config root man

Current Path : /usr/opt/perl530/man/man1/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //usr/opt/perl530/man/man1/perlebcdic.1

.\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.35)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
.    if \nF \{\
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{\
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "PERLEBCDIC 1"
.TH PERLEBCDIC 1 "2020-02-29" "perl v5.30.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
perlebcdic \- Considerations for running Perl on EBCDIC platforms
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
An exploration of some of the issues facing Perl programmers
on \s-1EBCDIC\s0 based computers.
.PP
Portions of this document that are still incomplete are marked with \s-1XXX.\s0
.PP
Early Perl versions worked on some \s-1EBCDIC\s0 machines, but the last known
version that ran on \s-1EBCDIC\s0 was v5.8.7, until v5.22, when the Perl core
again works on z/OS.  Theoretically, it could work on \s-1OS/400\s0 or Siemens'
\&\s-1BS2000\s0  (or their successors), but this is untested.  In v5.22 and 5.24,
not all
the modules found on \s-1CPAN\s0 but shipped with core Perl work on z/OS.
.PP
If you want to use Perl on a non\-z/OS \s-1EBCDIC\s0 machine, please let us know
at <https://github.com/Perl/perl5/issues>.
.PP
Writing Perl on an \s-1EBCDIC\s0 platform is really no different than writing
on an \*(L"\s-1ASCII\*(R"\s0 one, but with different underlying numbers, as we'll see
shortly.  You'll have to know something about those \*(L"\s-1ASCII\*(R"\s0 platforms
because the documentation is biased and will frequently use example
numbers that don't apply to \s-1EBCDIC.\s0  There are also very few \s-1CPAN\s0
modules that are written for \s-1EBCDIC\s0 and which don't work on \s-1ASCII\s0;
instead the vast majority of \s-1CPAN\s0 modules are written for \s-1ASCII,\s0 and
some may happen to work on \s-1EBCDIC,\s0 while a few have been designed to
portably work on both.
.PP
If your code just uses the 52 letters A\-Z and a\-z, plus \s-1SPACE,\s0 the
digits 0\-9, and the punctuation characters that Perl uses, plus a few
controls that are denoted by escape sequences like \f(CW\*(C`\en\*(C'\fR and \f(CW\*(C`\et\*(C'\fR, then
there's nothing special about using Perl, and your code may very well
work on an \s-1ASCII\s0 machine without change.
.PP
But if you write code that uses \f(CW\*(C`\e005\*(C'\fR to mean a \s-1TAB\s0 or \f(CW\*(C`\exC1\*(C'\fR to mean
an \*(L"A\*(R", or \f(CW\*(C`\exDF\*(C'\fR to mean a \*(L"y\*:\*(R" (small \f(CW"y"\fR with a diaeresis),
then your code may well work on your \s-1EBCDIC\s0 platform, but not on an
\&\s-1ASCII\s0 one.  That's fine to do if no one will ever want to run your code
on an \s-1ASCII\s0 platform; but the bias in this document will be towards writing
code portable between \s-1EBCDIC\s0 and \s-1ASCII\s0 systems.  Again, if every
character you care about is easily enterable from your keyboard, you
don't have to know anything about \s-1ASCII,\s0 but many keyboards don't easily
allow you to directly enter, say, the character \f(CW\*(C`\exDF\*(C'\fR, so you have to
specify it indirectly, such as by using the \f(CW"\exDF"\fR escape sequence.
In those cases it's easiest to know something about the ASCII/Unicode
character sets.  If you know that the small \*(L"y\*:\*(R" is \f(CW\*(C`U+00FF\*(C'\fR, then
you can instead specify it as \f(CW"\eN{U+FF}"\fR, and have the computer
automatically translate it to \f(CW\*(C`\exDF\*(C'\fR on your platform, and leave it as
\&\f(CW\*(C`\exFF\*(C'\fR on \s-1ASCII\s0 ones.  Or you could specify it by name, \f(CW\*(C`\eN{LATIN
SMALL LETTER Y WITH DIAERESIS\*(C'\fR and not have to know the  numbers.
Either way works, but both require familiarity with Unicode.
.SH "COMMON CHARACTER CODE SETS"
.IX Header "COMMON CHARACTER CODE SETS"
.SS "\s-1ASCII\s0"
.IX Subsection "ASCII"
The American Standard Code for Information Interchange (\s-1ASCII\s0 or
US-ASCII) is a set of
integers running from 0 to 127 (decimal) that have standardized
interpretations by the computers which use \s-1ASCII.\s0  For example, 65 means
the letter \*(L"A\*(R".
The range 0..127 can be covered by setting various bits in a 7\-bit binary
digit, hence the set is sometimes referred to as \*(L"7\-bit \s-1ASCII\*(R".
ASCII\s0 was described by the American National Standards Institute
document \s-1ANSI X3.4\-1986.\s0  It was also described by \s-1ISO 646:1991\s0
(with localization for currency symbols).  The full \s-1ASCII\s0 set is
given in the table below as the first 128 elements.
Languages that
can be written adequately with the characters in \s-1ASCII\s0 include
English, Hawaiian, Indonesian, Swahili and some Native American
languages.
.PP
Most non-EBCDIC character sets are supersets of \s-1ASCII.\s0  That is the
integers 0\-127 mean what \s-1ASCII\s0 says they mean.  But integers 128 and
above are specific to the character set.
.PP
Many of these fit entirely into 8 bits, using \s-1ASCII\s0 as 0\-127, while
specifying what 128\-255 mean, and not using anything above 255.
Thus, these are single-byte (or octet if you prefer) character sets.
One important one (since Unicode is a superset of it) is the \s-1ISO 8859\-1\s0
character set.
.SS "\s-1ISO 8859\s0"
.IX Subsection "ISO 8859"
The \s-1ISO 8859\-\s0\fI\f(BI\f(CB$n\f(BI\fI\fR are a collection of character code sets from the
International Organization for Standardization (\s-1ISO\s0), each of which adds
characters to the \s-1ASCII\s0 set that are typically found in various
languages, many of which are based on the Roman, or Latin, alphabet.
Most are for European languages, but there are also ones for Arabic,
Greek, Hebrew, and Thai.  There are good references on the web about
all these.
.SS "Latin 1 (\s-1ISO 8859\-1\s0)"
.IX Subsection "Latin 1 (ISO 8859-1)"
A particular 8\-bit extension to \s-1ASCII\s0 that includes grave and acute
accented Latin characters.  Languages that can employ \s-1ISO 8859\-1\s0
include all the languages covered by \s-1ASCII\s0 as well as Afrikaans,
Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
Portuguese, Spanish, and Swedish.  Dutch is covered albeit without
the ij ligature.  French is covered too but without the oe ligature.
German can use \s-1ISO 8859\-1\s0 but must do so without German-style
quotation marks.  This set is based on Western European extensions
to \s-1ASCII\s0 and is commonly encountered in world wide web work.
In \s-1IBM\s0 character code set identification terminology, \s-1ISO 8859\-1\s0 is
also known as \s-1CCSID 819\s0 (or sometimes 0819 or even 00819).
.SS "\s-1EBCDIC\s0"
.IX Subsection "EBCDIC"
The Extended Binary Coded Decimal Interchange Code refers to a
large collection of single\- and multi-byte coded character sets that are
quite different from \s-1ASCII\s0 and \s-1ISO 8859\-1,\s0 and are all slightly
different from each other; they typically run on host computers.  The
\&\s-1EBCDIC\s0 encodings derive from 8\-bit byte extensions of Hollerith punched
card encodings, which long predate \s-1ASCII.\s0  The layout on the
cards was such that high bits were set for the upper and lower case
alphabetic
characters \f(CW\*(C`[a\-z]\*(C'\fR and \f(CW\*(C`[A\-Z]\*(C'\fR, but there were gaps within each Latin
alphabet range, visible in the table below.  These gaps can
cause complications.
.PP
Some \s-1IBM EBCDIC\s0 character sets may be known by character code set
identification numbers (\s-1CCSID\s0 numbers) or code page numbers.
.PP
Perl can be compiled on platforms that run any of three commonly used \s-1EBCDIC\s0
character sets, listed below.
.PP
\fIThe 13 variant characters\fR
.IX Subsection "The 13 variant characters"
.PP
Among \s-1IBM EBCDIC\s0 character code sets there are 13 characters that
are often mapped to different integer values.  Those characters
are known as the 13 \*(L"variant\*(R" characters and are:
.PP
.Vb 1
\&    \e [ ] { } ^ ~ ! # | $ @ \`
.Ve
.PP
When Perl is compiled for a platform, it looks at all of these characters to
guess which \s-1EBCDIC\s0 character set the platform uses, and adapts itself
accordingly to that platform.  If the platform uses a character set that is not
one of the three Perl knows about, Perl will either fail to compile, or
mistakenly and silently choose one of the three.
.PP
The Line Feed (\s-1LF\s0) character is actually a 14th variant character, and
Perl checks for that as well.
.PP
\fI\s-1EBCDIC\s0 code sets recognized by Perl\fR
.IX Subsection "EBCDIC code sets recognized by Perl"
.IP "\fB0037\fR" 4
.IX Item "0037"
Character code set \s-1ID 0037\s0 is a mapping of the \s-1ASCII\s0 plus Latin\-1
characters (i.e. \s-1ISO 8859\-1\s0) to an \s-1EBCDIC\s0 set.  0037 is used
in North American English locales on the \s-1OS/400\s0 operating system
that runs on \s-1AS/400\s0 computers.  \s-1CCSID 0037\s0 differs from \s-1ISO 8859\-1\s0
in 236 places; in other words they agree on only 20 code point values.
.IP "\fB1047\fR" 4
.IX Item "1047"
Character code set \s-1ID 1047\s0 is also a mapping of the \s-1ASCII\s0 plus
Latin\-1 characters (i.e. \s-1ISO 8859\-1\s0) to an \s-1EBCDIC\s0 set.  1047 is
used under Unix System Services for \s-1OS/390\s0 or z/OS, and OpenEdition
for \s-1VM/ESA.\s0  \s-1CCSID 1047\s0 differs from \s-1CCSID 0037\s0 in eight places,
and from \s-1ISO 8859\-1\s0 in 236.
.IP "\fBPOSIX-BC\fR" 4
.IX Item "POSIX-BC"
The \s-1EBCDIC\s0 code page in use on Siemens' \s-1BS2000\s0 system is distinct from
1047 and 0037.  It is identified below as the POSIX-BC set.
Like 0037 and 1047, it is the same as \s-1ISO 8859\-1\s0 in 20 code point
values.
.SS "Unicode code points versus \s-1EBCDIC\s0 code points"
.IX Subsection "Unicode code points versus EBCDIC code points"
In Unicode terminology a \fIcode point\fR is the number assigned to a
character: for example, in \s-1EBCDIC\s0 the character \*(L"A\*(R" is usually assigned
the number 193.  In Unicode, the character \*(L"A\*(R" is assigned the number 65.
All the code points in \s-1ASCII\s0 and Latin\-1 (\s-1ISO 8859\-1\s0) have the same
meaning in Unicode.  All three of the recognized \s-1EBCDIC\s0 code sets have
256 code points, and in each code set, all 256 code points are mapped to
equivalent Latin1 code points.  Obviously, \*(L"A\*(R" will map to \*(L"A\*(R", \*(L"B\*(R" =>
\&\*(L"B\*(R", \*(L"%\*(R" => \*(L"%\*(R", etc., for all printable characters in Latin1 and these
code pages.
.PP
It also turns out that \s-1EBCDIC\s0 has nearly precise equivalents for the
ASCII/Latin1 C0 controls and the \s-1DELETE\s0 control.  (The C0 controls are
those whose \s-1ASCII\s0 code points are 0..0x1F; things like \s-1TAB, ACK, BEL,\s0
etc.)  A mapping is set up between these \s-1ASCII/EBCDIC\s0 controls.  There
isn't such a precise mapping between the C1 controls on \s-1ASCII\s0 platforms
and the remaining \s-1EBCDIC\s0 controls.  What has been done is to map these
controls, mostly arbitrarily, to some otherwise unmatched character in
the other character set.  Most of these are very very rarely used
nowadays in \s-1EBCDIC\s0 anyway, and their names have been dropped, without
much complaint.  For example the \s-1EO\s0 (Eight Ones) \s-1EBCDIC\s0 control
(consisting of eight one bits = 0xFF) is mapped to the C1 \s-1APC\s0 control
(0x9F), and you can't use the name \*(L"\s-1EO\*(R".\s0
.PP
The \s-1EBCDIC\s0 controls provide three possible line terminator characters,
\&\s-1CR\s0 (0x0D), \s-1LF\s0 (0x25), and \s-1NL\s0 (0x15).  On \s-1ASCII\s0 platforms, the symbols
\&\*(L"\s-1NL\*(R"\s0 and \*(L"\s-1LF\*(R"\s0 refer to the same character, but in strict \s-1EBCDIC\s0
terminology they are different ones.  The \s-1EBCDIC NL\s0 is mapped to the C1
control called \*(L"\s-1NEL\*(R"\s0 (\*(L"Next Line\*(R"; here's a case where the mapping makes
quite a bit of sense, and hence isn't just arbitrary).  On some \s-1EBCDIC\s0
platforms, this \s-1NL\s0 or \s-1NEL\s0 is the typical line terminator.  This is true
of z/OS and \s-1BS2000.\s0  In these platforms, the C compilers will swap the
\&\s-1LF\s0 and \s-1NEL\s0 code points, so that \f(CW"\en"\fR is 0x15, and refers to \s-1NL.\s0  Perl
does that too; you can see it in the code chart below.
