Current Path : /usr/src/cddl/contrib/opensolaris/lib/libdtrace/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/cddl/contrib/opensolaris/lib/libdtrace/common/dt_ident.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #if defined(sun) #include <sys/sysmacros.h> #endif #include <strings.h> #include <stdlib.h> #if defined(sun) #include <alloca.h> #endif #include <assert.h> #include <errno.h> #include <ctype.h> #if defined(sun) #include <sys/procfs_isa.h> #endif #include <limits.h> #include <dt_ident.h> #include <dt_parser.h> #include <dt_provider.h> #include <dt_strtab.h> #include <dt_impl.h> /* * Common code for cooking an identifier that uses a typed signature list (we * use this for associative arrays and functions). If the argument list is * of the same length and types, then return the return type. Otherwise * print an appropriate compiler error message and abort the compile. */ static void dt_idcook_sign(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args, const char *prefix, const char *suffix) { dt_idsig_t *isp = idp->di_data; int i, compat, mismatch, arglimit, iskey; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; iskey = idp->di_kind == DT_IDENT_ARRAY || idp->di_kind == DT_IDENT_AGG; if (isp->dis_varargs >= 0) { mismatch = argc < isp->dis_varargs; arglimit = isp->dis_varargs; } else if (isp->dis_optargs >= 0) { mismatch = (argc < isp->dis_optargs || argc > isp->dis_argc); arglimit = argc; } else { mismatch = argc != isp->dis_argc; arglimit = isp->dis_argc; } if (mismatch) { xyerror(D_PROTO_LEN, "%s%s%s prototype mismatch: %d %s%s" "passed, %s%d expected\n", prefix, idp->di_name, suffix, argc, iskey ? "key" : "arg", argc == 1 ? " " : "s ", isp->dis_optargs >= 0 ? "at least " : "", isp->dis_optargs >= 0 ? isp->dis_optargs : arglimit); } for (i = 0; i < arglimit; i++, args = args->dn_list) { if (isp->dis_args[i].dn_ctfp != NULL) compat = dt_node_is_argcompat(&isp->dis_args[i], args); else compat = 1; /* "@" matches any type */ if (!compat) { xyerror(D_PROTO_ARG, "%s%s%s %s #%d is incompatible with " "prototype:\n\tprototype: %s\n\t%9s: %s\n", prefix, idp->di_name, suffix, iskey ? "key" : "argument", i + 1, dt_node_type_name(&isp->dis_args[i], n1, sizeof (n1)), iskey ? "key" : "argument", dt_node_type_name(args, n2, sizeof (n2))); } } dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type); } /* * Cook an associative array identifier. If this is the first time we are * cooking this array, create its signature based on the argument list. * Otherwise validate the argument list against the existing signature. */ static void dt_idcook_assc(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args) { if (idp->di_data == NULL) { dt_idsig_t *isp = idp->di_data = malloc(sizeof (dt_idsig_t)); char n[DT_TYPE_NAMELEN]; int i; if (isp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); isp->dis_varargs = -1; isp->dis_optargs = -1; isp->dis_argc = argc; isp->dis_args = NULL; isp->dis_auxinfo = 0; if (argc != 0 && (isp->dis_args = calloc(argc, sizeof (dt_node_t))) == NULL) { idp->di_data = NULL; free(isp); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } /* * If this identifier has not been explicitly declared earlier, * set the identifier's base type to be our special type <DYN>. * If this ident is an aggregation, it will remain as is. If * this ident is an associative array, it will be reassigned * based on the result type of the first assignment statement. */ if (!