Current Path : /usr/src/cddl/contrib/opensolaris/common/ctf/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/cddl/contrib/opensolaris/common/ctf/ctf_types.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include <ctf_impl.h> ssize_t ctf_get_ctt_size(const ctf_file_t *fp, const ctf_type_t *tp, ssize_t *sizep, ssize_t *incrementp) { ssize_t size, increment; if (fp->ctf_version > CTF_VERSION_1 && tp->ctt_size == CTF_LSIZE_SENT) { size = CTF_TYPE_LSIZE(tp); increment = sizeof (ctf_type_t); } else { size = tp->ctt_size; increment = sizeof (ctf_stype_t); } if (sizep) *sizep = size; if (incrementp) *incrementp = increment; return (size); } /* * Iterate over the members of a STRUCT or UNION. We pass the name, member * type, and offset of each member to the specified callback function. */ int ctf_member_iter(ctf_file_t *fp, ctf_id_t type, ctf_member_f *func, void *arg) { ctf_file_t *ofp = fp; const ctf_type_t *tp; ssize_t size, increment; uint_t kind, n; int rc; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ (void) ctf_get_ctt_size(fp, tp, &size, &increment); kind = LCTF_INFO_KIND(fp, tp->ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (ctf_set_errno(ofp, ECTF_NOTSOU)); if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) { const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, mp++) { const char *name = ctf_strptr(fp, mp->ctm_name); if ((rc = func(name, mp->ctm_type, mp->ctm_offset, arg)) != 0) return (rc); } } else { const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, lmp++) { const char *name = ctf_strptr(fp, lmp->ctlm_name); if ((rc = func(name, lmp->ctlm_type, (ulong_t)CTF_LMEM_OFFSET(lmp), arg)) != 0) return (rc); } } return (0); } /* * Iterate over the members of an ENUM. We pass the string name and associated * integer value of each enum element to the specified callback function. */ int ctf_enum_iter(ctf_file_t *fp, ctf_id_t type, ctf_enum_f *func, void *arg) { ctf_file_t *ofp = fp; const ctf_type_t *tp; const ctf_enum_t *ep; ssize_t increment; uint_t n; int rc; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ENUM) return (ctf_set_errno(ofp, ECTF_NOTENUM)); (void) ctf_get_ctt_size(fp, tp, NULL, &increment); ep = (const ctf_enum_t *)((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, ep++) { const char *name = ctf_strptr(fp, ep->cte_name); if ((rc = func(name, ep->cte_value, arg)) != 0) return (rc); } return (0); } /* * Iterate over every root (user-visible) type in the given CTF container. * We pass the type ID of each type to the specified callback function. */ int ctf_type_iter(ctf_file_t *fp, ctf_type_f *func, void *arg) { ctf_id_t id, max = fp->ctf_typemax; int rc, child = (fp->ctf_flags & LCTF_CHILD); for (id = 1; id <= max; id++) { const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR(fp, id); if (CTF_INFO_ISROOT(tp->ctt_info) && (rc = func(CTF_INDEX_TO_TYPE(id, child), arg)) != 0) return (rc); } return (0); } /* * Follow a given type through the graph for TYPEDEF, VOLATILE, CONST, and * RESTRICT nodes until we reach a "base" type node. This is useful when * we want to follow a type ID to a node that has members or a size. To guard * against infinite loops, we implement simplified cycle detection and check * each link against itself, the previous node, and the topmost node. */ ctf_id_t ctf_type_resolve(ctf_file_t *fp, ctf_id_t type) { ctf_id_t prev = type, otype = type; ctf_file_t *ofp = fp; const ctf_type_t *tp; while ((tp = ctf_lookup_by_id(&fp, type)) != NULL) { switch (LCTF_INFO_KIND(fp, tp->ctt_info)) { case CTF_K_TYPEDEF: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: if (tp->ctt_type == type || tp->ctt_type == otype || tp->ctt_type == prev) { ctf_dprintf("type %ld cycle detected\n", otype); return (ctf_set_errno(ofp, ECTF_CORRUPT)); } prev = type; type = tp->ctt_type; break; default: return (type); } } return (CTF_ERR); /* errno is set for us */ } /* * Lookup the given type ID and print a string name for it into buf. Return * the actual number of bytes (not including \0) needed to format the name. */ ssize_t ctf_type_lname(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len) { ctf_decl_t cd; ctf_decl_node_t *cdp; ctf_decl_prec_t prec, lp, rp; int ptr, arr; uint_t k; if (fp == NULL && type == CTF_ERR) return (-1); /* simplify caller code by permitting CTF_ERR */ ctf_decl_init(&cd, buf, len); ctf_decl_push(&cd, fp, type); if (cd.cd_err != 0) { ctf_decl_fini(&cd); return (ctf_set_errno(fp, cd.cd_err)); } /* * If the type graph's order conflicts with lexical precedence order * for pointers or arrays, then we need to surround the declarations at * the corresponding lexical precedence with parentheses. This can * result in either a parenthesized pointer (*) as in int (*)() or * int (*)[], or in a parenthesized pointer and array as in int (*[])(). */ ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER; arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY; rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1; lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1; k = CTF_K_POINTER; /* avoid leading whitespace (see below) */ for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) { for (cdp = ctf_list_next(&cd.cd_nodes[prec]); cdp != NULL; cdp = ctf_list_next(cdp)) { ctf_file_t *rfp = fp; const ctf_type_t *tp = ctf_lookup_by_id(&rfp, cdp->cd_type); const char *name = ctf_strptr(rfp, tp->ctt_name); if (k != CTF_K_POINTER && k != CTF_K_ARRAY) ctf_decl_sprintf(&cd, " "); if (lp == prec) { ctf_decl_sprintf(&cd, "("); lp = -1; } switch (cdp->cd_kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: case CTF_K_TYPEDEF: ctf_decl_sprintf(&cd, "%s", name); break; case CTF_K_POINTER: ctf_decl_sprintf(&cd, "*"); break; case CTF_K_ARRAY: ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n); break; case CTF_K_FUNCTION: ctf_decl_sprintf(&cd, "()"); break; case CTF_K_STRUCT: case CTF_K_FORWARD: ctf_decl_sprintf(&cd, "struct %s", name); break; case CTF_K_UNION: ctf_decl_sprintf(&cd, "union %s", name); break; case CTF_K_ENUM: ctf_decl_sprintf(&cd, "enum %s", name); break; case CTF_K_VOLATILE: ctf_decl_sprintf(&cd, "volatile"); break; case CTF_K_CONST: ctf_decl_sprintf(&cd, "const"); break; case CTF_K_RESTRICT: ctf_decl_sprintf(&cd, "restrict"); break; } k = cdp->cd_kind; } if (rp == prec) ctf_decl_sprintf(&cd, ")"); } if (cd.cd_len >= len) (void) ctf_set_errno(fp, ECTF_NAMELEN); ctf_decl_fini(&cd); return (cd.cd_len); } /* * Lookup the given type ID and print a string name for it into buf. If buf * is too small, return NULL: the ECTF_NAMELEN error is set on 'fp' for us. */ char * ctf_type_name(ctf_file_t *fp, ctf_id_t type, char *buf, size_t len) { ssize_t rv = ctf_type_lname(fp, type, buf, len); return (rv >= 0 && rv < len ? buf : NULL); } /* * Resolve the type down to a base type node, and then return the size * of the type storage in bytes. */ ssize_t ctf_type_size(ctf_file_t *fp, ctf_id_t type) { const ctf_type_t *tp; ssize_t size; ctf_arinfo_t ar; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (-1); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (-1); /* errno is set for us */ switch (LCTF_INFO_KIND(fp, tp->ctt_info)) { case CTF_K_POINTER: return (fp->ctf_dmodel->ctd_pointer); case CTF_K_FUNCTION: return (0); /* function size is only known by symtab */ case CTF_K_ENUM: return (fp->ctf_dmodel->ctd_int); case CTF_K_ARRAY: /* * Array size is not directly returned by stabs data. Instead, * it defines the element type and requires the user to perform * the multiplication. If ctf_get_ctt_size() returns zero, the * current version of ctfconvert does not compute member sizes * and we compute the size here on its behalf. */ if ((size = ctf_get_ctt_size(fp, tp, NULL, NULL)) > 0) return (size); if (ctf_array_info(fp, type, &ar) == CTF_ERR || (size = ctf_type_size(fp, ar.ctr_contents)) == CTF_ERR) return (-1); /* errno is set for us */ return (size * ar.ctr_nelems); default: return (ctf_get_ctt_size(fp, tp, NULL, NULL)); } } /* * Resolve the type down to a base type node, and then return the alignment * needed for the type storage in bytes. */ ssize_t ctf_type_align(ctf_file_t *fp, ctf_id_t type) { const ctf_type_t *tp; ctf_arinfo_t r; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (-1); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (-1); /* errno is set for us */ switch (LCTF_INFO_KIND(fp, tp->ctt_info)) { case CTF_K_POINTER: case CTF_K_FUNCTION: return (fp->ctf_dmodel->ctd_pointer); case CTF_K_ARRAY: if (ctf_array_info(fp, type, &r) == CTF_ERR) return (-1); /* errno is set for us */ return (ctf_type_align(fp, r.ctr_contents)); case CTF_K_STRUCT: case CTF_K_UNION: { uint_t n = LCTF_INFO_VLEN(fp, tp->ctt_info); ssize_t size, increment; size_t align = 0; const void *vmp; (void) ctf_get_ctt_size(fp, tp, &size, &increment); vmp = (uchar_t *)tp + increment; if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_STRUCT) n = MIN(n, 1); /* only use first member for structs */ if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) { const ctf_member_t *mp = vmp; for (; n != 0; n--, mp++) { ssize_t am = ctf_type_align(fp, mp->ctm_type); align = MAX(align, am); } } else { const ctf_lmember_t *lmp = vmp; for (; n != 0; n--, lmp++) { ssize_t am = ctf_type_align(fp, lmp->ctlm_type); align = MAX(align, am); } } return (align); } case CTF_K_ENUM: return (fp->ctf_dmodel->ctd_int); default: return (ctf_get_ctt_size(fp, tp, NULL, NULL)); } } /* * Return the kind (CTF_K_* constant) for the specified type ID. */ int ctf_type_kind(ctf_file_t *fp, ctf_id_t type) { const ctf_type_t *tp; if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ return (LCTF_INFO_KIND(fp, tp->ctt_info)); } /* * If the type is one that directly references another type (such as POINTER), * then return the ID of the type to which it refers. */ ctf_id_t ctf_type_reference(ctf_file_t *fp, ctf_id_t type) { ctf_file_t *ofp = fp; const ctf_type_t *tp; if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ switch (LCTF_INFO_KIND(fp, tp->ctt_info)) { case CTF_K_POINTER: case CTF_K_TYPEDEF: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: return (tp->ctt_type); default: return (ctf_set_errno(ofp, ECTF_NOTREF)); } } /* * Find a pointer to type by looking in fp->ctf_ptrtab. If we can't find a * pointer to the given type, see if we can compute a pointer to the type * resulting from resolving the type down to its base type and use that * instead. This helps with cases where the CTF data includes "struct foo *" * but not "foo_t *" and the user accesses "foo_t *" in the debugger. */ ctf_id_t ctf_type_pointer(ctf_file_t *fp, ctf_id_t type) { ctf_file_t *ofp = fp; ctf_id_t ntype; if (ctf_lookup_by_id(&fp, type) == NULL) return (CTF_ERR); /* errno is set for us */ if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0) return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD))); if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (ctf_set_errno(ofp, ECTF_NOTYPE)); if (ctf_lookup_by_id(&fp, type) == NULL) return (ctf_set_errno(ofp, ECTF_NOTYPE)); if ((ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]) != 0) return (CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD))); return (ctf_set_errno(ofp, ECTF_NOTYPE)); } /* * Return the encoding for the specified INTEGER or FLOAT. */ int ctf_type_encoding(ctf_file_t *fp, ctf_id_t type, ctf_encoding_t *ep) { ctf_file_t *ofp = fp; const ctf_type_t *tp; ssize_t increment; uint_t data; if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ (void) ctf_get_ctt_size(fp, tp, NULL, &increment); switch (LCTF_INFO_KIND(fp, tp->ctt_info)) { case CTF_K_INTEGER: data = *(const uint_t *)((uintptr_t)tp + increment); ep->cte_format = CTF_INT_ENCODING(data); ep->cte_offset = CTF_INT_OFFSET(data); ep->cte_bits = CTF_INT_BITS(data); break; case CTF_K_FLOAT: data = *(const uint_t *)((uintptr_t)tp + increment); ep->cte_format = CTF_FP_ENCODING(data); ep->cte_offset = CTF_FP_OFFSET(data); ep->cte_bits = CTF_FP_BITS(data); break; default: return (ctf_set_errno(ofp, ECTF_NOTINTFP)); } return (0); } int ctf_type_cmp(ctf_file_t *lfp, ctf_id_t ltype, ctf_file_t *rfp, ctf_id_t rtype) { int rval; if (ltype < rtype) rval = -1; else if (ltype > rtype) rval = 1; else rval = 0; if (lfp == rfp) return (rval); if (CTF_TYPE_ISPARENT(ltype) && lfp->ctf_parent != NULL) lfp = lfp->ctf_parent; if (CTF_TYPE_ISPARENT(rtype) && rfp->ctf_parent != NULL) rfp = rfp->ctf_parent; if (lfp < rfp) return (-1); if (lfp > rfp) return (1); return (rval); } /* * Return a boolean value indicating if two types are compatible integers or * floating-pointer values. This function returns true if the two types are * the same, or if they have the same ASCII name and encoding properties. * This function could be extended to test for compatibility for other kinds. */ int ctf_type_compat(ctf_file_t *lfp, ctf_id_t ltype, ctf_file_t *rfp, ctf_id_t rtype) { const ctf_type_t *ltp, *rtp; ctf_encoding_t le, re; ctf_arinfo_t la, ra; uint_t lkind, rkind; if (ctf_type_cmp(lfp, ltype, rfp, rtype) == 0) return (1); ltype = ctf_type_resolve(lfp, ltype); lkind = ctf_type_kind(lfp, ltype); rtype = ctf_type_resolve(rfp, rtype); rkind = ctf_type_kind(rfp, rtype); if (lkind != rkind || (ltp = ctf_lookup_by_id(&lfp, ltype)) == NULL || (rtp = ctf_lookup_by_id(&rfp, rtype)) == NULL || strcmp(ctf_strptr(lfp, ltp->ctt_name), ctf_strptr(rfp, rtp->ctt_name)) != 0) return (0); switch (lkind) { case CTF_K_INTEGER: case CTF_K_FLOAT: return (ctf_type_encoding(lfp, ltype, &le) == 0 && ctf_type_encoding(rfp, rtype, &re) == 0 && bcmp(&le, &re, sizeof (ctf_encoding_t)) == 0); case CTF_K_POINTER: return (ctf_type_compat(lfp, ctf_type_reference(lfp, ltype), rfp, ctf_type_reference(rfp, rtype))); case CTF_K_ARRAY: return (ctf_array_info(lfp, ltype, &la) == 0 && ctf_array_info(rfp, rtype, &ra) == 0 && la.ctr_nelems == ra.ctr_nelems && ctf_type_compat( lfp, la.ctr_contents, rfp, ra.ctr_contents) && ctf_type_compat(lfp, la.ctr_index, rfp, ra.ctr_index)); case CTF_K_STRUCT: case CTF_K_UNION: return (ctf_type_size(lfp, ltype) == ctf_type_size(rfp, rtype)); case CTF_K_ENUM: case CTF_K_FORWARD: return (1); /* no other checks required for these type kinds */ default: return (0); /* should not get here since we did a resolve */ } } /* * Return the type and offset for a given member of a STRUCT or UNION. */ int ctf_member_info(ctf_file_t *fp, ctf_id_t type, const char *name, ctf_membinfo_t *mip) { ctf_file_t *ofp = fp; const ctf_type_t *tp; ssize_t size, increment; uint_t kind, n; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ (void) ctf_get_ctt_size(fp, tp, &size, &increment); kind = LCTF_INFO_KIND(fp, tp->ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (ctf_set_errno(ofp, ECTF_NOTSOU)); if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) { const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, mp++) { if (strcmp(ctf_strptr(fp, mp->ctm_name), name) == 0) { mip->ctm_type = mp->ctm_type; mip->ctm_offset = mp->ctm_offset; return (0); } } } else { const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, lmp++) { if (strcmp(ctf_strptr(fp, lmp->ctlm_name), name) == 0) { mip->ctm_type = lmp->ctlm_type; mip->ctm_offset = (ulong_t)CTF_LMEM_OFFSET(lmp); return (0); } } } return (ctf_set_errno(ofp, ECTF_NOMEMBNAM)); } /* * Return the array type, index, and size information for the specified ARRAY. */ int ctf_array_info(ctf_file_t *fp, ctf_id_t type, ctf_arinfo_t *arp) { ctf_file_t *ofp = fp; const ctf_type_t *tp; const ctf_array_t *ap; ssize_t