This makes things generally \*(L"just work\*(R" without you even having to be
aware that there is a swap.
.SS "Unicode and \s-1UTF\s0"
.IX Subsection "Unicode and UTF"
\&\s-1UTF\s0 stands for \*(L"Unicode Transformation Format\*(R".
\&\s-1UTF\-8\s0 is an encoding of Unicode into a sequence of 8\-bit byte chunks, based on
\&\s-1ASCII\s0 and Latin\-1.
The length of a sequence required to represent a Unicode code point
depends on the ordinal number of that code point,
with larger numbers requiring more bytes.
UTF-EBCDIC is like \s-1UTF\-8,\s0 but based on \s-1EBCDIC.\s0
They are enough alike that often, casual usage will conflate the two
terms, and use \*(L"\s-1UTF\-8\*(R"\s0 to mean both the \s-1UTF\-8\s0 found on \s-1ASCII\s0 platforms,
and the UTF-EBCDIC found on \s-1EBCDIC\s0 ones.
.PP
You may see the term \*(L"invariant\*(R" character or code point.
This simply means that the character has the same numeric
value and representation when encoded in \s-1UTF\-8\s0 (or UTF-EBCDIC) as when
not.  (Note that this is a very different concept from \*(L"The 13 variant
characters\*(R" mentioned above.  Careful prose will use the term \*(L"\s-1UTF\-8\s0
invariant\*(R" instead of just \*(L"invariant\*(R", but most often you'll see just
\&\*(L"invariant\*(R".) For example, the ordinal value of \*(L"A\*(R" is 193 in most
\&\s-1EBCDIC\s0 code pages, and also is 193 when encoded in UTF-EBCDIC.  All
\&\s-1UTF\-8\s0 (or UTF-EBCDIC) variant code points occupy at least two bytes when
encoded in \s-1UTF\-8\s0 (or UTF-EBCDIC); by definition, the \s-1UTF\-8\s0 (or
UTF-EBCDIC) invariant code points are exactly one byte whether encoded
in \s-1UTF\-8\s0 (or UTF-EBCDIC), or not.  (By now you see why people typically
just say \*(L"\s-1UTF\-8\*(R"\s0 when they also mean \*(L"UTF-EBCDIC\*(R".  For the rest of this
document, we'll mostly be casual about it too.)
In \s-1ASCII UTF\-8,\s0 the code points corresponding to the lowest 128
ordinal numbers (0 \- 127: the \s-1ASCII\s0 characters) are invariant.
In UTF-EBCDIC, there are 160 invariant characters.
(If you care, the \s-1EBCDIC\s0 invariants are those characters
which have \s-1ASCII\s0 equivalents, plus those that correspond to
the C1 controls (128 \- 159 on \s-1ASCII\s0 platforms).)
.PP
A string encoded in UTF-EBCDIC may be longer (very rarely shorter) than
one encoded in \s-1UTF\-8.\s0  Perl extends both \s-1UTF\-8\s0 and UTF-EBCDIC so that
they can encode code points above the Unicode maximum of U+10FFFF.  Both
extensions are constructed to allow encoding of any code point that fits
in a 64\-bit word.
.PP
UTF-EBCDIC is defined by
Unicode Technical Report #16 <http://www.unicode.org/reports/tr16>
(often referred to as just \s-1TR16\s0).
It is defined based on \s-1CCSID 1047,\s0 not allowing for the differences for
other code pages.  This allows for easy interchange of text between
computers running different code pages, but makes it unusable, without
adaptation, for Perl on those other code pages.
.PP
The reason for this unusability is that a fundamental assumption of Perl
is that the characters it cares about for parsing and lexical analysis
are the same whether or not the text is in \s-1UTF\-8.\s0  For example, Perl
expects the character \f(CW"["\fR to have the same representation, no matter
if the string containing it (or program text) is \s-1UTF\-8\s0 encoded or not.
To ensure this, Perl adapts UTF-EBCDIC to the particular code page so
that all characters it expects to be \s-1UTF\-8\s0 invariant are in fact \s-1UTF\-8\s0
invariant.  This means that text generated on a computer running one
version of Perl's UTF-EBCDIC has to be translated to be intelligible to
a computer running another.
.PP
\&\s-1TR16\s0 implies a method to extend UTF-EBCDIC to encode points up through
\&\f(CW\*(C`2\ **\ 31\ \-\ 1\*(C'\fR.  Perl uses this method for code points up through
\&\f(CW\*(C`2\ **\ 30\ \-\ 1\*(C'\fR, but uses an incompatible method for larger ones, to
enable it to handle much larger code points than otherwise.
.SS "Using Encode"
.IX Subsection "Using Encode"
Starting from Perl 5.8 you can use the standard module Encode
to translate from \s-1EBCDIC\s0 to Latin\-1 code points.
Encode knows about more \s-1EBCDIC\s0 character sets than Perl can currently
be compiled to run on.
.PP
.Vb 1
\&   use Encode \*(Aqfrom_to\*(Aq;
\&
\&   my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq );
\&
\&   # $a is in EBCDIC code points
\&   from_to($a, $ebcdic{ord \*(Aq^\*(Aq}, \*(Aqlatin1\*(Aq);
\&   # $a is ISO 8859\-1 code points
.Ve
.PP
and from Latin\-1 code points to \s-1EBCDIC\s0 code points
.PP
.Vb 1
\&   use Encode \*(Aqfrom_to\*(Aq;
\&
\&   my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq );
\&
\&   # $a is ISO 8859\-1 code points
\&   from_to($a, \*(Aqlatin1\*(Aq, $ebcdic{ord \*(Aq^\*(Aq});
\&   # $a is in EBCDIC code points
.Ve
.PP
For doing I/O it is suggested that you use the autotranslating features
of PerlIO, see perluniintro.
.PP
Since version 5.8 Perl uses the PerlIO I/O library.  This enables
you to use different encodings per \s-1IO\s0 channel.  For example you may use
.PP
.Vb 9
\&    use Encode;
\&    open($f, ">:encoding(ascii)", "test.ascii");
\&    print $f "Hello World!\en";
\&    open($f, ">:encoding(cp37)", "test.ebcdic");
\&    print $f "Hello World!\en";
\&    open($f, ">:encoding(latin1)", "test.latin1");
\&    print $f "Hello World!\en";
\&    open($f, ">:encoding(utf8)", "test.utf8");
\&    print $f "Hello World!\en";
.Ve
.PP
to get four files containing \*(L"Hello World!\en\*(R" in \s-1ASCII, CP 0037 EBCDIC,
ISO 8859\-1\s0 (Latin\-1) (in this example identical to \s-1ASCII\s0 since only \s-1ASCII\s0
characters were printed), and
UTF-EBCDIC (in this example identical to normal \s-1EBCDIC\s0 since only characters
that don't differ between \s-1EBCDIC\s0 and UTF-EBCDIC were printed).  See the
documentation of Encode::PerlIO for details.
.PP
As the PerlIO layer uses raw \s-1IO\s0 (bytes) internally, all this totally
ignores things like the type of your filesystem (\s-1ASCII\s0 or \s-1EBCDIC\s0).
.SH "SINGLE OCTET TABLES"
.IX Header "SINGLE OCTET TABLES"
The following tables list the \s-1ASCII\s0 and Latin 1 ordered sets including
the subsets: C0 controls (0..31), \s-1ASCII\s0 graphics (32..7e), delete (7f),
C1 controls (80..9f), and Latin\-1 (a.k.a. \s-1ISO 8859\-1\s0) (a0..ff).  In the
table names of the Latin 1
extensions to \s-1ASCII\s0 have been labelled with character names roughly
corresponding to \fIThe Unicode Standard, Version 6.1\fR albeit with
substitutions such as \f(CW\*(C`s/LATIN//\*(C'\fR and \f(CW\*(C`s/VULGAR//\*(C'\fR in all cases;
\&\f(CW\*(C`s/CAPITAL\ LETTER//\*(C'\fR in some cases; and
\&\f(CW\*(C`s/SMALL\ LETTER\ ([A\-Z])/\el$1/\*(C'\fR in some other
cases.  Controls are listed using their Unicode 6.2 abbreviations.
The differences between the 0037 and 1047 sets are
flagged with \f(CW\*(C`**\*(C'\fR.  The differences between the 1047 and POSIX-BC sets
are flagged with \f(CW\*(C`##.\*(C'\fR  All \f(CW\*(C`ord()\*(C'\fR numbers listed are decimal.  If you
would rather see this table listing octal values, then run the table
(that is, the pod source text of this document, since this recipe may not
work with a pod2_other_format translation) through:
.IP "recipe 0" 4
.IX Item "recipe 0"
.PP
.Vb 3
\&    perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e
\&     \-e \*(Aq{printf("%s%\-5.03o%\-5.03o%\-5.03o%.03o\en",$1,$2,$3,$4,$5)}\*(Aq \e
\&     perlebcdic.pod
.Ve
.PP
If you want to retain the UTF-x code points then in script form you
might want to write:
.IP "recipe 1" 4
.IX Item "recipe 1"
.PP
.Vb 10
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\&     if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)
\&                                                     \es+(\ed+)\e.?(\ed*)/x)
\&     {
\&         if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) {
\&             printf(
\&                "%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%\-3o.%.03o\en",
\&                                            $1,$2,$3,$4,$5,$6,$7,$8,$9);
\&         }
\&         elsif ($7 ne \*(Aq\*(Aq) {
\&             printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%.03o\en",
\&                                           $1,$2,$3,$4,$5,$6,$7,$8);
\&         }
\&         else {
\&             printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-5.03o%.03o\en",
\&                                                $1,$2,$3,$4,$5,$6,$8);
\&         }
\&     }
\& }
.Ve
.PP
If you would rather see this table listing hexadecimal values then
run the table through:
.IP "recipe 2" 4
.IX Item "recipe 2"
.PP
.Vb 3
\&    perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e
\&     \-e \*(Aq{printf("%s%\-5.02X%\-5.02X%\-5.02X%.02X\en",$1,$2,$3,$4,$5)}\*(Aq \e
\&     perlebcdic.pod
.Ve
.PP
Or, in order to retain the UTF-x code points in hexadecimal:
.IP "recipe 3" 4
.IX Item "recipe 3"
.PP
.Vb 10
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\&     if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)
\&                                                     \es+(\ed+)\e.?(\ed*)/x)
\&     {
\&         if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) {
\&             printf(
\&                "%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X.%02X\en",
\&                                           $1,$2,$3,$4,$5,$6,$7,$8,$9);
\&         }
\&         elsif ($7 ne \*(Aq\*(Aq) {
\&             printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X\en",
\&                                              $1,$2,$3,$4,$5,$6,$7,$8);
\&         }
\&         else {
\&             printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-5.02X%02X\en",
\&                                                  $1,$2,$3,$4,$5,$6,$8);
\&         }
\&     }
\& }
\&
\&
\&                          ISO
\&                         8859\-1             POS\-         CCSID
\&                         CCSID  CCSID CCSID IX\-          1047
\&  chr                     0819   0037 1047  BC  UTF\-8  UTF\-EBCDIC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& <NUL>                       0    0    0    0    0        0
\& <SOH>                       1    1    1    1    1        1
\& <STX>                       2    2    2    2    2        2
\& <ETX>                       3    3    3    3    3        3
\& <EOT>                       4    55   55   55   4        55
\& <ENQ>                       5    45   45   45   5        45
\& <ACK>                       6    46   46   46   6        46
\& <BEL>                       7    47   47   47   7        47
\& <BS>                        8    22   22   22   8        22
\& <HT>                        9    5    5    5    9        5
\& <LF>                        10   37   21   21   10       21  **
\& <VT>                        11   11   11   11   11       11
\& <FF>                        12   12   12   12   12       12
\& <CR>                        13   13   13   13   13       13
\& <SO>                        14   14   14   14   14       14
\& <SI>                        15   15   15   15   15       15
\& <DLE>                       16   16   16   16   16       16
\& <DC1>                       17   17   17   17   17       17
\& <DC2>                       18   18   18   18   18       18
\& <DC3>                       19   19   19   19   19       19
\& <DC4>                       20   60   60   60   20       60
\& <NAK>                       21   61   61   61   21       61
\& <SYN>                       22   50   50   50   22       50
\& <ETB>                       23   38   38   38   23       38
\& <CAN>                       24   24   24   24   24       24
\& <EOM>                       25   25   25   25   25       25
\& <SUB>                       26   63   63   63   26       63
\& <ESC>                       27   39   39   39   27       39
\& <FS>                        28   28   28   28   28       28
\& <GS>                        29   29   29   29   29       29
\& <RS>                        30   30   30   30   30       30
\& <US>                        31   31   31   31   31       31
\& <SPACE>                     32   64   64   64   32       64
\& !                           33   90   90   90   33       90
\& "                           34   127  127  127  34       127
\& #                           35   123  123  123  35       123
\& $                           36   91   91   91   36       91
\& %                           37   108  108  108  37       108
\& &                           38   80   80   80   38       80
\& \*(Aq                           39   125  125  125  39       125
\& (                           40   77   77   77   40       77
\& )                           41   93   93   93   41       93
\& *                           42   92   92   92   42       92
\& +                           43   78   78   78   43       78
\& ,                           44   107  107  107  44       107
\& \-                           45   96   96   96   45       96
\& .                           46   75   75   75   46       75
\& /                           47   97   97   97   47       97
\& 0                           48   240  240  240  48       240
\& 1                           49   241  241  241  49       241
\& 2                           50   242  242  242  50       242
\& 3                           51   243  243  243  51       243
\& 4                           52   244  244  244  52       244
\& 5                           53   245  245  245  53       245
\& 6                           54   246  246  246  54       246
\& 7                           55   247  247  247  55       247
\& 8                           56   248  248  248  56       248
\& 9                           57   249  249  249  57       249
\& :                           58   122  122  122  58       122
\& ;                           59   94   94   94   59       94
\& <                           60   76   76   76   60       76
\& =                           61   126  126  126  61       126
\& >                           62   110  110  110  62       110
\& ?                           63   111  111  111  63       111
\& @                           64   124  124  124  64       124
\& A                           65   193  193  193  65       193
\& B                           66   194  194  194  66       194
