Current Path : /usr/src/cddl/contrib/opensolaris/common/ctf/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/cddl/contrib/opensolaris/common/ctf/ctf_open.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include <ctf_impl.h> #include <sys/mman.h> #include <sys/zmod.h> static const ctf_dmodel_t _libctf_models[] = { { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, { NULL, 0, 0, 0, 0, 0, 0 } }; const char _CTF_SECTION[] = ".SUNW_ctf"; const char _CTF_NULLSTR[] = ""; int _libctf_version = CTF_VERSION; /* library client version */ int _libctf_debug = 0; /* debugging messages enabled */ static ushort_t get_kind_v1(ushort_t info) { return (CTF_INFO_KIND_V1(info)); } static ushort_t get_kind_v2(ushort_t info) { return (CTF_INFO_KIND(info)); } static ushort_t get_root_v1(ushort_t info) { return (CTF_INFO_ISROOT_V1(info)); } static ushort_t get_root_v2(ushort_t info) { return (CTF_INFO_ISROOT(info)); } static ushort_t get_vlen_v1(ushort_t info) { return (CTF_INFO_VLEN_V1(info)); } static ushort_t get_vlen_v2(ushort_t info) { return (CTF_INFO_VLEN(info)); } static const ctf_fileops_t ctf_fileops[] = { { NULL, NULL }, { get_kind_v1, get_root_v1, get_vlen_v1 }, { get_kind_v2, get_root_v2, get_vlen_v2 }, }; /* * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. */ static Elf64_Sym * sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) { dst->st_name = src->st_name; dst->st_value = src->st_value; dst->st_size = src->st_size; dst->st_info = src->st_info; dst->st_other = src->st_other; dst->st_shndx = src->st_shndx; return (dst); } /* * Initialize the symtab translation table by filling each entry with the * offset of the CTF type or function data corresponding to each STT_FUNC or * STT_OBJECT entry in the symbol table. */ static int init_symtab(ctf_file_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp, const ctf_sect_t *strp) { const uchar_t *symp = sp->cts_data; uint_t *xp = fp->ctf_sxlate; uint_t *xend = xp + fp->ctf_nsyms; uint_t objtoff = hp->cth_objtoff; uint_t funcoff = hp->cth_funcoff; ushort_t info, vlen; Elf64_Sym sym, *gsp; const char *name; /* * The CTF data object and function type sections are ordered to match * the relative order of the respective symbol types in the symtab. * If no type information is available for a symbol table entry, a * pad is inserted in the CTF section. As a further optimization, * anonymous or undefined symbols are omitted from the CTF data. */ for (; xp < xend; xp++, symp += sp->cts_entsize) { if (sp->cts_entsize == sizeof (Elf32_Sym)) gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); else gsp = (Elf64_Sym *)(uintptr_t)symp; if (gsp->st_name < strp->cts_size) name = (const char *)strp->cts_data + gsp->st_name; else name = _CTF_NULLSTR; if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || strcmp(name, "_START_") == 0 || strcmp(name, "_END_") == 0) { *xp = -1u; continue; } switch (ELF64_ST_TYPE(gsp->st_info)) { case STT_OBJECT: if (objtoff >= hp->cth_funcoff || (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { *xp = -1u; break; } *xp = objtoff; objtoff += sizeof (ushort_t); break; case STT_FUNC: if (funcoff >= hp->cth_typeoff) { *xp = -1u; break; } *xp = funcoff; info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); vlen = LCTF_INFO_VLEN(fp, info); /* * If we encounter a zero pad at the end, just skip it. * Otherwise skip over the function and its return type * (+2) and the argument list (vlen). */ if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && vlen == 0) funcoff += sizeof (ushort_t); /* skip pad */ else funcoff += sizeof (ushort_t) * (vlen + 2); break; default: *xp = -1u; break; } } ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); return (0); } /* * Initialize the type ID translation table with the byte offset of each type, * and initialize the hash tables of each named type. */ static int init_types(ctf_file_t *fp, const ctf_header_t *cth) { /* LINTED - pointer alignment */ const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); /* LINTED - pointer alignment */ const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); ulong_t pop[CTF_K_MAX + 1] = { 0 }; const ctf_type_t *tp; ctf_hash_t *hp; ushort_t id, dst; uint_t *xp; /* * We initially determine whether the container is a child or a parent * based on the value of cth_parname. To support containers that pre- * date cth_parname, we also scan the types themselves for references * to values in