increment; if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ARRAY) return (ctf_set_errno(ofp, ECTF_NOTARRAY)); (void) ctf_get_ctt_size(fp, tp, NULL, &increment); ap = (const ctf_array_t *)((uintptr_t)tp + increment); arp->ctr_contents = ap->cta_contents; arp->ctr_index = ap->cta_index; arp->ctr_nelems = ap->cta_nelems; return (0); } /* * Convert the specified value to the corresponding enum member name, if a * matching name can be found. Otherwise NULL is returned. */ const char * ctf_enum_name(ctf_file_t *fp, ctf_id_t type, int value) { ctf_file_t *ofp = fp; const ctf_type_t *tp; const ctf_enum_t *ep; ssize_t increment; uint_t n; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (NULL); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (NULL); /* errno is set for us */ if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ENUM) { (void) ctf_set_errno(ofp, ECTF_NOTENUM); return (NULL); } (void) ctf_get_ctt_size(fp, tp, NULL, &increment); ep = (const ctf_enum_t *)((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, ep++) { if (ep->cte_value == value) return (ctf_strptr(fp, ep->cte_name)); } (void) ctf_set_errno(ofp, ECTF_NOENUMNAM); return (NULL); } /* * Convert the specified enum tag name to the corresponding value, if a * matching name can be found. Otherwise CTF_ERR is returned. */ int ctf_enum_value(ctf_file_t *fp, ctf_id_t type, const char *name, int *valp) { ctf_file_t *ofp = fp; const ctf_type_t *tp; const ctf_enum_t *ep; ssize_t size, increment; uint_t n; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ if (LCTF_INFO_KIND(fp, tp->ctt_info) != CTF_K_ENUM) { (void) ctf_set_errno(ofp, ECTF_NOTENUM); return (CTF_ERR); } (void) ctf_get_ctt_size(fp, tp, &size, &increment); ep = (const ctf_enum_t *)((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, ep++) { if (strcmp(ctf_strptr(fp, ep->cte_name), name) == 0) { if (valp != NULL) *valp = ep->cte_value; return (0); } } (void) ctf_set_errno(ofp, ECTF_NOENUMNAM); return (CTF_ERR); } /* * Recursively visit the members of any type. This function is used as the * engine for ctf_type_visit, below. We resolve the input type, recursively * invoke ourself for each type member if the type is a struct or union, and * then invoke the callback function on the current type. If any callback * returns non-zero, we abort and percolate the error code back up to the top. */ static int ctf_type_rvisit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg, const char *name, ulong_t offset, int depth) { ctf_id_t otype = type; const ctf_type_t *tp; ssize_t size, increment; uint_t kind, n; int rc; if ((type = ctf_type_resolve(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((tp = ctf_lookup_by_id(&fp, type)) == NULL) return (CTF_ERR); /* errno is set for us */ if ((rc = func(name, otype, offset, depth, arg)) != 0) return (rc); kind = LCTF_INFO_KIND(fp, tp->ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (0); (void) ctf_get_ctt_size(fp, tp, &size, &increment); if (fp->ctf_version == CTF_VERSION_1 || size < CTF_LSTRUCT_THRESH) { const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, mp++) { if ((rc = ctf_type_rvisit(fp, mp->ctm_type, func, arg, ctf_strptr(fp, mp->ctm_name), offset + mp->ctm_offset, depth + 1)) != 0) return (rc); } } else { const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t)tp + increment); for (n = LCTF_INFO_VLEN(fp, tp->ctt_info); n != 0; n--, lmp++) { if ((rc = ctf_type_rvisit(fp, lmp->ctlm_type, func, arg, ctf_strptr(fp, lmp->ctlm_name), offset + (ulong_t)CTF_LMEM_OFFSET(lmp), depth + 1)) != 0) return (rc); } } return (0); } /* * Recursively visit the members of any type. We pass the name, member * type, and offset of each member to the specified callback function. */ int ctf_type_visit(ctf_file_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg) { return (ctf_type_rvisit(fp, type, func, arg, "", 0, 0)); }