\& C                           67   195  195  195  67       195
\& D                           68   196  196  196  68       196
\& E                           69   197  197  197  69       197
\& F                           70   198  198  198  70       198
\& G                           71   199  199  199  71       199
\& H                           72   200  200  200  72       200
\& I                           73   201  201  201  73       201
\& J                           74   209  209  209  74       209
\& K                           75   210  210  210  75       210
\& L                           76   211  211  211  76       211
\& M                           77   212  212  212  77       212
\& N                           78   213  213  213  78       213
\& O                           79   214  214  214  79       214
\& P                           80   215  215  215  80       215
\& Q                           81   216  216  216  81       216
\& R                           82   217  217  217  82       217
\& S                           83   226  226  226  83       226
\& T                           84   227  227  227  84       227
\& U                           85   228  228  228  85       228
\& V                           86   229  229  229  86       229
\& W                           87   230  230  230  87       230
\& X                           88   231  231  231  88       231
\& Y                           89   232  232  232  89       232
\& Z                           90   233  233  233  90       233
\& [                           91   186  173  187  91       173  ** ##
\& \e                           92   224  224  188  92       224  ##
\& ]                           93   187  189  189  93       189  **
\& ^                           94   176  95   106  94       95   ** ##
\& _                           95   109  109  109  95       109
\& \`                           96   121  121  74   96       121  ##
\& a                           97   129  129  129  97       129
\& b                           98   130  130  130  98       130
\& c                           99   131  131  131  99       131
\& d                           100  132  132  132  100      132
\& e                           101  133  133  133  101      133
\& f                           102  134  134  134  102      134
\& g                           103  135  135  135  103      135
\& h                           104  136  136  136  104      136
\& i                           105  137  137  137  105      137
\& j                           106  145  145  145  106      145
\& k                           107  146  146  146  107      146
\& l                           108  147  147  147  108      147
\& m                           109  148  148  148  109      148
\& n                           110  149  149  149  110      149
\& o                           111  150  150  150  111      150
\& p                           112  151  151  151  112      151
\& q                           113  152  152  152  113      152
\& r                           114  153  153  153  114      153
\& s                           115  162  162  162  115      162
\& t                           116  163  163  163  116      163
\& u                           117  164  164  164  117      164
\& v                           118  165  165  165  118      165
\& w                           119  166  166  166  119      166
\& x                           120  167  167  167  120      167
\& y                           121  168  168  168  121      168
\& z                           122  169  169  169  122      169
\& {                           123  192  192  251  123      192  ##
\& |                           124  79   79   79   124      79
\& }                           125  208  208  253  125      208  ##
\& ~                           126  161  161  255  126      161  ##
\& <DEL>                       127  7    7    7    127      7
\& <PAD>                       128  32   32   32   194.128  32
\& <HOP>                       129  33   33   33   194.129  33
\& <BPH>                       130  34   34   34   194.130  34
\& <NBH>                       131  35   35   35   194.131  35
\& <IND>                       132  36   36   36   194.132  36
\& <NEL>                       133  21   37   37   194.133  37   **
\& <SSA>                       134  6    6    6    194.134  6
\& <ESA>                       135  23   23   23   194.135  23
\& <HTS>                       136  40   40   40   194.136  40
\& <HTJ>                       137  41   41   41   194.137  41
\& <VTS>                       138  42   42   42   194.138  42
\& <PLD>                       139  43   43   43   194.139  43
\& <PLU>                       140  44   44   44   194.140  44
\& <RI>                        141  9    9    9    194.141  9
\& <SS2>                       142  10   10   10   194.142  10
\& <SS3>                       143  27   27   27   194.143  27
\& <DCS>                       144  48   48   48   194.144  48
\& <PU1>                       145  49   49   49   194.145  49
\& <PU2>                       146  26   26   26   194.146  26
\& <STS>                       147  51   51   51   194.147  51
\& <CCH>                       148  52   52   52   194.148  52
\& <MW>                        149  53   53   53   194.149  53
\& <SPA>                       150  54   54   54   194.150  54
\& <EPA>                       151  8    8    8    194.151  8
\& <SOS>                       152  56   56   56   194.152  56
\& <SGC>                       153  57   57   57   194.153  57
\& <SCI>                       154  58   58   58   194.154  58
\& <CSI>                       155  59   59   59   194.155  59
\& <ST>                        156  4    4    4    194.156  4
\& <OSC>                       157  20   20   20   194.157  20
\& <PM>                        158  62   62   62   194.158  62
\& <APC>                       159  255  255  95   194.159  255      ##
\& <NON\-BREAKING SPACE>        160  65   65   65   194.160  128.65
\& <INVERTED "!" >             161  170  170  170  194.161  128.66
\& <CENT SIGN>                 162  74   74   176  194.162  128.67   ##
\& <POUND SIGN>                163  177  177  177  194.163  128.68
\& <CURRENCY SIGN>             164  159  159  159  194.164  128.69
\& <YEN SIGN>                  165  178  178  178  194.165  128.70
\& <BROKEN BAR>                166  106  106  208  194.166  128.71   ##
\& <SECTION SIGN>              167  181  181  181  194.167  128.72
\& <DIAERESIS>                 168  189  187  121  194.168  128.73   ** ##
\& <COPYRIGHT SIGN>            169  180  180  180  194.169  128.74
\& <FEMININE ORDINAL>          170  154  154  154  194.170  128.81
\& <LEFT POINTING GUILLEMET>   171  138  138  138  194.171  128.82
\& <NOT SIGN>                  172  95   176  186  194.172  128.83   ** ##
\& <SOFT HYPHEN>               173  202  202  202  194.173  128.84
\& <REGISTERED TRADE MARK>     174  175  175  175  194.174  128.85
\& <MACRON>                    175  188  188  161  194.175  128.86   ##
\& <DEGREE SIGN>               176  144  144  144  194.176  128.87
\& <PLUS\-OR\-MINUS SIGN>        177  143  143  143  194.177  128.88
\& <SUPERSCRIPT TWO>           178  234  234  234  194.178  128.89
\& <SUPERSCRIPT THREE>         179  250  250  250  194.179  128.98
\& <ACUTE ACCENT>              180  190  190  190  194.180  128.99
\& <MICRO SIGN>                181  160  160  160  194.181  128.100
\& <PARAGRAPH SIGN>            182  182  182  182  194.182  128.101
\& <MIDDLE DOT>                183  179  179  179  194.183  128.102
\& <CEDILLA>                   184  157  157  157  194.184  128.103
\& <SUPERSCRIPT ONE>           185  218  218  218  194.185  128.104
\& <MASC. ORDINAL INDICATOR>   186  155  155  155  194.186  128.105
\& <RIGHT POINTING GUILLEMET>  187  139  139  139  194.187  128.106
\& <FRACTION ONE QUARTER>      188  183  183  183  194.188  128.112
\& <FRACTION ONE HALF>         189  184  184  184  194.189  128.113
\& <FRACTION THREE QUARTERS>   190  185  185  185  194.190  128.114
\& <INVERTED QUESTION MARK>    191  171  171  171  194.191  128.115
\& <A WITH GRAVE>              192  100  100  100  195.128  138.65
\& <A WITH ACUTE>              193  101  101  101  195.129  138.66
\& <A WITH CIRCUMFLEX>         194  98   98   98   195.130  138.67
\& <A WITH TILDE>              195  102  102  102  195.131  138.68
\& <A WITH DIAERESIS>          196  99   99   99   195.132  138.69
\& <A WITH RING ABOVE>         197  103  103  103  195.133  138.70
\& <CAPITAL LIGATURE AE>       198  158  158  158  195.134  138.71
\& <C WITH CEDILLA>            199  104  104  104  195.135  138.72
\& <E WITH GRAVE>              200  116  116  116  195.136  138.73
\& <E WITH ACUTE>              201  113  113  113  195.137  138.74
\& <E WITH CIRCUMFLEX>         202  114  114  114  195.138  138.81
\& <E WITH DIAERESIS>          203  115  115  115  195.139  138.82
\& <I WITH GRAVE>              204  120  120  120  195.140  138.83
\& <I WITH ACUTE>              205  117  117  117  195.141  138.84
\& <I WITH CIRCUMFLEX>         206  118  118  118  195.142  138.85
\& <I WITH DIAERESIS>          207  119  119  119  195.143  138.86
\& <CAPITAL LETTER ETH>        208  172  172  172  195.144  138.87
\& <N WITH TILDE>              209  105  105  105  195.145  138.88
\& <O WITH GRAVE>              210  237  237  237  195.146  138.89
\& <O WITH ACUTE>              211  238  238  238  195.147  138.98
\& <O WITH CIRCUMFLEX>         212  235  235  235  195.148  138.99
\& <O WITH TILDE>              213  239  239  239  195.149  138.100
\& <O WITH DIAERESIS>          214  236  236  236  195.150  138.101
\& <MULTIPLICATION SIGN>       215  191  191  191  195.151  138.102
\& <O WITH STROKE>             216  128  128  128  195.152  138.103
\& <U WITH GRAVE>              217  253  253  224  195.153  138.104  ##
\& <U WITH ACUTE>              218  254  254  254  195.154  138.105
\& <U WITH CIRCUMFLEX>         219  251  251  221  195.155  138.106  ##
\& <U WITH DIAERESIS>          220  252  252  252  195.156  138.112
\& <Y WITH ACUTE>              221  173  186  173  195.157  138.113  ** ##
\& <CAPITAL LETTER THORN>      222  174  174  174  195.158  138.114
\& <SMALL LETTER SHARP S>      223  89   89   89   195.159  138.115
\& <a WITH GRAVE>              224  68   68   68   195.160  139.65
\& <a WITH ACUTE>              225  69   69   69   195.161  139.66
\& <a WITH CIRCUMFLEX>         226  66   66   66   195.162  139.67
\& <a WITH TILDE>              227  70   70   70   195.163  139.68
\& <a WITH DIAERESIS>          228  67   67   67   195.164  139.69
\& <a WITH RING ABOVE>         229  71   71   71   195.165  139.70
\& <SMALL LIGATURE ae>         230  156  156  156  195.166  139.71
\& <c WITH CEDILLA>            231  72   72   72   195.167  139.72
\& <e WITH GRAVE>              232  84   84   84   195.168  139.73
\& <e WITH ACUTE>              233  81   81   81   195.169  139.74
\& <e WITH CIRCUMFLEX>         234  82   82   82   195.170  139.81
\& <e WITH DIAERESIS>          235  83   83   83   195.171  139.82
\& <i WITH GRAVE>              236  88   88   88   195.172  139.83
\& <i WITH ACUTE>              237  85   85   85   195.173  139.84
\& <i WITH CIRCUMFLEX>         238  86   86   86   195.174  139.85
\& <i WITH DIAERESIS>          239  87   87   87   195.175  139.86
\& <SMALL LETTER eth>          240  140  140  140  195.176  139.87
\& <n WITH TILDE>              241  73   73   73   195.177  139.88
\& <o WITH GRAVE>              242  205  205  205  195.178  139.89
\& <o WITH ACUTE>              243  206  206  206  195.179  139.98
\& <o WITH CIRCUMFLEX>         244  203  203  203  195.180  139.99
\& <o WITH TILDE>              245  207  207  207  195.181  139.100
\& <o WITH DIAERESIS>          246  204  204  204  195.182  139.101
\& <DIVISION SIGN>             247  225  225  225  195.183  139.102
\& <o WITH STROKE>             248  112  112  112  195.184  139.103
\& <u WITH GRAVE>              249  221  221  192  195.185  139.104  ##
\& <u WITH ACUTE>              250  222  222  222  195.186  139.105
\& <u WITH CIRCUMFLEX>         251  219  219  219  195.187  139.106
\& <u WITH DIAERESIS>          252  220  220  220  195.188  139.112
\& <y WITH ACUTE>              253  141  141  141  195.189  139.113
\& <SMALL LETTER thorn>        254  142  142  142  195.190  139.114
\& <y WITH DIAERESIS>          255  223  223  223  195.191  139.115
.Ve
.PP
If you would rather see the above table in \s-1CCSID 0037\s0 order rather than
\&\s-1ASCII +\s0 Latin\-1 order then run the table through:
.IP "recipe 4" 4
.IX Item "recipe 4"
.PP
.Vb 6
\& perl \e
\&    \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\&     \-e \*(Aq{push(@l,$_)}\*(Aq \e
\&     \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\&     \-e \*(Aq          sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\&     \-e \*(Aq          map{[$_,substr($_,34,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.PP
If you would rather see it in \s-1CCSID 1047\s0 order then change the number
34 in the last line to 39, like this:
.IP "recipe 5" 4
.IX Item "recipe 5"
.PP
.Vb 6
\& perl \e
\&    \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\&    \-e \*(Aq{push(@l,$_)}\*(Aq \e
\&    \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\&    \-e \*(Aq          sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\&    \-e \*(Aq          map{[$_,substr($_,39,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.PP
If you would rather see it in POSIX-BC order then change the number
34 in the last line to 44, like this:
.IP "recipe 6" 4
.IX Item "recipe 6"
.PP
.Vb 6
\& perl \e
\&    \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e
\&     \-e \*(Aq{push(@l,$_)}\*(Aq \e
\&     \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e
\&     \-e \*(Aq          sort{$a\->[1] <=> $b\->[1]}\*(Aq \e
\&     \-e \*(Aq          map{[$_,substr($_,44,3)]}@l;}\*(Aq perlebcdic.pod
.Ve
.SS "Table in hex, sorted in 1047 order"
.IX Subsection "Table in hex, sorted in 1047 order"
Since this document was first written, the convention has become more
and more to use hexadecimal notation for code points.  To do this with
the recipes and to also sort is a multi-step process, so here, for
convenience, is the table from above, re-sorted to be in Code Page 1047
order, and using hex notation.
