Current Path : /usr/opt/gcc7/lib/gcc/x86_64-unknown-freebsd9.1/7.1.0/plugin/include/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/opt/gcc7/lib/gcc/x86_64-unknown-freebsd9.1/7.1.0/plugin/include/sparseset.h |
/* SparseSet implementation. Copyright (C) 2007-2017 Free Software Foundation, Inc. Contributed by Peter Bergner <bergner@vnet.ibm.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #ifndef GCC_SPARSESET_H #define GCC_SPARSESET_H /* Implementation of the Briggs and Torczon sparse set representation. The sparse set representation was first published in: "An Efficient Representation for Sparse Sets", ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69. The sparse set representation is suitable for integer sets with a fixed-size universe. Two vectors are used to store the members of the set. If an element I is in the set, then sparse[I] is the index of I in the dense vector, and dense[sparse[I]] == I. The dense vector works like a stack. The size of the stack is the cardinality of the set. The following operations can be performed in O(1) time: * clear : sparseset_clear * cardinality : sparseset_cardinality * set_size : sparseset_size * member_p : sparseset_bit_p * add_member : sparseset_set_bit * remove_member : sparseset_clear_bit * choose_one : sparseset_pop Additionally, the sparse set representation supports enumeration of the members in O(N) time, where n is the number of members in the set. The members of the set are stored cache-friendly in the dense vector. This makes it a competitive choice for iterating over relatively sparse sets requiring operations: * forall : EXECUTE_IF_SET_IN_SPARSESET * set_copy : sparseset_copy * set_intersection : sparseset_and * set_union : sparseset_ior * set_difference : sparseset_and_compl * set_disjuction : (not implemented) * set_compare : sparseset_equal_p NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET. The iterator is updated for it. Based on the efficiency of these operations, this representation of sparse sets will often be superior to alternatives such as simple bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees, hash tables, linked lists, etc., if the set is sufficiently sparse. In the LOPLAS paper the cut-off point where sparse sets became faster than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the size of the universe of the set). Because the set universe is fixed, the set cannot be resized. For sparse sets with initially unknown size, linked-list bitmaps are a better choice, see bitmap.h. Sparse sets storage requirements are relatively large: O(U) with a larger constant than sbitmaps (if the storage requirement for an sbitmap with universe U is S, then the storage required for a sparse set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S). Accessing the sparse vector is not very cache-friendly, but iterating over the members in the set is cache-friendly because only the dense vector is used. */ /* Data Structure used for the SparseSet representation. */ #define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT) #define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT typedef struct sparseset_def { SPARSESET_ELT_TYPE *dense; /* Dense array. */ SPARSESET_ELT_TYPE *sparse; /* Sparse array. */ SPARSESET_ELT_TYPE members; /* Number of elements. */ SPARSESET_ELT_TYPE size; /* Maximum number of elements. */ SPARSESET_ELT_TYPE iter; /* Iterator index. */ unsigned char iter_inc; /* Iteration increment amount. */ bool iterating; SPARSESET_ELT_TYPE elms[2]; /* Combined dense and sparse arrays. */ } *sparseset; #define sparseset_free(MAP) free(MAP) extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms); extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE); extern void sparseset_copy (sparseset, sparseset); extern void sparseset_and (sparseset, sparseset, sparseset); extern void sparseset_and_compl (sparseset, sparseset, sparseset); extern void sparseset_ior (sparseset, sparseset, sparseset); extern bool sparseset_equal_p (sparseset, sparseset); /* Operation: S = {} Clear the set of all elements. */ static inline void sparseset_clear (sparseset s) { s->members = 0; s->iterating = false; } /* Return the number of elements currently in the set. */ static inline SPARSESET_ELT_TYPE sparseset_cardinality (sparseset s) { return s->members; } /* Return the maximum number of elements this set can hold. */ static inline SPARSESET_ELT_TYPE sparseset_size (sparseset s) { return s->size; } /* Return true if e is a member of the set S, otherwise return false. */ static inline bool sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e) { SPARSESET_ELT_TYPE idx; gcc_checking_assert (e < s->size); idx = s->sparse[e]; return idx < s->members && s->dense[idx] == e; } /* Low level insertion routine not meant for use outside of sparseset.[ch]. Assumes E is valid and not already a member of the set S. */ static inline void sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx) { s->sparse[e] = idx; s->dense[idx] = e; } /* Operation: S = S + {e} Insert E into the set S, if it isn't already a member. */ static inline void sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e) { if (!sparseset_bit_p (s, e)) sparseset_insert_bit (s, e, s->members++); } /* Return and remove the last member added to the set S. */ static inline SPARSESET_ELT_TYPE sparseset_pop (sparseset s) { SPARSESET_ELT_TYPE mem = s->members; gcc_checking_assert (mem != 0); s->members = mem - 1; return s->dense[s->members]; } static inline void sparseset_iter_init (sparseset s) { s->iter = 0; s->iter_inc = 1; s->iterating = true; } static inline bool sparseset_iter_p (sparseset s) { if (s->iterating && s->iter < s->members) return true; else return s->iterating = false; } static inline SPARSESET_ELT_TYPE sparseset_iter_elm (sparseset s) { return s->dense[s->iter]; } static inline void sparseset_iter_next (sparseset s) { s->iter += s->iter_inc; s->iter_inc = 1; } #define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \ for (sparseset_iter_init (SPARSESET); \ sparseset_iter_p (SPARSESET) \ && (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \ sparseset_iter_next (SPARSESET)) #endif /* GCC_SPARSESET_H */