(idp->di_flags & DT_IDFLG_DECL)) { idp->di_ctfp = DT_DYN_CTFP(yypcb->pcb_hdl); idp->di_type = DT_DYN_TYPE(yypcb->pcb_hdl); } for (i = 0; i < argc; i++, args = args->dn_list) { if (dt_node_is_dynamic(args) || dt_node_is_void(args)) { xyerror(D_KEY_TYPE, "%s expression may not be " "used as %s index: key #%d\n", dt_node_type_name(args, n, sizeof (n)), dt_idkind_name(idp->di_kind), i + 1); } dt_node_type_propagate(args, &isp->dis_args[i]); isp->dis_args[i].dn_list = &isp->dis_args[i + 1]; } if (argc != 0) isp->dis_args[argc - 1].dn_list = NULL; dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type); } else { dt_idcook_sign(dnp, idp, argc, args, idp->di_kind == DT_IDENT_AGG ? "@" : "", "[ ]"); } } /* * Cook a function call. If this is the first time we are cooking this * identifier, create its type signature based on predefined prototype stored * in di_iarg. We then validate the argument list against this signature. */ static void dt_idcook_func(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args) { if (idp->di_data == NULL) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_typeinfo_t dtt; dt_idsig_t *isp; char *s, *p1, *p2; int i = 0; assert(idp->di_iarg != NULL); s = alloca(strlen(idp->di_iarg) + 1); (void) strcpy(s, idp->di_iarg); if ((p2 = strrchr(s, ')')) != NULL) *p2 = '\0'; /* mark end of parameter list string */ if ((p1 = strchr(s, '(')) != NULL) *p1++ = '\0'; /* mark end of return type string */ if (p1 == NULL || p2 == NULL) { xyerror(D_UNKNOWN, "internal error: malformed entry " "for built-in function %s\n", idp->di_name); } for (p2 = p1; *p2 != '\0'; p2++) { if (!isspace(*p2)) { i++; break; } } for (p2 = strchr(p2, ','); p2++ != NULL; i++) p2 = strchr(p2, ','); /* * We first allocate a new ident signature structure with the * appropriate number of argument entries, and then look up * the return type and store its CTF data in di_ctfp/type. */ if ((isp = idp->di_data = malloc(sizeof (dt_idsig_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); isp->dis_varargs = -1; isp->dis_optargs = -1; isp->dis_argc = i; isp->dis_args = NULL; isp->dis_auxinfo = 0; if (i != 0 && (isp->dis_args = calloc(i, sizeof (dt_node_t))) == NULL) { idp->di_data = NULL; free(isp); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } if (dt_type_lookup(s, &dtt) == -1) { xyerror(D_UNKNOWN, "failed to resolve type of %s (%s):" " %s\n", idp->di_name, s, dtrace_errmsg(dtp, dtrace_errno(dtp))); } if (idp->di_kind == DT_IDENT_AGGFUNC) { idp->di_ctfp = DT_DYN_CTFP(dtp); idp->di_type = DT_DYN_TYPE(dtp); } else { idp->di_ctfp = dtt.dtt_ctfp; idp->di_type = dtt.dtt_type; } /* * For each comma-delimited parameter in the prototype string, * we look up the corresponding type and store its CTF data in * the corresponding location in dis_args[]. We also recognize * the special type string "@" to indicate that the specified * parameter may be a D expression of *any* type (represented * as a dis_args[] element with ctfp = NULL, type == CTF_ERR). * If a varargs "..." is present, we record the argument index * in dis_varargs for the benefit of dt_idcook_sign(), above. * If the type of an argument is enclosed in square brackets * (e.g. "[int]"), the argument is considered optional: the * argument may be absent, but if it is present, it must be of * the specified type. Note that varargs may not optional, * optional arguments may not follow varargs, and non-optional * arguments may not follow optional arguments. */ for (i = 0; i < isp->dis_argc; i++, p1 = p2) { while (isspace(*p1)) p1++; /* skip leading whitespace */ if ((p2 = strchr(p1, ',')) == NULL) p2 = p1 + strlen(p1); else *p2++ = '\0'; if (strcmp(p1, "@") == 0 || strcmp(p1, "...") == 0) { isp->dis_args[i].dn_ctfp = NULL; isp->dis_args[i].dn_type = CTF_ERR; if (*p1 == '.') isp->dis_varargs = i; continue; } if (*p1 == '[' && p1[strlen(p1) - 1] == ']') { if (isp->dis_varargs != -1) { xyerror(D_UNKNOWN, "optional arg#%d " "may not follow variable arg#%d\n", i + 1, isp->dis_varargs + 1); } if (isp->dis_optargs == -1) isp->dis_optargs = i; p1[strlen(p1) - 1] = '\0'; p1++; } else if (isp->dis_optargs != -1) { xyerror(D_UNKNOWN, "required arg#%d may not " "follow optional arg#%d\n", i + 1, isp->dis_optargs + 1); } if (dt_type_lookup(p1, &dtt) == -1) { xyerror(D_UNKNOWN, "failed to resolve type of " "%s arg#%d (%s): %s\n", idp->di_name, i + 1, p1, dtrace_errmsg(dtp, dtrace_errno(dtp))); } dt_node_type_assign(&isp->dis_args[i], dtt.dtt_ctfp, dtt.dtt_type); } } dt_idcook_sign(dnp, idp, argc, args, "", "( )"); } /* * Cook a reference to the dynamically typed args[] array. We verify that the * reference is using a single integer constant, and then construct a new ident * representing the appropriate type or translation specifically for this node. */ static void dt_idcook_args(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_probe_t *prp = yypcb->pcb_probe; dt_node_t tag, *nnp, *xnp; dt_xlator_t *dxp; dt_ident_t *xidp; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; if (argc != 1) { xyerror(D_PROTO_LEN, "%s[ ] prototype mismatch: %d arg%s" "passed, 1 expected\n", idp->di_name, argc, argc == 1 ? " " : "s "); } if (ap->dn_kind != DT_NODE_INT) { xyerror(D_PROTO_ARG, "%s[ ] argument #1 is incompatible with " "prototype:\n\tprototype: %s\n\t argument: %s\n", idp->di_name, "integer constant", dt_type_name(ap->dn_ctfp, ap->dn_type, n1, sizeof (n1))); } if (yypcb->pcb_pdesc == NULL) { xyerror(D_ARGS_NONE, "%s[ ] may not be referenced outside " "of a probe clause\n", idp->di_name); } if (prp == NULL) { xyerror(D_ARGS_MULTI, "%s[ ] may not be referenced because probe description %s " "matches an unstable set of probes\n", idp->di_name, dtrace_desc2str(yypcb->pcb_pdesc, n1, sizeof (n1))); } if (ap->dn_value >= prp->pr_argc) { xyerror(D_ARGS_IDX, "index %lld is out of range for %s %s[ ]\n", (longlong_t)ap->dn_value, dtrace_desc2str(yypcb->pcb_pdesc, n1, sizeof (n1)), idp->di_name); } /* * Look up the native and translated argument types for the probe. * If no translation is needed, these will be the same underlying node. * If translation is needed, look up the appropriate translator. Once * we have the appropriate node, create a new dt_ident_t for this node, * assign it the appropriate attributes, and set the type of 'dnp'. */ xnp = prp->pr_xargv[ap->dn_value]; nnp = prp->pr_nargv[prp->pr_mapping[ap->dn_value]]; if (xnp->dn_type == CTF_ERR) { xyerror(D_ARGS_TYPE, "failed to resolve translated type for " "%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value); } if (nnp->dn_type == CTF_ERR) { xyerror(D_ARGS_TYPE, "failed to resolve native type for " "%s[%lld]\n", idp->di_name, (longlong_t)ap->dn_value); } if (dtp->dt_xlatemode == DT_XL_STATIC && ( nnp == xnp || dt_node_is_argcompat(nnp, xnp))) { dnp->dn_ident = dt_ident_create(idp->di_name, idp->di_kind, idp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr, idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen); if (dnp->dn_ident == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dt_node_type_assign(dnp, prp->pr_argv[ap->dn_value].dtt_ctfp, prp->pr_argv[ap->dn_value].dtt_type); } else if ((dxp = dt_xlator_lookup(dtp, nnp, xnp, DT_XLATE_FUZZY)) != NULL || ( dxp = dt_xlator_lookup(dtp, dt_probe_tag(prp, ap->dn_value, &tag), xnp, DT_XLATE_EXACT | DT_XLATE_EXTERN)) != NULL) { xidp = dt_xlator_ident(dxp, xnp->dn_ctfp, xnp->dn_type); dnp->dn_ident = dt_ident_create(idp->di_name, xidp->di_kind, xidp->di_flags | DT_IDFLG_ORPHAN, idp->di_id, idp->di_attr, idp->di_vers, idp->di_ops, idp->di_iarg, idp->di_gen); if (dnp->dn_ident == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (dt_xlator_dynamic(dxp)) dxp->dx_arg = (int)ap->dn_value; /* * Propagate relevant members from the translator's internal * dt_ident_t. This code must be kept in sync with the state * that is initialized for idents in dt_xlator_create(). */ dnp->dn_ident->di_data = xidp->di_data; dnp->dn_ident->di_ctfp = xidp->di_ctfp; dnp->dn_ident->di_type = xidp->di_type; dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp)); } else { xyerror(D_ARGS_XLATOR, "translator for %s[%lld] from %s to %s " "is not defined\n", idp->di_name, (longlong_t)ap->dn_value, dt_node_type_name(nnp, n1, sizeof (n1)), dt_node_type_name(xnp, n2, sizeof (n2))); } assert(dnp->dn_ident->di_flags & DT_IDFLG_ORPHAN); assert(dnp->dn_ident->di_id == idp->di_id); } static void dt_idcook_regs(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *ap) { dtrace_typeinfo_t dtt; dtrace_hdl_t *dtp = yypcb->pcb_hdl; char n[DT_TYPE_NAMELEN]; if (argc != 1) { xyerror(D_PROTO_LEN, "%s[ ] prototype mismatch: %d arg%s" "passed, 1 expected\n", idp->di_name, argc, argc == 1 ? " " : "s "); } if (ap->dn_kind != DT_NODE_INT) { xyerror(D_PROTO_ARG, "%s[ ] argument #1 is incompatible with " "prototype:\n\tprototype: %s\n\t argument: %s\n", idp->di_name, "integer constant", dt_type_name(ap->dn_ctfp, ap->dn_type, n, sizeof (n))); } if ((ap->dn_flags & DT_NF_SIGNED) && (int64_t)ap->dn_value < 0) { xyerror(D_REGS_IDX, "index %lld is out of range for array %s\n", (longlong_t)ap->dn_value, idp->di_name); } if (dt_type_lookup("uint64_t", &dtt) == -1) { xyerror(D_UNKNOWN, "failed to resolve type of %s: %s\n", idp->di_name, dtrace_errmsg(dtp, dtrace_errno(dtp))); } idp->di_ctfp = dtt.dtt_ctfp; idp->di_type = dtt.dtt_type; dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type); } /*ARGSUSED*/ static void dt_idcook_type(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args) { if (idp->di_type == CTF_ERR) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_typeinfo_t dtt; if (dt_type_lookup(idp->di_iarg, &dtt) == -1) { xyerror(D_UNKNOWN, "failed to resolve type %s for identifier %s: %s\n", (const char *)idp->di_iarg, idp->di_name, dtrace_errmsg(dtp, dtrace_errno(dtp))); } idp->di_ctfp = dtt.dtt_ctfp; idp->di_type = dtt.dtt_type; } dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type); } /*ARGSUSED*/ static void dt_idcook_thaw(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args) { if (idp->di_ctfp != NULL && idp->di_type != CTF_ERR) dt_node_type_assign(dnp, idp->di_ctfp, idp->di_type); } static void dt_idcook_inline(dt_node_t *dnp, dt_ident_t *idp, int argc, dt_node_t *args) { if (idp->di_kind == DT_IDENT_ARRAY) dt_idcook_assc(dnp, idp, argc, args); else dt_idcook_thaw(dnp, idp, argc, args); } static void dt_iddtor_sign(dt_ident_t *idp) { if (idp->di_data != NULL) free(((dt_idsig_t *)idp->di_data)->dis_args); free(idp->di_data); } static void dt_iddtor_free(dt_ident_t *idp) { free(idp->di_data); } static void dt_iddtor_inline(dt_ident_t *idp) { dt_idnode_t *inp = idp->di_iarg; if (inp != NULL) { dt_node_link_free(&inp->din_list); if (inp->din_hash != NULL) dt_idhash_destroy(inp->din_hash); free(inp->din_argv); free(inp); } if (idp->di_kind == DT_IDENT_ARRAY) dt_iddtor_sign(idp); else dt_iddtor_free(idp); } /*ARGSUSED*/ static void dt_iddtor_none(dt_ident_t *idp) { /* do nothing */ } static void dt_iddtor_probe(dt_ident_t *idp) { if (idp->di_data != NULL) dt_probe_destroy(idp->di_data); } static size_t dt_idsize_type(dt_ident_t *idp) { return (ctf_type_size(idp->di_ctfp, idp->di_type)); } /*ARGSUSED*/ static size_t dt_idsize_none(dt_ident_t *idp) { return (0); } const dt_idops_t dt_idops_assc = { dt_idcook_assc, dt_iddtor_sign, dt_idsize_none, }; const dt_idops_t dt_idops_func = { dt_idcook_func, dt_iddtor_sign, dt_idsize_none, }; const dt_idops_t dt_idops_args = { dt_idcook_args, dt_iddtor_none, dt_idsize_none, }; const dt_idops_t dt_idops_regs = { dt_idcook_regs, dt_iddtor_free, dt_idsize_none, }; const dt_idops_t dt_idops_type = { dt_idcook_type, dt_iddtor_free, dt_idsize_type, }; const dt_idops_t dt_idops_thaw = { dt_idcook_thaw, dt_iddtor_free, dt_idsize_type, }; const dt_idops_t dt_idops_inline = { dt_idcook_inline, dt_iddtor_inline, dt_idsize_type, }; const dt_idops_t dt_idops_probe = { dt_idcook_thaw, dt_iddtor_probe, dt_idsize_none, }; static void dt_idhash_populate(dt_idhash_t *dhp) { const dt_ident_t *idp = dhp->dh_tmpl; dhp->dh_tmpl = NULL; /* clear dh_tmpl first to avoid recursion */ dt_dprintf("populating %s idhash from %p\n", dhp->dh_name, (void *)idp); for (; idp->di_name != NULL; idp++) { if (dt_idhash_insert(dhp, idp->di_name, idp->di_kind, idp->di_flags, idp->di_id, idp->di_attr, idp->di_vers, idp->di_ops ? idp->di_ops : &dt_idops_thaw, idp->di_iarg, 0) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } } dt_idhash_t * dt_idhash_create(const char *name, const dt_ident_t *tmpl, uint_t min, uint_t max) { dt_idhash_t *dhp; size_t size; assert(min <= max); size = sizeof (dt_idhash_t) + sizeof (dt_ident_t *) * (_dtrace_strbuckets - 1); if ((dhp = malloc(size)) == NULL) return (NULL); bzero(dhp, size); dhp->dh_name = name; dhp->dh_tmpl = tmpl; dhp->dh_nextid = min; dhp->dh_minid = min; dhp->dh_maxid = max; dhp->dh_hashsz = _dtrace_strbuckets; return (dhp); } /* * Destroy an entire identifier hash. This must be done using two passes with * an inlined version of dt_ident_destroy() to avoid referencing freed memory. * In the first pass di_dtor() is called for all identifiers; then the second * pass frees the actual dt_ident_t's. These must be done separately because * a di_dtor() may operate on data structures which contain references to other * identifiers inside of this hash itself (e.g. a global inline definition * which contains a parse tree that refers to another global variable). */ void dt_idhash_destroy(dt_idhash_t *dhp) { dt_ident_t *idp, *next; ulong_t i; for (i = 0; i < dhp->dh_hashsz; i++) { for (idp = dhp->dh_hash[i]; idp != NULL; idp = next) { next = idp->di_next; idp->di_ops->di_dtor(idp); } } for (i = 0; i < dhp->dh_hashsz; i++) { for (idp = dhp->dh_hash[i]; idp != NULL; idp = next) { next = idp->di_next; free(idp->di_name); free(idp); } } free(dhp); } void dt_idhash_update(dt_idhash_t *dhp) { uint_t nextid = dhp->dh_minid; dt_ident_t *idp; ulong_t i; for (i = 0; i < dhp->dh_hashsz; i++) { for (idp = dhp->dh_hash[i]; idp != NULL; idp = idp->di_next) { /* * Right now