.PP
.Vb 10
\&                          ISO
\&                         8859\-1             POS\-         CCSID
\&                         CCSID  CCSID CCSID IX\-          1047
\&  chr                     0819   0037 1047  BC  UTF\-8  UTF\-EBCDIC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& <NUL>                       00   00   00   00   00       00
\& <SOH>                       01   01   01   01   01       01
\& <STX>                       02   02   02   02   02       02
\& <ETX>                       03   03   03   03   03       03
\& <ST>                        9C   04   04   04   C2.9C    04
\& <HT>                        09   05   05   05   09       05
\& <SSA>                       86   06   06   06   C2.86    06
\& <DEL>                       7F   07   07   07   7F       07
\& <EPA>                       97   08   08   08   C2.97    08
\& <RI>                        8D   09   09   09   C2.8D    09
\& <SS2>                       8E   0A   0A   0A   C2.8E    0A
\& <VT>                        0B   0B   0B   0B   0B       0B
\& <FF>                        0C   0C   0C   0C   0C       0C
\& <CR>                        0D   0D   0D   0D   0D       0D
\& <SO>                        0E   0E   0E   0E   0E       0E
\& <SI>                        0F   0F   0F   0F   0F       0F
\& <DLE>                       10   10   10   10   10       10
\& <DC1>                       11   11   11   11   11       11
\& <DC2>                       12   12   12   12   12       12
\& <DC3>                       13   13   13   13   13       13
\& <OSC>                       9D   14   14   14   C2.9D    14
\& <LF>                        0A   25   15   15   0A       15    **
\& <BS>                        08   16   16   16   08       16
\& <ESA>                       87   17   17   17   C2.87    17
\& <CAN>                       18   18   18   18   18       18
\& <EOM>                       19   19   19   19   19       19
\& <PU2>                       92   1A   1A   1A   C2.92    1A
\& <SS3>                       8F   1B   1B   1B   C2.8F    1B
\& <FS>                        1C   1C   1C   1C   1C       1C
\& <GS>                        1D   1D   1D   1D   1D       1D
\& <RS>                        1E   1E   1E   1E   1E       1E
\& <US>                        1F   1F   1F   1F   1F       1F
\& <PAD>                       80   20   20   20   C2.80    20
\& <HOP>                       81   21   21   21   C2.81    21
\& <BPH>                       82   22   22   22   C2.82    22
\& <NBH>                       83   23   23   23   C2.83    23
\& <IND>                       84   24   24   24   C2.84    24
\& <NEL>                       85   15   25   25   C2.85    25     **
\& <ETB>                       17   26   26   26   17       26
\& <ESC>                       1B   27   27   27   1B       27
\& <HTS>                       88   28   28   28   C2.88    28
\& <HTJ>                       89   29   29   29   C2.89    29
\& <VTS>                       8A   2A   2A   2A   C2.8A    2A
\& <PLD>                       8B   2B   2B   2B   C2.8B    2B
\& <PLU>                       8C   2C   2C   2C   C2.8C    2C
\& <ENQ>                       05   2D   2D   2D   05       2D
\& <ACK>                       06   2E   2E   2E   06       2E
\& <BEL>                       07   2F   2F   2F   07       2F
\& <DCS>                       90   30   30   30   C2.90    30
\& <PU1>                       91   31   31   31   C2.91    31
\& <SYN>                       16   32   32   32   16       32
\& <STS>                       93   33   33   33   C2.93    33
\& <CCH>                       94   34   34   34   C2.94    34
\& <MW>                        95   35   35   35   C2.95    35
\& <SPA>                       96   36   36   36   C2.96    36
\& <EOT>                       04   37   37   37   04       37
\& <SOS>                       98   38   38   38   C2.98    38
\& <SGC>                       99   39   39   39   C2.99    39
\& <SCI>                       9A   3A   3A   3A   C2.9A    3A
\& <CSI>                       9B   3B   3B   3B   C2.9B    3B
\& <DC4>                       14   3C   3C   3C   14       3C
\& <NAK>                       15   3D   3D   3D   15       3D
\& <PM>                        9E   3E   3E   3E   C2.9E    3E
\& <SUB>                       1A   3F   3F   3F   1A       3F
\& <SPACE>                     20   40   40   40   20       40
\& <NON\-BREAKING SPACE>        A0   41   41   41   C2.A0    80.41
\& <a WITH CIRCUMFLEX>         E2   42   42   42   C3.A2    8B.43
\& <a WITH DIAERESIS>          E4   43   43   43   C3.A4    8B.45
\& <a WITH GRAVE>              E0   44   44   44   C3.A0    8B.41
\& <a WITH ACUTE>              E1   45   45   45   C3.A1    8B.42
\& <a WITH TILDE>              E3   46   46   46   C3.A3    8B.44
\& <a WITH RING ABOVE>         E5   47   47   47   C3.A5    8B.46
\& <c WITH CEDILLA>            E7   48   48   48   C3.A7    8B.48
\& <n WITH TILDE>              F1   49   49   49   C3.B1    8B.58
\& <CENT SIGN>                 A2   4A   4A   B0   C2.A2    80.43  ##
\& .                           2E   4B   4B   4B   2E       4B
\& <                           3C   4C   4C   4C   3C       4C
\& (                           28   4D   4D   4D   28       4D
\& +                           2B   4E   4E   4E   2B       4E
\& |                           7C   4F   4F   4F   7C       4F
\& &                           26   50   50   50   26       50
\& <e WITH ACUTE>              E9   51   51   51   C3.A9    8B.4A
\& <e WITH CIRCUMFLEX>         EA   52   52   52   C3.AA    8B.51
\& <e WITH DIAERESIS>          EB   53   53   53   C3.AB    8B.52
\& <e WITH GRAVE>              E8   54   54   54   C3.A8    8B.49
\& <i WITH ACUTE>              ED   55   55   55   C3.AD    8B.54
\& <i WITH CIRCUMFLEX>         EE   56   56   56   C3.AE    8B.55
\& <i WITH DIAERESIS>          EF   57   57   57   C3.AF    8B.56
\& <i WITH GRAVE>              EC   58   58   58   C3.AC    8B.53
\& <SMALL LETTER SHARP S>      DF   59   59   59   C3.9F    8A.73
\& !                           21   5A   5A   5A   21       5A
\& $                           24   5B   5B   5B   24       5B
\& *                           2A   5C   5C   5C   2A       5C
\& )                           29   5D   5D   5D   29       5D
\& ;                           3B   5E   5E   5E   3B       5E
\& ^                           5E   B0   5F   6A   5E       5F     ** ##
\& \-                           2D   60   60   60   2D       60
\& /                           2F   61   61   61   2F       61
\& <A WITH CIRCUMFLEX>         C2   62   62   62   C3.82    8A.43
\& <A WITH DIAERESIS>          C4   63   63   63   C3.84    8A.45
\& <A WITH GRAVE>              C0   64   64   64   C3.80    8A.41
\& <A WITH ACUTE>              C1   65   65   65   C3.81    8A.42
\& <A WITH TILDE>              C3   66   66   66   C3.83    8A.44
\& <A WITH RING ABOVE>         C5   67   67   67   C3.85    8A.46
\& <C WITH CEDILLA>            C7   68   68   68   C3.87    8A.48
\& <N WITH TILDE>              D1   69   69   69   C3.91    8A.58
\& <BROKEN BAR>                A6   6A   6A   D0   C2.A6    80.47  ##
\& ,                           2C   6B   6B   6B   2C       6B
\& %                           25   6C   6C   6C   25       6C
\& _                           5F   6D   6D   6D   5F       6D
\& >                           3E   6E   6E   6E   3E       6E
\& ?                           3F   6F   6F   6F   3F       6F
\& <o WITH STROKE>             F8   70   70   70   C3.B8    8B.67
\& <E WITH ACUTE>              C9   71   71   71   C3.89    8A.4A
\& <E WITH CIRCUMFLEX>         CA   72   72   72   C3.8A    8A.51
\& <E WITH DIAERESIS>          CB   73   73   73   C3.8B    8A.52
\& <E WITH GRAVE>              C8   74   74   74   C3.88    8A.49
\& <I WITH ACUTE>              CD   75   75   75   C3.8D    8A.54
\& <I WITH CIRCUMFLEX>         CE   76   76   76   C3.8E    8A.55
\& <I WITH DIAERESIS>          CF   77   77   77   C3.8F    8A.56
\& <I WITH GRAVE>              CC   78   78   78   C3.8C    8A.53
\& \`                           60   79   79   4A   60       79     ##
\& :                           3A   7A   7A   7A   3A       7A
\& #                           23   7B   7B   7B   23       7B
\& @                           40   7C   7C   7C   40       7C
\& \*(Aq                           27   7D   7D   7D   27       7D
\& =                           3D   7E   7E   7E   3D       7E
\& "                           22   7F   7F   7F   22       7F
\& <O WITH STROKE>             D8   80   80   80   C3.98    8A.67
\& a                           61   81   81   81   61       81
\& b                           62   82   82   82   62       82
\& c                           63   83   83   83   63       83
\& d                           64   84   84   84   64       84
\& e                           65   85   85   85   65       85
\& f                           66   86   86   86   66       86
\& g                           67   87   87   87   67       87
\& h                           68   88   88   88   68       88
\& i                           69   89   89   89   69       89
\& <LEFT POINTING GUILLEMET>   AB   8A   8A   8A   C2.AB    80.52
\& <RIGHT POINTING GUILLEMET>  BB   8B   8B   8B   C2.BB    80.6A
\& <SMALL LETTER eth>          F0   8C   8C   8C   C3.B0    8B.57
\& <y WITH ACUTE>              FD   8D   8D   8D   C3.BD    8B.71
\& <SMALL LETTER thorn>        FE   8E   8E   8E   C3.BE    8B.72
\& <PLUS\-OR\-MINUS SIGN>        B1   8F   8F   8F   C2.B1    80.58
\& <DEGREE SIGN>               B0   90   90   90   C2.B0    80.57
\& j                           6A   91   91   91   6A       91
\& k                           6B   92   92   92   6B       92
\& l                           6C   93   93   93   6C       93
\& m                           6D   94   94   94   6D       94
\& n                           6E   95   95   95   6E       95
\& o                           6F   96   96   96   6F       96
\& p                           70   97   97   97   70       97
\& q                           71   98   98   98   71       98
\& r                           72   99   99   99   72       99
\& <FEMININE ORDINAL>          AA   9A   9A   9A   C2.AA    80.51
\& <MASC. ORDINAL INDICATOR>   BA   9B   9B   9B   C2.BA    80.69
\& <SMALL LIGATURE ae>         E6   9C   9C   9C   C3.A6    8B.47
\& <CEDILLA>                   B8   9D   9D   9D   C2.B8    80.67
\& <CAPITAL LIGATURE AE>       C6   9E   9E   9E   C3.86    8A.47
\& <CURRENCY SIGN>             A4   9F   9F   9F   C2.A4    80.45
\& <MICRO SIGN>                B5   A0   A0   A0   C2.B5    80.64
\& ~                           7E   A1   A1   FF   7E       A1     ##
\& s                           73   A2   A2   A2   73       A2
\& t                           74   A3   A3   A3   74       A3
\& u                           75   A4   A4   A4   75       A4
\& v                           76   A5   A5   A5   76       A5
\& w                           77   A6   A6   A6   77       A6
\& x                           78   A7   A7   A7   78       A7
\& y                           79   A8   A8   A8   79       A8
\& z                           7A   A9   A9   A9   7A       A9
\& <INVERTED "!" >             A1   AA   AA   AA   C2.A1    80.42
\& <INVERTED QUESTION MARK>    BF   AB   AB   AB   C2.BF    80.73
\& <CAPITAL LETTER ETH>        D0   AC   AC   AC   C3.90    8A.57
\& [                           5B   BA   AD   BB   5B       AD     ** ##