the range reserved for child types in our first pass. */ int child = cth->cth_parname != 0; int nlstructs = 0, nlunions = 0; int err; /* * We make two passes through the entire type section. In this first * pass, we count the number of each type and the total number of types. */ for (tp = tbuf; tp < tend; fp->ctf_typemax++) { ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); ssize_t size, increment; size_t vbytes; uint_t n; (void) ctf_get_ctt_size(fp, tp, &size, &increment); switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: vbytes = sizeof (uint_t); break; case CTF_K_ARRAY: vbytes = sizeof (ctf_array_t); break; case CTF_K_FUNCTION: vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); break; case CTF_K_STRUCT: case CTF_K_UNION: if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) { ctf_member_t *mp = (ctf_member_t *) ((uintptr_t)tp + increment); vbytes = sizeof (ctf_member_t) * vlen; for (n = vlen; n != 0; n--, mp++) child |= CTF_TYPE_ISCHILD(mp->ctm_type); } else { ctf_lmember_t *lmp = (ctf_lmember_t *) ((uintptr_t)tp + increment); vbytes = sizeof (ctf_lmember_t) * vlen; for (n = vlen; n != 0; n--, lmp++) child |= CTF_TYPE_ISCHILD(lmp->ctlm_type); } break; case CTF_K_ENUM: vbytes = sizeof (ctf_enum_t) * vlen; break; case CTF_K_FORWARD: /* * For forward declarations, ctt_type is the CTF_K_* * kind for the tag, so bump that population count too. * If ctt_type is unknown, treat the tag as a struct. */ if (tp->ctt_type == CTF_K_UNKNOWN || tp->ctt_type >= CTF_K_MAX) pop[CTF_K_STRUCT]++; else pop[tp->ctt_type]++; /*FALLTHRU*/ case CTF_K_UNKNOWN: vbytes = 0; break; case CTF_K_POINTER: case CTF_K_TYPEDEF: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: child |= CTF_TYPE_ISCHILD(tp->ctt_type); vbytes = 0; break; default: ctf_dprintf("detected invalid CTF kind -- %u\n", kind); return (ECTF_CORRUPT); } tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); pop[kind]++; } /* * If we detected a reference to a child type ID, then we know this * container is a child and may have a parent's types imported later. */ if (child) { ctf_dprintf("CTF container %p is a child\n", (void *)fp); fp->ctf_flags |= LCTF_CHILD; } else ctf_dprintf("CTF container %p is a parent\n", (void *)fp); /* * Now that we've counted up the number of each type, we can allocate * the hash tables, type translation table, and pointer table. */ if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) return (err); if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) return (err); if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) return (err); if ((err = ctf_hash_create(&fp->ctf_names, pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) return (err); fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) return (EAGAIN); /* memory allocation failed */ xp = fp->ctf_txlate; *xp++ = 0; /* type id 0 is used as a sentinel value */ bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); /* * In the second pass through the types, we fill in each entry of the * type and pointer tables and add names to the appropriate hashes. */ for (id = 1, tp = tbuf; tp < tend; xp++, id++) { ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); ssize_t size, increment; const char *name; size_t vbytes; ctf_helem_t *hep; ctf_encoding_t cte; (void) ctf_get_ctt_size(fp, tp, &size, &increment); name = ctf_strptr(fp, tp->ctt_name); switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: /* * Only insert a new integer base type definition if * this type name has not been defined yet. We re-use * the names with different encodings for bit-fields. */ if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, name, strlen(name))) == NULL) { err = ctf_hash_insert(&fp->ctf_names, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); } else if (ctf_type_encoding(fp, hep->h_type, &cte) == 0 && cte.cte_bits == 0) { /* * Work-around SOS8 stabs bug: replace existing * intrinsic w/ same name if it was zero bits. */ hep->h_type = CTF_INDEX_TO_TYPE(id, child); } vbytes = sizeof (uint_t); break; case CTF_K_ARRAY: vbytes = sizeof (ctf_array_t); break; case CTF_K_FUNCTION: err = ctf_hash_insert(&fp->ctf_names, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); break; case CTF_K_STRUCT: err = ctf_hash_define(&fp->ctf_structs, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) vbytes = sizeof (ctf_member_t) * vlen; else { vbytes = sizeof (ctf_lmember_t) * vlen; nlstructs++; } break; case