sH d g t ˆ ƒ } | ‡ ‡ f d † ‰ x ˆ d ƒ D] } | Vq5 Wd S( Nc 3 s\ | t ˆ ƒ j o | Vn= x9 ˆ | ƒ D]* | | <x ˆ | d ƒ D] } | VqE Wq* Wd S( Ni ( t len( t it valuest x( t gst gen( s0 /usr/local/lib/python2.5/test/test_generators.pyR s i ( t NoneR ( R R R ( ( R R s0 /usr/local/lib/python2.5/test/test_generators.pyt conjoinœ s c # sl t ˆ ƒ ‰ d g ˆ } | ‡ ‡ ‡ ‡ f d † ‰ | ‡ ‡ ‡ f d † ‰ x ˆ d ƒ D] } | VqY Wd S( Nc 3 s‹ | ˆ j o | Vnr ˆ | d oF | d } xU ˆ | ƒ D]&