\& <CAPITAL LETTER THORN>      DE   AE   AE   AE   C3.9E    8A.72
\& <REGISTERED TRADE MARK>     AE   AF   AF   AF   C2.AE    80.55
\& <NOT SIGN>                  AC   5F   B0   BA   C2.AC    80.53  ** ##
\& <POUND SIGN>                A3   B1   B1   B1   C2.A3    80.44
\& <YEN SIGN>                  A5   B2   B2   B2   C2.A5    80.46
\& <MIDDLE DOT>                B7   B3   B3   B3   C2.B7    80.66
\& <COPYRIGHT SIGN>            A9   B4   B4   B4   C2.A9    80.4A
\& <SECTION SIGN>              A7   B5   B5   B5   C2.A7    80.48
\& <PARAGRAPH SIGN>            B6   B6   B6   B6   C2.B6    80.65
\& <FRACTION ONE QUARTER>      BC   B7   B7   B7   C2.BC    80.70
\& <FRACTION ONE HALF>         BD   B8   B8   B8   C2.BD    80.71
\& <FRACTION THREE QUARTERS>   BE   B9   B9   B9   C2.BE    80.72
\& <Y WITH ACUTE>              DD   AD   BA   AD   C3.9D    8A.71  ** ##
\& <DIAERESIS>                 A8   BD   BB   79   C2.A8    80.49  ** ##
\& <MACRON>                    AF   BC   BC   A1   C2.AF    80.56  ##
\& ]                           5D   BB   BD   BD   5D       BD     **
\& <ACUTE ACCENT>              B4   BE   BE   BE   C2.B4    80.63
\& <MULTIPLICATION SIGN>       D7   BF   BF   BF   C3.97    8A.66
\& {                           7B   C0   C0   FB   7B       C0     ##
\& A                           41   C1   C1   C1   41       C1
\& B                           42   C2   C2   C2   42       C2
\& C                           43   C3   C3   C3   43       C3
\& D                           44   C4   C4   C4   44       C4
\& E                           45   C5   C5   C5   45       C5
\& F                           46   C6   C6   C6   46       C6
\& G                           47   C7   C7   C7   47       C7
\& H                           48   C8   C8   C8   48       C8
\& I                           49   C9   C9   C9   49       C9
\& <SOFT HYPHEN>               AD   CA   CA   CA   C2.AD    80.54
\& <o WITH CIRCUMFLEX>         F4   CB   CB   CB   C3.B4    8B.63
\& <o WITH DIAERESIS>          F6   CC   CC   CC   C3.B6    8B.65
\& <o WITH GRAVE>              F2   CD   CD   CD   C3.B2    8B.59
\& <o WITH ACUTE>              F3   CE   CE   CE   C3.B3    8B.62
\& <o WITH TILDE>              F5   CF   CF   CF   C3.B5    8B.64
\& }                           7D   D0   D0   FD   7D       D0     ##
\& J                           4A   D1   D1   D1   4A       D1
\& K                           4B   D2   D2   D2   4B       D2
\& L                           4C   D3   D3   D3   4C       D3
\& M                           4D   D4   D4   D4   4D       D4
\& N                           4E   D5   D5   D5   4E       D5
\& O                           4F   D6   D6   D6   4F       D6
\& P                           50   D7   D7   D7   50       D7
\& Q                           51   D8   D8   D8   51       D8
\& R                           52   D9   D9   D9   52       D9
\& <SUPERSCRIPT ONE>           B9   DA   DA   DA   C2.B9    80.68
\& <u WITH CIRCUMFLEX>         FB   DB   DB   DB   C3.BB    8B.6A
\& <u WITH DIAERESIS>          FC   DC   DC   DC   C3.BC    8B.70
\& <u WITH GRAVE>              F9   DD   DD   C0   C3.B9    8B.68  ##
\& <u WITH ACUTE>              FA   DE   DE   DE   C3.BA    8B.69
\& <y WITH DIAERESIS>          FF   DF   DF   DF   C3.BF    8B.73
\& \e                           5C   E0   E0   BC   5C       E0     ##
\& <DIVISION SIGN>             F7   E1   E1   E1   C3.B7    8B.66
\& S                           53   E2   E2   E2   53       E2
\& T                           54   E3   E3   E3   54       E3
\& U                           55   E4   E4   E4   55       E4
\& V                           56   E5   E5   E5   56       E5
\& W                           57   E6   E6   E6   57       E6
\& X                           58   E7   E7   E7   58       E7
\& Y                           59   E8   E8   E8   59       E8
\& Z                           5A   E9   E9   E9   5A       E9
\& <SUPERSCRIPT TWO>           B2   EA   EA   EA   C2.B2    80.59
\& <O WITH CIRCUMFLEX>         D4   EB   EB   EB   C3.94    8A.63
\& <O WITH DIAERESIS>          D6   EC   EC   EC   C3.96    8A.65
\& <O WITH GRAVE>              D2   ED   ED   ED   C3.92    8A.59
\& <O WITH ACUTE>              D3   EE   EE   EE   C3.93    8A.62
\& <O WITH TILDE>              D5   EF   EF   EF   C3.95    8A.64
\& 0                           30   F0   F0   F0   30       F0
\& 1                           31   F1   F1   F1   31       F1
\& 2                           32   F2   F2   F2   32       F2
\& 3                           33   F3   F3   F3   33       F3
\& 4                           34   F4   F4   F4   34       F4
\& 5                           35   F5   F5   F5   35       F5
\& 6                           36   F6   F6   F6   36       F6
\& 7                           37   F7   F7   F7   37       F7
\& 8                           38   F8   F8   F8   38       F8
\& 9                           39   F9   F9   F9   39       F9
\& <SUPERSCRIPT THREE>         B3   FA   FA   FA   C2.B3    80.62
\& <U WITH CIRCUMFLEX>         DB   FB   FB   DD   C3.9B    8A.6A  ##
\& <U WITH DIAERESIS>          DC   FC   FC   FC   C3.9C    8A.70
\& <U WITH GRAVE>              D9   FD   FD   E0   C3.99    8A.68  ##
\& <U WITH ACUTE>              DA   FE   FE   FE   C3.9A    8A.69
\& <APC>                       9F   FF   FF   5F   C2.9F    FF     ##
.Ve
.SH "IDENTIFYING CHARACTER CODE SETS"
.IX Header "IDENTIFYING CHARACTER CODE SETS"
It is possible to determine which character set you are operating under.
But first you need to be really really sure you need to do this.  Your
code will be simpler and probably just as portable if you don't have
to test the character set and do different things, depending.  There are
actually only very few circumstances where it's not easy to write
straight-line code portable to all character sets.  See
\&\*(L"Unicode and \s-1EBCDIC\*(R"\s0 in perluniintro for how to portably specify
characters.
.PP
But there are some cases where you may want to know which character set
you are running under.  One possible example is doing
sorting in inner loops where performance is critical.
.PP
To determine if you are running under \s-1ASCII\s0 or \s-1EBCDIC,\s0 you can use the
return value of \f(CW\*(C`ord()\*(C'\fR or \f(CW\*(C`chr()\*(C'\fR to test one or more character
values.  For example:
.PP
.Vb 4
\&    $is_ascii  = "A" eq chr(65);
\&    $is_ebcdic = "A" eq chr(193);
\&    $is_ascii  = ord("A") == 65;
\&    $is_ebcdic = ord("A") == 193;
.Ve
.PP
There's even less need to distinguish between \s-1EBCDIC\s0 code pages, but to
do so try looking at one or more of the characters that differ between
them.
.PP
.Vb 4
\&    $is_ascii           = ord(\*(Aq[\*(Aq) == 91;
\&    $is_ebcdic_37       = ord(\*(Aq[\*(Aq) == 186;
\&    $is_ebcdic_1047     = ord(\*(Aq[\*(Aq) == 173;
\&    $is_ebcdic_POSIX_BC = ord(\*(Aq[\*(Aq) == 187;
.Ve
.PP
However, it would be unwise to write tests such as:
.PP
.Vb 2
\&    $is_ascii = "\er" ne chr(13);  #  WRONG
\&    $is_ascii = "\en" ne chr(10);  #  ILL ADVISED
.Ve
.PP
Obviously the first of these will fail to distinguish most \s-1ASCII\s0
platforms from either a \s-1CCSID 0037,\s0 a 1047, or a POSIX-BC \s-1EBCDIC\s0
platform since \f(CW\*(C`"\er"\ eq\ chr(13)\*(C'\fR under all of those coded character
sets.  But note too that because \f(CW"\en"\fR is \f(CW\*(C`chr(13)\*(C'\fR and \f(CW"\er"\fR is
\&\f(CW\*(C`chr(10)\*(C'\fR on old Macintosh (which is an \s-1ASCII\s0 platform) the second
\&\f(CW$is_ascii\fR test will lead to trouble there.
.PP
To determine whether or not perl was built under an \s-1EBCDIC\s0
code page you can use the Config module like so:
.PP
.Vb 2
\&    use Config;
\&    $is_ebcdic = $Config{\*(Aqebcdic\*(Aq} eq \*(Aqdefine\*(Aq;
.Ve
.SH "CONVERSIONS"
.IX Header "CONVERSIONS"
.ie n .SS """utf8::unicode_to_native()"" and ""utf8::native_to_unicode()"""
.el .SS "\f(CWutf8::unicode_to_native()\fP and \f(CWutf8::native_to_unicode()\fP"
.IX Subsection "utf8::unicode_to_native() and utf8::native_to_unicode()"
These functions take an input numeric code point in one encoding and
return what its equivalent value is in the other.
.PP
See utf8.
.SS "tr///"
.IX Subsection "tr///"
In order to convert a string of characters from one character set to
another a simple list of numbers, such as in the right columns in the
above table, along with Perl's \f(CW\*(C`tr///\*(C'\fR operator is all that is needed.
The data in the table are in ASCII/Latin1 order, hence the \s-1EBCDIC\s0 columns
provide easy-to-use ASCII/Latin1 to \s-1EBCDIC\s0 operations that are also easily
reversed.
.PP
For example, to convert ASCII/Latin1 to code page 037 take the output of the
second numbers column from the output of recipe 2 (modified to add
\&\f(CW"\e"\fR characters), and use it in \f(CW\*(C`tr///\*(C'\fR like so:
.PP
.Vb 10
\&    $cp_037 =
\&    \*(Aq\ex00\ex01\ex02\ex03\ex37\ex2D\ex2E\ex2F\ex16\ex05\ex25\ex0B\ex0C\ex0D\ex0E\ex0F\*(Aq .
\&    \*(Aq\ex10\ex11\ex12\ex13\ex3C\ex3D\ex32\ex26\ex18\ex19\ex3F\ex27\ex1C\ex1D\ex1E\ex1F\*(Aq .
\&    \*(Aq\ex40\ex5A\ex7F\ex7B\ex5B\ex6C\ex50\ex7D\ex4D\ex5D\ex5C\ex4E\ex6B\ex60\ex4B\ex61\*(Aq .
\&    \*(Aq\exF0\exF1\exF2\exF3\exF4\exF5\exF6\exF7\exF8\exF9\ex7A\ex5E\ex4C\ex7E\ex6E\ex6F\*(Aq .
\&    \*(Aq\ex7C\exC1\exC2\exC3\exC4\exC5\exC6\exC7\exC8\exC9\exD1\exD2\exD3\exD4\exD5\exD6\*(Aq .
\&    \*(Aq\exD7\exD8\exD9\exE2\exE3\exE4\exE5\exE6\exE7\exE8\exE9\exBA\exE0\exBB\exB0\ex6D\*(Aq .
\&    \*(Aq\ex79\ex81\ex82\ex83\ex84\ex85\ex86\ex87\ex88\ex89\ex91\ex92\ex93\ex94\ex95\ex96\*(Aq .
\&    \*(Aq\ex97\ex98\ex99\exA2\exA3\exA4\exA5\exA6\exA7\exA8\exA9\exC0\ex4F\exD0\exA1\ex07\*(Aq .
\&    \*(Aq\ex20\ex21\ex22\ex23\ex24\ex15\ex06\ex17\ex28\ex29\ex2A\ex2B\ex2C\ex09\ex0A\ex1B\*(Aq .
\&    \*(Aq\ex30\ex31\ex1A\ex33\ex34\ex35\ex36\ex08\ex38\ex39\ex3A\ex3B\ex04\ex14\ex3E\exFF\*(Aq .
\&    \*(Aq\ex41\exAA\ex4A\exB1\ex9F\exB2\ex6A\exB5\exBD\exB4\ex9A\ex8A\ex5F\exCA\exAF\exBC\*(Aq .
\&    \*(Aq\ex90\ex8F\exEA\exFA\exBE\exA0\exB6\exB3\ex9D\exDA\ex9B\ex8B\exB7\exB8\exB9\exAB\*(Aq .
\&    \*(Aq\ex64\ex65\ex62\ex66\ex63\ex67\ex9E\ex68\ex74\ex71\ex72\ex73\ex78\ex75\ex76\ex77\*(Aq .
\&    \*(Aq\exAC\ex69\exED\exEE\exEB\exEF\exEC\exBF\ex80\exFD\exFE\exFB\exFC\exAD\exAE\ex59\*(Aq .
\&    \*(Aq\ex44\ex45\ex42\ex46\ex43\ex47\ex9C\ex48\ex54\ex51\ex52\ex53\ex58\ex55\ex56\ex57\*(Aq .
\&    \*(Aq\ex8C\ex49\exCD\exCE\exCB\exCF\exCC\exE1\ex70\exDD\exDE\exDB\exDC\ex8D\ex8E\exDF\*(Aq;
\&
\&    my $ebcdic_string = $ascii_string;
\&    eval \*(Aq$ebcdic_string =~ tr/\e000\-\e377/\*(Aq . $cp_037 . \*(Aq/\*(Aq;
.Ve
.PP
To convert from \s-1EBCDIC 037\s0 to \s-1ASCII\s0 just reverse the order of the tr///
arguments like so:
.PP
.Vb 2
\&    my $ascii_string = $ebcdic_string;
\&    eval \*(Aq$ascii_string =~ tr/\*(Aq . $cp_037 . \*(Aq/\e000\-\e377/\*(Aq;
.Ve
.PP
Similarly one could take the output of the third numbers column from recipe 2
to obtain a \f(CW$cp_1047\fR table.  The fourth numbers column of the output from
recipe 2 could provide a \f(CW$cp_posix_bc\fR table suitable for transcoding as
well.
.PP
If you wanted to see the inverse tables, you would first have to sort on the
desired numbers column as in recipes 4, 5 or 6, then take the output of the
first numbers column.
.SS "iconv"
.IX Subsection "iconv"
\&\s-1XPG\s0 operability often implies the presence of an \fIiconv\fR utility
available from the shell or from the C library.  Consult your system's
documentation for information on iconv.