CTF_K_UNION: err = ctf_hash_define(&fp->ctf_unions, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) vbytes = sizeof (ctf_member_t) * vlen; else { vbytes = sizeof (ctf_lmember_t) * vlen; nlunions++; } break; case CTF_K_ENUM: err = ctf_hash_define(&fp->ctf_enums, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); vbytes = sizeof (ctf_enum_t) * vlen; break; case CTF_K_TYPEDEF: err = ctf_hash_insert(&fp->ctf_names, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); vbytes = 0; break; case CTF_K_FORWARD: /* * Only insert forward tags into the given hash if the * type or tag name is not already present. */ switch (tp->ctt_type) { case CTF_K_STRUCT: hp = &fp->ctf_structs; break; case CTF_K_UNION: hp = &fp->ctf_unions; break; case CTF_K_ENUM: hp = &fp->ctf_enums; break; default: hp = &fp->ctf_structs; } if (ctf_hash_lookup(hp, fp, name, strlen(name)) == NULL) { err = ctf_hash_insert(hp, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); } vbytes = 0; break; case CTF_K_POINTER: /* * If the type referenced by the pointer is in this CTF * container, then store the index of the pointer type * in fp->ctf_ptrtab[ index of referenced type ]. */ if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) fp->ctf_ptrtab[ CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; /*FALLTHRU*/ case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: err = ctf_hash_insert(&fp->ctf_names, fp, CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); if (err != 0 && err != ECTF_STRTAB) return (err); /*FALLTHRU*/ default: vbytes = 0; break; } *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); } ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); ctf_dprintf("%u struct names hashed (%d long)\n", ctf_hash_size(&fp->ctf_structs), nlstructs); ctf_dprintf("%u union names hashed (%d long)\n", ctf_hash_size(&fp->ctf_unions), nlunions); ctf_dprintf("%u base type names hashed\n", ctf_hash_size(&fp->ctf_names)); /* * Make an additional pass through the pointer table to find pointers * that point to anonymous typedef nodes. If we find one, modify the * pointer table so that the pointer is also known to point to the * node that is referenced by the anonymous typedef node. */ for (id = 1; id <= fp->ctf_typemax; id++) { if ((dst = fp->ctf_ptrtab[id]) != 0) { tp = LCTF_INDEX_TO_TYPEPTR(fp, id); if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && CTF_TYPE_ISCHILD(tp->ctt_type) == child && CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) fp->ctf_ptrtab[ CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; } } return (0); } /* * Decode the specified CTF buffer and optional symbol table and create a new * CTF container representing the symbolic debugging information. This code * can be used directly by the debugger, or it can be used as the engine for * ctf_fdopen() or ctf_open(), below. */ ctf_file_t * ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, const ctf_sect_t *strsect, int *errp) { const ctf_preamble_t *pp; ctf_header_t hp; ctf_file_t *fp; void *buf, *base; size_t size, hdrsz; int err; if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) return (ctf_set_open_errno(errp, EINVAL)); if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && symsect->cts_entsize != sizeof (Elf64_Sym)) return (ctf_set_open_errno(errp, ECTF_SYMTAB)); if (symsect != NULL && symsect->cts_data == NULL) return (ctf_set_open_errno(errp, ECTF_SYMBAD)); if (strsect != NULL && strsect->cts_data == NULL) return (ctf_set_open_errno(errp, ECTF_STRBAD)); if (ctfsect->cts_size < sizeof (ctf_preamble_t)) return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); pp = (const ctf_preamble_t *)ctfsect->cts_data; ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", pp->ctp_magic, pp->ctp_version); /* * Validate each part of the CTF header (either V1 or V2). * First, we validate the preamble (common to all versions). At that * point, we know specific header version, and can validate the * version-specific parts including section offsets and alignments. */ if (pp->ctp_magic != CTF_MAGIC) return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); if (pp->ctp_version == CTF_VERSION_2) { if (ctfsect->cts_size < sizeof (ctf_header_t)) return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); bcopy(ctfsect->cts_data, &hp, sizeof (hp)); hdrsz = sizeof (ctf_header_t); } else if (pp->ctp_version == CTF_VERSION_1) { const ctf_header_v1_t *h1p = (const ctf_header_v1_t *)ctfsect->cts_data; if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); bzero(&hp, sizeof (hp)); hp.cth_preamble = h1p->cth_preamble; hp.cth_objtoff = h1p->cth_objtoff; hp.cth_funcoff = h1p->cth_funcoff; hp.cth_typeoff = h1p->cth_typeoff; hp.cth_stroff = h1p->cth_stroff; hp.cth_strlen = h1p->cth_strlen; hdrsz = sizeof (ctf_header_v1_t); } else return (ctf_set_open_errno(errp, ECTF_CTFVERS)); size = hp.cth_stroff + hp.cth_strlen; ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); if (hp.cth_lbloff > size || hp.cth_objtoff > size || hp.cth_funcoff > size || hp.cth_typeoff > size || hp.cth_stroff > size) return (ctf_set_open_errno(errp, ECTF_CORRUPT)); if (hp.cth_lbloff > hp.cth_objtoff || hp.cth_objtoff > hp.cth_funcoff || hp.cth_funcoff > hp.cth_typeoff || hp.cth_typeoff > hp.cth_stroff) return (ctf_set_open_errno(errp, ECTF_CORRUPT)); if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) return (ctf_set_open_errno(errp, ECTF_CORRUPT)); /* * Once everything is determined to be valid, attempt to decompress * the CTF data buffer if it is compressed. Otherwise we just put * the data section's buffer pointer into ctf_buf, below. */ if (hp.cth_flags & CTF_F_COMPRESS) { size_t srclen, dstlen; const void *src; int rc = Z_OK; if (ctf_zopen(errp) == NULL) return (NULL); /* errp is set for us */ if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) return (ctf_set_open_errno(errp, ECTF_ZALLOC)); bcopy(ctfsect->cts_data, base, hdrsz); ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; buf = (uchar_t *)base + hdrsz; src = (uchar_t *)ctfsect->cts_data + hdrsz; srclen = ctfsect->cts_size - hdrsz; dstlen = size; if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); ctf_data_free(base, size + hdrsz); return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); } if (dstlen != size) { ctf_dprintf("zlib inflate short -- got %lu of %lu " "bytes\n", (ulong_t)dstlen, (ulong_t)size); ctf_data_free(base, size + hdrsz); return (ctf_set_open_errno(errp, ECTF_CORRUPT)); } ctf_data_protect(base, size + hdrsz); } else { base = (void *)ctfsect->cts_data; buf = (uchar_t *)base + hdrsz; } /* * Once we have uncompressed and validated the CTF data buffer, we can * proceed with allocating a ctf_file_t and initializing it. */ if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) return (ctf_set_open_errno(errp, EAGAIN)); bzero(fp, sizeof (ctf_file_t)); fp->ctf_version = hp.cth_version; fp->ctf_fileops = &ctf_fileops[hp.cth_version]; bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); if (symsect != NULL) { bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); } if (fp->ctf_data.cts_name != NULL) fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); if (fp->ctf_symtab.cts_name != NULL) fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); if (fp->ctf_strtab.cts_name != NULL) fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); if (fp->ctf_data.cts_name == NULL) fp->ctf_data.cts_name = _CTF_NULLSTR; if (fp->ctf_symtab.cts_name == NULL) fp->ctf_symtab.cts_name = _CTF_NULLSTR; if (fp->ctf_strtab.cts_name == NULL) fp->ctf_strtab.cts_name = _CTF_NULLSTR; fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; if (strsect != NULL) { fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; } fp->ctf_base = base; fp->ctf_buf = buf; fp->ctf_size = size + hdrsz; /* * If we have a parent container name and label, store the relocated * string pointers in the CTF container for easy access later. */ if (hp.cth_parlabel != 0) fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); if (hp.cth_parname != 0) fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", fp->ctf_parname ? fp->ctf_parname : "<NULL>", fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); /* * If we have a symbol table section, allocate and initialize * the symtab translation table, pointed to by ctf_sxlate. */ if (symsect != NULL) { fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); if (fp->ctf_sxlate == NULL) { (void) ctf_set_open_errno(errp, EAGAIN); goto bad; } if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { (void) ctf_set_open_errno(errp, err); goto bad; } } if ((err = init_types(fp, &hp)) != 0) { (void) ctf_set_open_errno(errp, err); goto bad; } /* * Initialize the ctf_lookup_by_name top-level dictionary. We keep an * array of type name prefixes and the corresponding ctf_hash to use. * NOTE: This code must be kept in sync with the code in ctf_update(). */ fp->ctf_lookups[0].ctl_prefix = "struct"; fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; fp->ctf_lookups[1].ctl_prefix = "union"; fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; fp->ctf_lookups[2].ctl_prefix = "enum"; fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; fp->ctf_lookups[4].ctl_prefix = NULL; fp->ctf_lookups[4].ctl_len = 0; fp->ctf_lookups[4].ctl_hash = NULL; if (symsect != NULL) { if (symsect->cts_entsize == sizeof (Elf64_Sym)) (void) ctf_setmodel(fp, CTF_MODEL_LP64); else (void) ctf_setmodel(fp, CTF_MODEL_ILP32); } else (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); fp->ctf_refcnt = 1; return (fp); bad: ctf_close(fp); return (NULL); } /* * Close the specified CTF container and free associated data structures. Note * that ctf_close() is a reference counted operation: if the specified file is * the parent of other active containers, its reference count will be greater * than one and it will be freed later when no active children exist. */ void ctf_close(ctf_file_t *fp) { ctf_dtdef_t *dtd, *ntd; if (fp == NULL) return; /* allow ctf_close(NULL) to simplify caller code */ ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); if (fp->ctf_refcnt > 1) { fp->ctf_refcnt--; return; } if (fp->ctf_parent != NULL) ctf_close(fp->ctf_parent); for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { ntd = ctf_list_next(dtd); ctf_dtd_delete(fp, dtd); } ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); if (fp->ctf_flags & LCTF_MMAP) { if (fp->ctf_data.cts_data != NULL) ctf_sect_munmap(&fp->ctf_data); if (fp->ctf_symtab.cts_data != NULL) ctf_sect_munmap(&fp->ctf_symtab); if (fp->ctf_strtab.cts_data != NULL) ctf_sect_munmap(&fp->ctf_strtab); } if (fp->ctf_data.cts_name != _CTF_NULLSTR && fp->ctf_data.cts_name != NULL) { ctf_free((char *)fp->ctf_data.cts_name, strlen(fp->ctf_data.cts_name) + 1); } if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && fp->ctf_symtab.cts_name != NULL) { ctf_free((char *)fp->ctf_symtab.cts_name, strlen(fp->ctf_symtab.cts_name) + 1); } if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && fp->ctf_strtab.cts_name != NULL) { ctf_free((char *)fp->ctf_strtab.cts_name, strlen(fp->ctf_strtab.cts_name) + 1); } if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) ctf_data_free((void *)fp->ctf_base, fp->ctf_size); if (fp->ctf_sxlate != NULL) ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); if (fp->ctf_txlate != NULL) { ctf_free(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); } if (fp->ctf_ptrtab != NULL) { ctf_free(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); } ctf_hash_destroy(&fp->ctf_structs); ctf_hash_destroy(&fp->ctf_unions); ctf_hash_destroy(&fp->ctf_enums); ctf_hash_destroy(&fp->ctf_names); ctf_free(fp, sizeof (ctf_file_t)); } /* * Return the CTF handle for the parent CTF container, if one exists. * Otherwise return NULL to indicate this container has no imported parent. */ ctf_file_t * ctf_parent_file(ctf_file_t *fp) { return (fp->ctf_parent); } /* * Return the name of the parent CTF container, if one exists. Otherwise * return NULL to indicate this container is a root container. */ const char * ctf_parent_name(ctf_file_t *fp) { return (fp->ctf_parname); } /* * Import the types from the specified parent container by storing a pointer * to it in ctf_parent and incrementing its reference count. Only one parent * is allowed: if a parent already exists, it is replaced by the new parent. */ int ctf_import(ctf_file_t *fp, ctf_file_t *pfp) { if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) return (ctf_set_errno(fp, EINVAL)); if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) return (ctf_set_errno(fp, ECTF_DMODEL)); if (fp->ctf_parent != NULL) ctf_close(fp->ctf_parent); if (pfp != NULL) { fp->ctf_flags |= LCTF_CHILD; pfp->ctf_refcnt++; } fp->ctf_parent = pfp; return (0); } /* * Set the data model constant for the CTF container. */ int ctf_setmodel(ctf_file_t *fp, int model) { const ctf_dmodel_t *dp; for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { if (dp->ctd_code == model) { fp->ctf_dmodel = dp; return (0); } } return (ctf_set_errno(fp, EINVAL)); } /* * Return the data model constant for the CTF container. */ int ctf_getmodel(ctf_file_t *fp) { return (fp->ctf_dmodel->ctd_code); } void ctf_setspecific(ctf_file_t *fp, void *data) { fp->ctf_specific = data; } void * ctf_getspecific(ctf_file_t *fp) { return (fp->ctf_specific); }