we're hard coding which types need to be * reset, but ideally this would be done dynamically. */ if (idp->di_kind == DT_IDENT_ARRAY || idp->di_kind == DT_IDENT_SCALAR || idp->di_kind == DT_IDENT_AGG) nextid = MAX(nextid, idp->di_id + 1); } } dhp->dh_nextid = nextid; } dt_ident_t * dt_idhash_lookup(dt_idhash_t *dhp, const char *name) { size_t len; ulong_t h = dt_strtab_hash(name, &len) % dhp->dh_hashsz; dt_ident_t *idp; if (dhp->dh_tmpl != NULL) dt_idhash_populate(dhp); /* fill hash w/ initial population */ for (idp = dhp->dh_hash[h]; idp != NULL; idp = idp->di_next) { if (strcmp(idp->di_name, name) == 0) return (idp); } return (NULL); } int dt_idhash_nextid(dt_idhash_t *dhp, uint_t *p) { if (dhp->dh_nextid >= dhp->dh_maxid) return (-1); /* no more id's are free to allocate */ *p = dhp->dh_nextid++; return (0); } ulong_t dt_idhash_size(const dt_idhash_t *dhp) { return (dhp->dh_nelems); } const char * dt_idhash_name(const dt_idhash_t *dhp) { return (dhp->dh_name); } dt_ident_t * dt_idhash_insert(dt_idhash_t *dhp, const char *name, ushort_t kind, ushort_t flags, uint_t id, dtrace_attribute_t attr, uint_t vers, const dt_idops_t *ops, void *iarg, ulong_t gen) { dt_ident_t *idp; ulong_t h; if (dhp->dh_tmpl != NULL) dt_idhash_populate(dhp); /* fill hash w/ initial population */ idp = dt_ident_create(name, kind, flags, id, attr, vers, ops, iarg, gen); if (idp == NULL) return (NULL); h = dt_strtab_hash(name, NULL) % dhp->dh_hashsz; idp->di_next = dhp->dh_hash[h]; dhp->dh_hash[h] = idp; dhp->dh_nelems++; if (dhp->dh_defer != NULL) dhp->dh_defer(dhp, idp); return (idp); } void dt_idhash_xinsert(dt_idhash_t *dhp, dt_ident_t *idp) { ulong_t h; if (dhp->dh_tmpl != NULL) dt_idhash_populate(dhp); /* fill hash w/ initial population */ h = dt_strtab_hash(idp->di_name, NULL) % dhp->dh_hashsz; idp->di_next = dhp->dh_hash[h]; idp->di_flags &= ~DT_IDFLG_ORPHAN; dhp->dh_hash[h] = idp; dhp->dh_nelems++; if (dhp->dh_defer != NULL) dhp->dh_defer(dhp, idp); } void dt_idhash_delete(dt_idhash_t *dhp, dt_ident_t *key) { size_t len; ulong_t h = dt_strtab_hash(key->di_name, &len) % dhp->dh_hashsz; dt_ident_t **pp = &dhp->dh_hash[h]; dt_ident_t *idp; for (idp = dhp->dh_hash[h]; idp != NULL; idp = idp->di_next) { if (idp == key) break; else pp = &idp->di_next; } assert(idp == key); *pp = idp->di_next; assert(dhp->dh_nelems != 0); dhp->dh_nelems--; if (!(idp->di_flags & DT_IDFLG_ORPHAN)) dt_ident_destroy(idp); } static int dt_idhash_comp(const void *lp, const void *rp) { const dt_ident_t *lhs = *((const dt_ident_t **)lp); const dt_ident_t *rhs = *((const dt_ident_t **)rp); if (lhs->di_id != rhs->di_id) return ((int)(lhs->di_id - rhs->di_id)); else return (strcmp(lhs->di_name, rhs->di_name)); } int dt_idhash_iter(dt_idhash_t *dhp, dt_idhash_f *func, void *data) { dt_ident_t **ids; dt_ident_t *idp; ulong_t i, j, n; int rv; if (dhp->dh_tmpl != NULL) dt_idhash_populate(dhp); /* fill hash w/ initial population */ n = dhp->dh_nelems; ids = alloca(sizeof (dt_ident_t *) * n); for (i = 0, j = 0; i < dhp->dh_hashsz; i++) { for (idp = dhp->dh_hash[i]; idp != NULL; idp = idp->di_next) ids[j++] = idp; } qsort(ids, dhp->dh_nelems, sizeof (dt_ident_t *), dt_idhash_comp); for (i = 0; i < n; i++) { if ((rv = func(dhp, ids[i], data)) != 0) return (rv); } return (0); } dt_ident_t * dt_idstack_lookup(dt_idstack_t *sp, const char *name) { dt_idhash_t *dhp; dt_ident_t *idp; for (dhp = dt_list_prev(&sp->dids_list); dhp != NULL; dhp = dt_list_prev(dhp)) { if ((idp = dt_idhash_lookup(dhp, name)) != NULL) return (idp); } return (NULL); } void dt_idstack_push(dt_idstack_t *sp, dt_idhash_t *dhp) { dt_list_append(&sp->dids_list, dhp); } void dt_idstack_pop(dt_idstack_t *sp, dt_idhash_t *dhp) { assert(dt_list_prev(&sp->dids_list) == dhp); dt_list_delete(&sp->dids_list, dhp); } dt_ident_t * dt_ident_create(const char *name, ushort_t kind, ushort_t flags, uint_t id, dtrace_attribute_t attr, uint_t vers, const dt_idops_t *ops, void *iarg, ulong_t gen) { dt_ident_t *idp; char *s = NULL; if ((name != NULL && (s = strdup(name)) == NULL) || (idp = malloc(sizeof (dt_ident_t))) == NULL) { free(s); return (NULL); } idp->di_name = s; idp->di_kind = kind; idp->di_flags = flags; idp->di_id = id; idp->di_attr = attr; idp->di_vers = vers; idp->di_ops = ops; idp->di_iarg = iarg; idp->di_data = NULL; idp->di_ctfp = NULL; idp->di_type = CTF_ERR; idp->di_next = NULL; idp->di_gen = gen; idp->di_lineno = yylineno; return (idp); } /* * Destroy an individual identifier. This code must be kept in sync with the * dt_idhash_destroy() function below, which separates out the call to di_dtor. */ void dt_ident_destroy(dt_ident_t *idp) { idp->di_ops->di_dtor(idp); free(idp->di_name); free(idp); } void dt_ident_morph(dt_ident_t *idp, ushort_t kind, const dt_idops_t *ops, void *iarg) { idp->di_ops->di_dtor(idp); idp->di_kind = kind; idp->di_ops = ops; idp->di_iarg = iarg; idp->di_data = NULL; } dtrace_attribute_t dt_ident_cook(dt_node_t *dnp, dt_ident_t *idp, dt_node_t **pargp) { dtrace_attribute_t attr; dt_node_t *args, *argp; int argc = 0; attr = dt_node_list_cook(pargp, DT_IDFLG_REF); args = pargp ? *pargp : NULL; for (argp = args; argp != NULL; argp = argp->dn_list) argc++; idp->di_ops->di_cook(dnp, idp, argc, args); if (idp->di_flags & DT_IDFLG_USER) dnp->dn_flags |= DT_NF_USERLAND; return (dt_attr_min(attr, idp->di_attr)); } void dt_ident_type_assign(dt_ident_t *idp, ctf_file_t *fp, ctf_id_t type) { idp->di_ctfp = fp; idp->di_type = type; } dt_ident_t * dt_ident_resolve(dt_ident_t *idp) { while (idp->di_flags & DT_IDFLG_INLINE) { const dt_node_t *dnp = ((dt_idnode_t *)idp->di_iarg)->din_root; if (dnp == NULL) break; /* can't resolve any further yet */ switch (dnp->dn_kind) { case DT_NODE_VAR: case DT_NODE_SYM: case DT_NODE_FUNC: case DT_NODE_AGG: case DT_NODE_INLINE: case DT_NODE_PROBE: idp = dnp->dn_ident; continue; } if (dt_node_is_dynamic(dnp)) idp = dnp->dn_ident; else break; } return (idp); } size_t dt_ident_size(dt_ident_t *idp) { idp = dt_ident_resolve(idp); return (idp->di_ops->di_size(idp)); } int dt_ident_unref(const dt_ident_t *idp) { return (idp->di_gen == yypcb->pcb_hdl->dt_gen && (idp->di_flags & (DT_IDFLG_REF|DT_IDFLG_MOD|DT_IDFLG_DECL)) == 0); } const char * dt_idkind_name(uint_t kind) { switch (kind) { case DT_IDENT_ARRAY: return ("associative array"); case DT_IDENT_SCALAR: return ("scalar"); case DT_IDENT_PTR: return ("pointer"); case DT_IDENT_FUNC: return ("function"); case DT_IDENT_AGG: return ("aggregation"); case DT_IDENT_AGGFUNC: return ("aggregating function"); case DT_IDENT_ACTFUNC: return ("tracing function"); case DT_IDENT_XLSOU: return ("translated data"); case DT_IDENT_XLPTR: return ("pointer to translated data"); case DT_IDENT_SYMBOL: return ("external symbol reference"); case DT_IDENT_ENUM: return ("enumerator"); case DT_IDENT_PRAGAT: return ("#pragma attributes"); case DT_IDENT_PRAGBN: return ("#pragma binding"); case DT_IDENT_PROBE: return ("probe definition"); default: return ("<?>"); } }