.PP
On \s-1OS/390\s0 or z/OS see the \fBiconv\fR\|(1) manpage.  One way to invoke the \f(CW\*(C`iconv\*(C'\fR
shell utility from within perl would be to:
.PP
.Vb 2
\&    # OS/390 or z/OS example
\&    $ascii_data = \`echo \*(Aq$ebcdic_data\*(Aq| iconv \-f IBM\-1047 \-t ISO8859\-1\`
.Ve
.PP
or the inverse map:
.PP
.Vb 2
\&    # OS/390 or z/OS example
\&    $ebcdic_data = \`echo \*(Aq$ascii_data\*(Aq| iconv \-f ISO8859\-1 \-t IBM\-1047\`
.Ve
.PP
For other Perl-based conversion options see the \f(CW\*(C`Convert::*\*(C'\fR modules on \s-1CPAN.\s0
.SS "C \s-1RTL\s0"
.IX Subsection "C RTL"
The \s-1OS/390\s0 and z/OS C run-time libraries provide \f(CW\*(C`_atoe()\*(C'\fR and \f(CW\*(C`_etoa()\*(C'\fR functions.
.SH "OPERATOR DIFFERENCES"
.IX Header "OPERATOR DIFFERENCES"
The \f(CW\*(C`..\*(C'\fR range operator treats certain character ranges with
care on \s-1EBCDIC\s0 platforms.  For example the following array
will have twenty six elements on either an \s-1EBCDIC\s0 platform
or an \s-1ASCII\s0 platform:
.PP
.Vb 1
\&    @alphabet = (\*(AqA\*(Aq..\*(AqZ\*(Aq);   #  $#alphabet == 25
.Ve
.PP
The bitwise operators such as & ^ | may return different results
when operating on string or character data in a Perl program running
on an \s-1EBCDIC\s0 platform than when run on an \s-1ASCII\s0 platform.  Here is
an example adapted from the one in perlop:
.PP
.Vb 5
\&    # EBCDIC\-based examples
\&    print "j p \en" ^ " a h";                      # prints "JAPH\en"
\&    print "JA" | "  ph\en";                        # prints "japh\en"
\&    print "JAPH\enJunk" & "\e277\e277\e277\e277\e277";  # prints "japh\en";
\&    print \*(Aqp N$\*(Aq ^ " E<H\en";                      # prints "Perl\en";
.Ve
.PP
An interesting property of the 32 C0 control characters
in the \s-1ASCII\s0 table is that they can \*(L"literally\*(R" be constructed
as control characters in Perl, e.g. \f(CW\*(C`(chr(0)\*(C'\fR eq \f(CW\*(C`\ec@\*(C'\fR)>
\&\f(CW\*(C`(chr(1)\*(C'\fR eq \f(CW\*(C`\ecA\*(C'\fR)>, and so on.  Perl on \s-1EBCDIC\s0 platforms has been
ported to take \f(CW\*(C`\ec@\*(C'\fR to \f(CWchr(0)\fR and \f(CW\*(C`\ecA\*(C'\fR to \f(CWchr(1)\fR, etc. as well, but the
characters that result depend on which code page you are
using.  The table below uses the standard acronyms for the controls.
The POSIX-BC and 1047 sets are
identical throughout this range and differ from the 0037 set at only
one spot (21 decimal).  Note that the line terminator character
may be generated by \f(CW\*(C`\ecJ\*(C'\fR on \s-1ASCII\s0 platforms but by \f(CW\*(C`\ecU\*(C'\fR on 1047 or POSIX-BC
platforms and cannot be generated as a \f(CW"\ec.letter."\fR control character on
0037 platforms.  Note also that \f(CW\*(C`\ec\e\*(C'\fR cannot be the final element in a string
or regex, as it will absorb the terminator.   But \f(CW\*(C`\ec\e\f(CIX\f(CW\*(C'\fR is a \f(CW\*(C`FILE
SEPARATOR\*(C'\fR concatenated with \fIX\fR for all \fIX\fR.
The outlier \f(CW\*(C`\ec?\*(C'\fR on \s-1ASCII,\s0 which yields a non\-C0 control \f(CW\*(C`DEL\*(C'\fR,
yields the outlier control \f(CW\*(C`APC\*(C'\fR on \s-1EBCDIC,\s0 the one that isn't in the
block of contiguous controls.  Note that a subtlety of this is that
\&\f(CW\*(C`\ec?\*(C'\fR on \s-1ASCII\s0 platforms is an \s-1ASCII\s0 character, while it isn't
equivalent to any \s-1ASCII\s0 character in \s-1EBCDIC\s0 platforms.
.PP
.Vb 10
\& chr   ord   8859\-1    0037    1047 && POSIX\-BC
\& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
\& \ec@     0   <NUL>     <NUL>        <NUL>
\& \ecA     1   <SOH>     <SOH>        <SOH>
\& \ecB     2   <STX>     <STX>        <STX>
\& \ecC     3   <ETX>     <ETX>        <ETX>
\& \ecD     4   <EOT>     <ST>         <ST>
\& \ecE     5   <ENQ>     <HT>         <HT>
\& \ecF     6   <ACK>     <SSA>        <SSA>
\& \ecG     7   <BEL>     <DEL>        <DEL>
\& \ecH     8   <BS>      <EPA>        <EPA>
\& \ecI     9   <HT>      <RI>         <RI>
\& \ecJ    10   <LF>      <SS2>        <SS2>
\& \ecK    11   <VT>      <VT>         <VT>
\& \ecL    12   <FF>      <FF>         <FF>
\& \ecM    13   <CR>      <CR>         <CR>
\& \ecN    14   <SO>      <SO>         <SO>
\& \ecO    15   <SI>      <SI>         <SI>
\& \ecP    16   <DLE>     <DLE>        <DLE>
\& \ecQ    17   <DC1>     <DC1>        <DC1>
\& \ecR    18   <DC2>     <DC2>        <DC2>
\& \ecS    19   <DC3>     <DC3>        <DC3>
\& \ecT    20   <DC4>     <OSC>        <OSC>
\& \ecU    21   <NAK>     <NEL>        <LF>              **
\& \ecV    22   <SYN>     <BS>         <BS>
\& \ecW    23   <ETB>     <ESA>        <ESA>
\& \ecX    24   <CAN>     <CAN>        <CAN>
\& \ecY    25   <EOM>     <EOM>        <EOM>
\& \ecZ    26   <SUB>     <PU2>        <PU2>
\& \ec[    27   <ESC>     <SS3>        <SS3>
\& \ec\eX   28   <FS>X     <FS>X        <FS>X
\& \ec]    29   <GS>      <GS>         <GS>
\& \ec^    30   <RS>      <RS>         <RS>
\& \ec_    31   <US>      <US>         <US>
\& \ec?    *    <DEL>     <APC>        <APC>
.Ve
.PP
\&\f(CW\*(C`*\*(C'\fR Note: \f(CW\*(C`\ec?\*(C'\fR maps to ordinal 127 (\f(CW\*(C`DEL\*(C'\fR) on \s-1ASCII\s0 platforms, but
since ordinal 127 is a not a control character on \s-1EBCDIC\s0 machines,
\&\f(CW\*(C`\ec?\*(C'\fR instead maps on them to \f(CW\*(C`APC\*(C'\fR, which is 255 in 0037 and 1047,
and 95 in POSIX-BC.
.SH "FUNCTION DIFFERENCES"
.IX Header "FUNCTION DIFFERENCES"
.ie n .IP """chr()""" 8
.el .IP "\f(CWchr()\fR" 8
.IX Item "chr()"
\&\f(CW\*(C`chr()\*(C'\fR must be given an \s-1EBCDIC\s0 code number argument to yield a desired
character return value on an \s-1EBCDIC\s0 platform.  For example:
.Sp
.Vb 1
\&    $CAPITAL_LETTER_A = chr(193);
.Ve
.ie n .IP """ord()""" 8
.el .IP "\f(CWord()\fR" 8
.IX Item "ord()"
\&\f(CW\*(C`ord()\*(C'\fR will return \s-1EBCDIC\s0 code number values on an \s-1EBCDIC\s0 platform.
For example:
.Sp
.Vb 1
\&    $the_number_193 = ord("A");
.Ve
.ie n .IP """pack()""" 8
.el .IP "\f(CWpack()\fR" 8
.IX Item "pack()"
The \f(CW"c"\fR and \f(CW"C"\fR templates for \f(CW\*(C`pack()\*(C'\fR are dependent upon character set
encoding.  Examples of usage on \s-1EBCDIC\s0 include:
.Sp
.Vb 4
\&    $foo = pack("CCCC",193,194,195,196);
\&    # $foo eq "ABCD"
\&    $foo = pack("C4",193,194,195,196);
\&    # same thing
\&
\&    $foo = pack("ccxxcc",193,194,195,196);
\&    # $foo eq "AB\e0\e0CD"
.Ve
.Sp
The \f(CW"U"\fR template has been ported to mean \*(L"Unicode\*(R" on all platforms so
that
.Sp
.Vb 1
\&    pack("U", 65) eq \*(AqA\*(Aq
.Ve
.Sp
is true on all platforms.  If you want native code points for the low
256, use the \f(CW"W"\fR template.  This means that the equivalences
.Sp
.Vb 2
\&    pack("W", ord($character)) eq $character
\&    unpack("W", $character) == ord $character
.Ve
.Sp
will hold.
.ie n .IP """print()""" 8
.el .IP "\f(CWprint()\fR" 8
.IX Item "print()"
One must be careful with scalars and strings that are passed to
print that contain \s-1ASCII\s0 encodings.  One common place
for this to occur is in the output of the \s-1MIME\s0 type header for
\&\s-1CGI\s0 script writing.  For example, many Perl programming guides
recommend something similar to:
.Sp
.Vb 2
\&    print "Content\-type:\ettext/html\e015\e012\e015\e012";
\&    # this may be wrong on EBCDIC
.Ve
.Sp
You can instead write
.Sp
.Vb 1
\&    print "Content\-type:\ettext/html\er\en\er\en"; # OK for DGW et al
.Ve
.Sp
and have it work portably.
.Sp
That is because the translation from \s-1EBCDIC\s0 to \s-1ASCII\s0 is done
by the web server in this case.  Consult your web server's documentation for
further details.
.ie n .IP """printf()""" 8
.el .IP "\f(CWprintf()\fR" 8
.IX Item "printf()"
The formats that can convert characters to numbers and vice versa
will be different from their \s-1ASCII\s0 counterparts when executed
on an \s-1EBCDIC\s0 platform.  Examples include:
.Sp
.Vb 1
\&    printf("%c%c%c",193,194,195);  # prints ABC
.Ve
.ie n .IP """sort()""" 8
.el .IP "\f(CWsort()\fR" 8
.IX Item "sort()"
\&\s-1EBCDIC\s0 sort results may differ from \s-1ASCII\s0 sort results especially for
mixed case strings.  This is discussed in more detail below.
.ie n .IP """sprintf()""" 8
.el .IP "\f(CWsprintf()\fR" 8
.IX Item "sprintf()"
See the discussion of \f(CW"printf()"\fR above.  An example of the use
of sprintf would be:
.Sp
.Vb 1
\&    $CAPITAL_LETTER_A = sprintf("%c",193);
.Ve
.ie n .IP """unpack()""" 8
.el .IP "\f(CWunpack()\fR" 8
.IX Item "unpack()"
See the discussion of \f(CW"pack()"\fR above.
.PP
Note that it is possible to write portable code for these by specifying
things in Unicode numbers, and using a conversion function:
.PP
.Vb 3
\&    printf("%c",utf8::unicode_to_native(65));  # prints A on all
\&                                               # platforms
\&    print utf8::native_to_unicode(ord("A"));   # Likewise, prints 65
.Ve
.PP
See \*(L"Unicode and \s-1EBCDIC\*(R"\s0 in perluniintro and \*(L"\s-1CONVERSIONS\*(R"\s0
for other options.
.SH "REGULAR EXPRESSION DIFFERENCES"
.IX Header "REGULAR EXPRESSION DIFFERENCES"
You can write your regular expressions just like someone on an \s-1ASCII\s0
platform would do.  But keep in mind that using octal or hex notation to
specify a particular code point will give you the character that the
\&\s-1EBCDIC\s0 code page natively maps to it.   (This is also true of all
double-quoted strings.)  If you want to write portably, just use the
\&\f(CW\*(C`\eN{U+...}\*(C'\fR notation everywhere where you would have used \f(CW\*(C`\ex{...}\*(C'\fR,
and don't use octal notation at all.
.PP
Starting in Perl v5.22, this applies to ranges in bracketed character
classes.  If you say, for example, \f(CW\*(C`qr/[\eN{U+20}\-\eN{U+7F}]/\*(C'\fR, it means
the characters \f(CW\*(C`\eN{U+20}\*(C'\fR, \f(CW\*(C`\eN{U+21}\*(C'\fR, ..., \f(CW\*(C`\eN{U+7F}\*(C'\fR.  This range
is all the printable characters that the \s-1ASCII\s0 character set contains.
.PP
Prior to v5.22, you couldn't specify any ranges portably, except
(starting in Perl v5.5.3) all subsets of the \f(CW\*(C`[A\-Z]\*(C'\fR and \f(CW\*(C`[a\-z]\*(C'\fR
ranges are specially coded to not pick up gap characters.  For example,
characters such as \*(L"o\*^\*(R" (\f(CW\*(C`o WITH CIRCUMFLEX\*(C'\fR) that lie between
\&\*(L"I\*(R" and \*(L"J\*(R" would not be matched by the regular expression range
\&\f(CW\*(C`/[H\-K]/\*(C'\fR.  But if either of the range end points is explicitly numeric
(and neither is specified by \f(CW\*(C`\eN{U+...}\*(C'\fR), the gap characters are
matched:
.PP
.Vb 1
\&    /[\ex89\-\ex91]/
.Ve
.PP
will match \f(CW\*(C`\ex8e\*(C'\fR, even though \f(CW\*(C`\ex89\*(C'\fR is \*(L"i\*(R" and \f(CW\*(C`\ex91 \*(C'\fR is \*(L"j\*(R",
and \f(CW\*(C`\ex8e\*(C'\fR is a gap character, from the alphabetic viewpoint.
.PP
Another construct to be wary of is the inappropriate use of hex (unless
you use \f(CW\*(C`\eN{U+...}\*(C'\fR) or
octal constants in regular expressions.  Consider the following
set of subs:
.PP
.Vb 4
\&    sub is_c0 {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\e000\-\e037]/;
\&    }
\&
\&    sub is_print_ascii {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\e040\-\e176]/;
\&    }
\&
\&    sub is_delete {
\&        my $char = substr(shift,0,1);
\&        $char eq "\e177";
\&    }
\&
\&    sub is_c1 {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\e200\-\e237]/;
\&    }
\&
\&    sub is_latin_1 {    # But not ASCII; not C1
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\e240\-\e377]/;
\&    }
.Ve
.PP
These are valid only on \s-1ASCII\s0 platforms.  Starting in Perl v5.22, simply
changing the octal constants to equivalent \f(CW\*(C`\eN{U+...}\*(C'\fR values makes
them portable:
.PP
.Vb 4
\&    sub is_c0 {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\eN{U+00}\-\eN{U+1F}]/;
\&    }
\&
\&    sub is_print_ascii {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\eN{U+20}\-\eN{U+7E}]/;
\&    }
\&
\&    sub is_delete {
\&        my $char = substr(shift,0,1);
\&        $char eq "\eN{U+7F}";
\&    }
\&
\&    sub is_c1 {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\eN{U+80}\-\eN{U+9F}]/;
\&    }
\&
\&    sub is_latin_1 {    # But not ASCII; not C1
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\eN{U+A0}\-\eN{U+FF}]/;
\&    }
.Ve
.PP
And here are some alternative portable ways to write them:
.PP
.Vb 3
\&    sub Is_c0 {
\&        my $char = substr(shift,0,1);
\&        return $char =~ /[[:cntrl:]]/a && ! Is_delete($char);
\&
\&        # Alternatively:
\&        # return $char =~ /[[:cntrl:]]/
\&        #        && $char =~ /[[:ascii:]]/
\&        #        && ! Is_delete($char);
\&    }
\&
\&    sub Is_print_ascii {
\&        my $char = substr(shift,0,1);
\&
\&        return $char =~ /[[:print:]]/a;
\&
\&        # Alternatively:
\&        # return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/;
\&
\&        # Or
\&        # return $char
\&        #      =~ /[ !"\e#\e$%&\*(Aq()*+,\e\-.\e/0\-9:;<=>?\e@A\-Z[\e\e\e]^_\`a\-z{|}~]/;
\&    }
\&
\&    sub Is_delete {
\&        my $char = substr(shift,0,1);
\&        return utf8::native_to_unicode(ord $char) == 0x7F;
\&    }
\&
\&    sub Is_c1 {
\&        use feature \*(Aqunicode_strings\*(Aq;
\&        my $char = substr(shift,0,1);
\&        return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/;
\&    }
\&
\&    sub Is_latin_1 {    # But not ASCII; not C1
\&        use feature \*(Aqunicode_strings\*(Aq;
\&        my $char = substr(shift,0,1);
\&        return ord($char) < 256
\&               && $char !~ /[[:ascii:]]/
\&               && $char !~ /[[:cntrl:]]/;
\&    }
.Ve
.PP
Another way to write \f(CW\*(C`Is_latin_1()\*(C'\fR would be
to use the characters in the range explicitly:
.PP
.Vb 5
\&    sub Is_latin_1 {
\&        my $char = substr(shift,0,1);
\&        $char =~ /[\ XXXXXXXXXXXX\%XXXXXXXXXXXXXXXXXXA\*`A\*'A\*^A\*~A\*:A\*o\*(AeC\*,E\*`E\*'E\*^E\*:I\*`I\*'I\*^I\*:]
\&                  [\*(D-N\*~O\*`O\*'O\*^O\*~O\*:XO\*/U\*`U\*'U\*^U\*:Y\*'\*(Th\*8a\*`a\*'a\*^a\*~a\*:a\*o\*(aec\*,e\*`e\*'e\*^e\*:i\*`i\*'i\*^i\*:\*(d-n\*~o\*`o\*'o\*^o\*~o\*:Xo\*/u\*`u\*'u\*^u\*:y\*'\*(thy\*:]/x;
\&    }
.Ve
.PP
Although that form may run into trouble in network transit (due to the
presence of 8 bit characters) or on non ISO-Latin character sets.  But
it does allow \f(CW\*(C`Is_c1\*(C'\fR to be rewritten so it works on Perls that don't
have \f(CW\*(Aqunicode_strings\*(Aq\fR (earlier than v5.14):
.PP
.Vb 6
\&    sub Is_latin_1 {    # But not ASCII; not C1
\&        my $char = substr(shift,0,1);
\&        return ord($char) < 256
\&               && $char !~ /[[:ascii:]]/
\&               && ! Is_latin1($char);
\&    }
.Ve
.SH "SOCKETS"
.IX Header "SOCKETS"
Most socket programming assumes \s-1ASCII\s0 character encodings in network
byte order.  Exceptions can include \s-1CGI\s0 script writing under a
host web server where the server may take care of translation for you.
Most host web servers convert \s-1EBCDIC\s0 data to \s-1ISO\-8859\-1\s0 or Unicode on
output.
.SH "SORTING"
.IX Header "SORTING"
One big difference between ASCII-based character sets and \s-1EBCDIC\s0 ones
are the relative positions of the characters when sorted in native
order.  Of most concern are the upper\- and lowercase letters, the
digits, and the underscore (\f(CW"_"\fR).  On \s-1ASCII\s0 platforms the native sort
order has the digits come before the uppercase letters which come before
the underscore which comes before the lowercase letters.  On \s-1EBCDIC,\s0 the
underscore comes first, then the lowercase letters, then the uppercase
ones, and the digits last.  If sorted on an ASCII-based platform, the
two-letter abbreviation for a physician comes before the two letter
abbreviation for drive; that is:
.PP
.Vb 2
\& @sorted = sort(qw(Dr. dr.));  # @sorted holds (\*(AqDr.\*(Aq,\*(Aqdr.\*(Aq) on ASCII,
\&                                  # but (\*(Aqdr.\*(Aq,\*(AqDr.\*(Aq) on EBCDIC
.Ve
.PP
The property of lowercase before uppercase letters in \s-1EBCDIC\s0 is
even carried to the Latin 1 \s-1EBCDIC\s0 pages such as 0037 and 1047.
An example would be that \*(L"E\*:\*(R" (\f(CW\*(C`E WITH DIAERESIS\*(C'\fR, 203) comes
before \*(L"e\*:\*(R" (\f(CW\*(C`e WITH DIAERESIS\*(C'\fR, 235) on an \s-1ASCII\s0 platform, but
the latter (83) comes before the former (115) on an \s-1EBCDIC\s0 platform.
(Astute readers will note that the uppercase version of \*(L"\*8\*(R"
\&\f(CW\*(C`SMALL LETTER SHARP S\*(C'\fR is simply \*(L"\s-1SS\*(R"\s0 and that the upper case versions
of \*(L"y\*:\*(R" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and \*(L"X\*(R" (\f(CW\*(C`MICRO SIGN\*(C'\fR)
are not in the 0..255 range but are in Unicode, in a Unicode enabled
Perl).
.PP
The sort order will cause differences between results obtained on
\&\s-1ASCII\s0 platforms versus \s-1EBCDIC\s0 platforms.  What follows are some suggestions
on how to deal with these differences.
.SS "Ignore \s-1ASCII\s0 vs. \s-1EBCDIC\s0 sort differences."
.IX Subsection "Ignore ASCII vs. EBCDIC sort differences."
This is the least computationally expensive strategy.  It may require
some user education.
.SS "Use a sort helper function"
.IX Subsection "Use a sort helper function"
This is completely general, but the most computationally expensive
strategy.  Choose one or the other character set and transform to that
for every sort comparison.  Here's a complete example that transforms
to \s-1ASCII\s0 sort order:
.PP
.Vb 2
\& sub native_to_uni($) {
\&    my $string = shift;
\&
\&    # Saves time on an ASCII platform
\&    return $string if ord \*(AqA\*(Aq ==  65;
\&
\&    my $output = "";
\&    for my $i (0 .. length($string) \- 1) {
\&        $output
\&           .= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));
\&    }
\&
\&    # Preserve utf8ness of input onto the output, even if it didn\*(Aqt need
\&    # to be utf8
\&    utf8::upgrade($output) if utf8::is_utf8($string);
\&
\&    return $output;
\& }
\&
\& sub ascii_order {   # Sort helper
\&    return native_to_uni($a) cmp native_to_uni($b);
\& }
\&
\& sort ascii_order @list;
.Ve
.SS "\s-1MONO CASE\s0 then sort data (for non-digits, non-underscore)"
.IX Subsection "MONO CASE then sort data (for non-digits, non-underscore)"
If you don't care about where digits and underscore sort to, you can do
something like this
.PP
.Vb 3
\& sub case_insensitive_order {   # Sort helper
\&    return lc($a) cmp lc($b)
\& }
\&
\& sort case_insensitive_order @list;
.Ve
.PP
If performance is an issue, and you don't care if the output is in the
same case as the input, Use \f(CW\*(C`tr///\*(C'\fR to transform to the case most
employed within the data.  If the data are primarily \s-1UPPERCASE\s0
non\-Latin1, then apply \f(CW\*(C`tr/[a\-z]/[A\-Z]/\*(C'\fR, and then \f(CW\*(C`sort()\*(C'\fR.  If the
data are primarily lowercase non Latin1 then apply \f(CW\*(C`tr/[A\-Z]/[a\-z]/\*(C'\fR
before sorting.  If the data are primarily \s-1UPPERCASE\s0 and include Latin\-1
characters then apply:
.PP
.Vb 3
\&   tr/[a\-z]/[A\-Z]/;
\&   tr/[a\*`a\*'a\*^a\*~a\*:a\*o\*(aec\*,e\*`e\*'e\*^e\*:i\*`i\*'i\*^i\*:\*(d-n\*~o\*`o\*'o\*^o\*~o\*:o\*/u\*`u\*'u\*^u\*:y\*'\*(th]/[A\*`A\*'A\*^A\*~A\*:A\*o\*(AeC\*,E\*`E\*'E\*^E\*:I\*`I\*'I\*^I\*:\*(D-N\*~O\*`O\*'O\*^O\*~O\*:O\*/U\*`U\*'U\*^U\*:Y\*'\*(Th/;
\&   s/\*8/SS/g;
.Ve
.PP
then \f(CW\*(C`sort()\*(C'\fR.  If you have a choice, it's better to lowercase things
to avoid the problems of the two Latin\-1 characters whose uppercase is
outside Latin\-1: \*(L"y\*:\*(R" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and \*(L"X\*(R"
(\f(CW\*(C`MICRO SIGN\*(C'\fR).  If you do need to upppercase, you can; with a
Unicode-enabled Perl, do:
.PP
.Vb 2
\&    tr/y\*:/\ex{178}/;
\&    tr/X/\ex{39C}/;
.Ve
.SS "Perform sorting on one type of platform only."
.IX Subsection "Perform sorting on one type of platform only."
This strategy can employ a network connection.  As such
it would be computationally expensive.
.SH "TRANSFORMATION FORMATS"
.IX Header "TRANSFORMATION FORMATS"
There are a variety of ways of transforming data with an intra character set
mapping that serve a variety of purposes.  Sorting was discussed in the
previous section and a few of the other more popular mapping techniques are
discussed next.
.SS "\s-1URL\s0 decoding and encoding"
.IX Subsection "URL decoding and encoding"
Note that some URLs have hexadecimal \s-1ASCII\s0 code points in them in an
attempt to overcome character or protocol limitation issues.  For example
the tilde character is not on every keyboard hence a \s-1URL\s0 of the form:
.PP
.Vb 1
\&    http://www.pvhp.com/~pvhp/
.Ve
.PP
may also be expressed as either of:
.PP
.Vb 1
\&    http://www.pvhp.com/%7Epvhp/
\&
\&    http://www.pvhp.com/%7epvhp/
.Ve
.PP
where 7E is the hexadecimal \s-1ASCII\s0 code point for \*(L"~\*(R".  Here is an example
of decoding such a \s-1URL\s0 in any \s-1EBCDIC\s0 code page:
.PP
.Vb 3
\&    $url = \*(Aqhttp://www.pvhp.com/%7Epvhp/\*(Aq;
\&    $url =~ s/%([0\-9a\-fA\-F]{2})/
\&              pack("c",utf8::unicode_to_native(hex($1)))/xge;
.Ve
.PP
Conversely, here is a partial solution for the task of encoding such
a \s-1URL\s0 in any \s-1EBCDIC\s0 code page:
.PP
.Vb 5
\&    $url = \*(Aqhttp://www.pvhp.com/~pvhp/\*(Aq;
\&    # The following regular expression does not address the
\&    # mappings for: (\*(Aq.\*(Aq => \*(Aq%2E\*(Aq, \*(Aq/\*(Aq => \*(Aq%2F\*(Aq, \*(Aq:\*(Aq => \*(Aq%3A\*(Aq)
\&    $url =~ s/([\et "#%&\e(\e),;<=>\e?\e@\e[\e\e\e]^\`{|}~])/
\&               sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;
.Ve
.PP
where a more complete solution would split the \s-1URL\s0 into components
and apply a full s/// substitution only to the appropriate parts.
.SS "uu encoding and decoding"
.IX Subsection "uu encoding and decoding"
The \f(CW\*(C`u\*(C'\fR template to \f(CW\*(C`pack()\*(C'\fR or \f(CW\*(C`unpack()\*(C'\fR will render \s-1EBCDIC\s0 data in
\&\s-1EBCDIC\s0 characters equivalent to their \s-1ASCII\s0 counterparts.  For example,
the following will print \*(L"Yes indeed\en\*(R" on either an \s-1ASCII\s0 or \s-1EBCDIC\s0
computer:
.PP
.Vb 10
\&    $all_byte_chrs = \*(Aq\*(Aq;
\&    for (0..255) { $all_byte_chrs .= chr($_); }
\&    $uuencode_byte_chrs = pack(\*(Aqu\*(Aq, $all_byte_chrs);
\&    ($uu = <<\*(AqENDOFHEREDOC\*(Aq) =~ s/^\es*//gm;
\&    M\`\`$"\`P0%!@<("0H+#\`T.#Q\`1$A,4%187&!D:&QP=\*(AqA\e@(2(C)"4F)R@I*BLL
\&    M+2XO,#$R,S0U\-C<X.3H[/#T^/T!!0D\-$149\*(Aq2$E*2TQ\-3D]045)35%565UA9
\&    M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G\-T=79W>\*(AqEZ>WQ]?G^\`@8*#A(6&
\&    MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
\&    MM+6VM[BYNKN\eO;Z_P,\*(Aq"P\e3%QL?(R<K+S,W.S]#1TM/4U=;7V\-G:V]S=WM_@
\&    ?X>+CY.7FY^CIZNOL[>[O\e/\*(AqR\e_3U]O?X^?K[_/W^_P\`\`
\&    ENDOFHEREDOC
\&    if ($uuencode_byte_chrs eq $uu) {
\&        print "Yes ";
\&    }
\&    $uudecode_byte_chrs = unpack(\*(Aqu\*(Aq, $uuencode_byte_chrs);
\&    if ($uudecode_byte_chrs eq $all_byte_chrs) {
\&        print "indeed\en";
\&    }
.Ve
.PP
Here is a very spartan uudecoder that will work on \s-1EBCDIC:\s0
.PP
.Vb 10
\&    #!/usr/local/bin/perl
\&    $_ = <> until ($mode,$file) = /^begin\es*(\ed*)\es*(\eS*)/;
\&    open(OUT, "> $file") if $file ne "";
\&    while(<>) {
\&        last if /^end/;
\&        next if /[a\-z]/;
\&        next unless int((((utf8::native_to_unicode(ord()) \- 32 ) & 077)
\&                                                               + 2) / 3)
\&                    == int(length() / 4);
\&        print OUT unpack("u", $_);
\&    }
\&    close(OUT);
\&    chmod oct($mode), $file;
.Ve
.SS "Quoted-Printable encoding and decoding"
.IX Subsection "Quoted-Printable encoding and decoding"
On ASCII-encoded platforms it is possible to strip characters outside of
the printable set using:
.PP
.Vb 3
\&    # This QP encoder works on ASCII only
\&    $qp_string =~ s/([=\ex00\-\ex1F\ex80\-\exFF])/
\&                    sprintf("=%02X",ord($1))/xge;
.Ve
.PP
Starting in Perl v5.22, this is trivially changeable to work portably on
both \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms.
.PP
.Vb 3
\&    # This QP encoder works on both ASCII and EBCDIC
\&    $qp_string =~ s/([=\eN{U+00}\-\eN{U+1F}\eN{U+80}\-\eN{U+FF}])/
\&                    sprintf("=%02X",ord($1))/xge;
.Ve
.PP
For earlier Perls, a \s-1QP\s0 encoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0
platforms would look somewhat like the following:
.PP
.Vb 4
\&    $delete = utf8::unicode_to_native(ord("\ex7F"));
\&    $qp_string =~
\&      s/([^[:print:]$delete])/
\&         sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;
.Ve
.PP
(although in production code the substitutions might be done
in the \s-1EBCDIC\s0 branch with the function call and separately in the
\&\s-1ASCII\s0 branch without the expense of the identity map; in Perl v5.22, the
identity map is optimized out so there is no expense, but the
alternative above is simpler and is also available in v5.22).
.PP
Such \s-1QP\s0 strings can be decoded with:
.PP
.Vb 3
\&    # This QP decoder is limited to ASCII only
\&    $string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;
\&    $string =~ s/=[\en\er]+$//;
.Ve
.PP
Whereas a \s-1QP\s0 decoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms
would look somewhat like the following:
.PP
.Vb 3
\&    $string =~ s/=([[:xdigit:][:xdigit:]])/
\&                                chr utf8::native_to_unicode(hex $1)/xge;
\&    $string =~ s/=[\en\er]+$//;
.Ve
.SS "Caesarean ciphers"
.IX Subsection "Caesarean ciphers"
The practice of shifting an alphabet one or more characters for encipherment
dates back thousands of years and was explicitly detailed by Gaius Julius
Caesar in his \fBGallic Wars\fR text.  A single alphabet shift is sometimes
referred to as a rotation and the shift amount is given as a number \f(CW$n\fR after
the string 'rot' or \*(L"rot$n\*(R".  Rot0 and rot26 would designate identity maps
on the 26\-letter English version of the Latin alphabet.  Rot13 has the
interesting property that alternate subsequent invocations are identity maps
(thus rot13 is its own non-trivial inverse in the group of 26 alphabet
rotations).  Hence the following is a rot13 encoder and decoder that will
work on \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms:
.PP
.Vb 1
\&    #!/usr/local/bin/perl
\&
\&    while(<>){
\&        tr/n\-za\-mN\-ZA\-M/a\-zA\-Z/;
\&        print;
\&    }
.Ve
.PP
In one-liner form:
.PP
.Vb 1
\&    perl \-ne \*(Aqtr/n\-za\-mN\-ZA\-M/a\-zA\-Z/;print\*(Aq
.Ve
.SH "Hashing order and checksums"
.IX Header "Hashing order and checksums"
Perl deliberately randomizes hash order for security purposes on both
\&\s-1ASCII\s0 and \s-1EBCDIC\s0 platforms.
.PP
\&\s-1EBCDIC\s0 checksums will differ for the same file translated into \s-1ASCII\s0
and vice versa.
.SH "I18N AND L10N"
.IX Header "I18N AND L10N"
Internationalization (I18N) and localization (L10N) are supported at least
in principle even on \s-1EBCDIC\s0 platforms.  The details are system-dependent
and discussed under the \*(L"\s-1OS ISSUES\*(R"\s0 section below.
.SH "MULTI-OCTET CHARACTER SETS"
.IX Header "MULTI-OCTET CHARACTER SETS"
Perl works with UTF-EBCDIC, a multi-byte encoding.  In Perls earlier
than v5.22, there may be various bugs in this regard.
.PP
Legacy multi byte \s-1EBCDIC\s0 code pages \s-1XXX.\s0
.SH "OS ISSUES"
.IX Header "OS ISSUES"
There may be a few system-dependent issues
of concern to \s-1EBCDIC\s0 Perl programmers.
.SS "\s-1OS/400\s0"
.IX Subsection "OS/400"
.IP "\s-1PASE\s0" 8
.IX Item "PASE"
The \s-1PASE\s0 environment is a runtime environment for \s-1OS/400\s0 that can run
executables built for PowerPC \s-1AIX\s0 in \s-1OS/400\s0; see perlos400.  \s-1PASE\s0
is ASCII-based, not EBCDIC-based as the \s-1ILE.\s0
.IP "\s-1IFS\s0 access" 8
.IX Item "IFS access"
\&\s-1XXX.\s0
.SS "\s-1OS/390,\s0 z/OS"
.IX Subsection "OS/390, z/OS"
Perl runs under Unix Systems Services or \s-1USS.\s0
.ie n .IP """sigaction""" 8
.el .IP "\f(CWsigaction\fR" 8
.IX Item "sigaction"
\&\f(CW\*(C`SA_SIGINFO\*(C'\fR can have segmentation faults.
.ie n .IP """chcp""" 8
.el .IP "\f(CWchcp\fR" 8
.IX Item "chcp"
\&\fBchcp\fR is supported as a shell utility for displaying and changing
one's code page.  See also \fBchcp\fR\|(1).
.IP "dataset access" 8
.IX Item "dataset access"
For sequential data set access try:
.Sp
.Vb 1
\&    my @ds_records = \`cat //DSNAME\`;
.Ve
.Sp
or:
.Sp
.Vb 1
\&    my @ds_records = \`cat //\*(AqHLQ.DSNAME\*(Aq\`;
.Ve
.Sp
See also the OS390::Stdio module on \s-1CPAN.\s0
.ie n .IP """iconv""" 8
.el .IP "\f(CWiconv\fR" 8
.IX Item "iconv"
\&\fBiconv\fR is supported as both a shell utility and a C \s-1RTL\s0 routine.
See also the \fBiconv\fR\|(1) and \fBiconv\fR\|(3) manual pages.
.IP "locales" 8
.IX Item "locales"
Locales are supported.  There may be glitches when a locale is another
\&\s-1EBCDIC\s0 code page which has some of the
code-page variant characters in other
positions.
.Sp
There aren't currently any real \s-1UTF\-8\s0 locales, even though some locale
names contain the string \*(L"\s-1UTF\-8\*(R".\s0
.Sp
See perllocale for information on locales.  The L10N files
are in \fI/usr/nls/locale\fR.  \f(CW$Config{d_setlocale}\fR is \f(CW\*(Aqdefine\*(Aq\fR on
\&\s-1OS/390\s0 or z/OS.
.SS "POSIX-BC?"
.IX Subsection "POSIX-BC?"
\&\s-1XXX.\s0
.SH "BUGS"
.IX Header "BUGS"
.IP "\(bu" 4
Not all shells will allow multiple \f(CW\*(C`\-e\*(C'\fR string arguments to perl to
be concatenated together properly as recipes in this document
0, 2, 4, 5, and 6 might
seem to imply.
.IP "\(bu" 4
There are a significant number of test failures in the \s-1CPAN\s0 modules
shipped with Perl v5.22 and 5.24.  These are only in modules not primarily
maintained by Perl 5 porters.  Some of these are failures in the tests
only: they don't realize that it is proper to get different results on
\&\s-1EBCDIC\s0 platforms.  And some of the failures are real bugs.  If you
compile and do a \f(CW\*(C`make test\*(C'\fR on Perl, all tests on the \f(CW\*(C`/cpan\*(C'\fR
directory are skipped.
.Sp
Encode partially works.
.IP "\(bu" 4
In earlier Perl versions, when byte and character data were
concatenated, the new string was sometimes created by
decoding the byte strings as \fI\s-1ISO 8859\-1\s0 (Latin\-1)\fR, even if the
old Unicode string used \s-1EBCDIC.\s0
.SH "SEE ALSO"
.IX Header "SEE ALSO"
perllocale, perlfunc, perlunicode, utf8.
.SH "REFERENCES"
.IX Header "REFERENCES"
<http://anubis.dkuug.dk/i18n/charmaps>
.PP
<http://www.unicode.org/>
.PP
<http://www.unicode.org/unicode/reports/tr16/>
.PP
<http://www.wps.com/projects/codes/>
\&\fB\s-1ASCII:\s0 American Standard Code for Information Infiltration\fR Tom Jennings,
September 1999.
.PP
\&\fBThe Unicode Standard, Version 3.0\fR The Unicode Consortium, Lisa Moore ed.,
\&\s-1ISBN 0\-201\-61633\-5,\s0 Addison Wesley Developers Press, February 2000.
.PP
\&\fB\s-1CDRA: IBM\s0 \- Character Data Representation Architecture \-
Reference and Registry\fR, \s-1IBM SC09\-2190\-00,\s0 December 1996.
.PP
\&\*(L"Demystifying Character Sets\*(R", Andrea Vine, Multilingual Computing
& Technology, \fB#26 Vol. 10 Issue 4\fR, August/September 1999;
\&\s-1ISSN 1523\-0309\s0; Multilingual Computing Inc. Sandpoint \s-1ID, USA.\s0
.PP
\&\fBCodes, Ciphers, and Other Cryptic and Clandestine Communication\fR
Fred B. Wrixon, \s-1ISBN 1\-57912\-040\-7,\s0 Black Dog & Leventhal Publishers,
1998.
.PP
<http://www.bobbemer.com/P\-BIT.HTM>
\&\fB\s-1IBM\s0 \- \s-1EBCDIC\s0 and the P\-bit; The biggest Computer Goof Ever\fR Robert Bemer.
.SH "HISTORY"
.IX Header "HISTORY"
15 April 2001: added \s-1UTF\-8\s0 and UTF-EBCDIC to main table, pvhp.
.SH "AUTHOR"
.IX Header "AUTHOR"
Peter Prymmer pvhp@best.com wrote this in 1999 and 2000
with \s-1CCSID 0819\s0 and 0037 help from Chris Leach and
Andre\*' Pirard A.Pirard@ulg.ac.be as well as POSIX-BC
help from Thomas Dorner Thomas.Dorner@start.de.
Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
Joe Smith.  Trademarks, registered trademarks, service marks and
registered service marks used in this document are the property of
their respective owners.
.PP
Now maintained by Perl5 Porters.

Man Man