Current Path : /usr/src/cddl/contrib/opensolaris/lib/libdtrace/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/cddl/contrib/opensolaris/lib/libdtrace/common/dt_printf.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, Joyent, Inc. All rights reserved. */ #if defined(sun) #include <sys/sysmacros.h> #else #define ABS(a) ((a) < 0 ? -(a) : (a)) #endif #include <string.h> #include <strings.h> #include <stdlib.h> #if defined(sun) #include <alloca.h> #endif #include <assert.h> #include <ctype.h> #include <errno.h> #include <limits.h> #include <sys/socket.h> #include <netdb.h> #include <netinet/in.h> #include <arpa/inet.h> #include <arpa/nameser.h> #include <dt_printf.h> #include <dt_string.h> #include <dt_impl.h> /*ARGSUSED*/ static int pfcheck_addr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp)); } /*ARGSUSED*/ static int pfcheck_kaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp) || dt_node_is_symaddr(dnp)); } /*ARGSUSED*/ static int pfcheck_uaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { dtrace_hdl_t *dtp = pfv->pfv_dtp; dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); if (dt_node_is_usymaddr(dnp)) return (1); if (idp == NULL || idp->di_id == 0) return (0); return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp)); } /*ARGSUSED*/ static int pfcheck_stack(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_stack(dnp)); } /*ARGSUSED*/ static int pfcheck_time(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_integer(dnp) && dt_node_type_size(dnp) == sizeof (uint64_t)); } /*ARGSUSED*/ static int pfcheck_str(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { ctf_file_t *ctfp; ctf_encoding_t e; ctf_arinfo_t r; ctf_id_t base; uint_t kind; if (dt_node_is_string(dnp)) return (1); ctfp = dnp->dn_ctfp; base = ctf_type_resolve(ctfp, dnp->dn_type); kind = ctf_type_kind(ctfp, base); return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 && (base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR && ctf_type_encoding(ctfp, base, &e) == 0 && IS_CHAR(e)); } /*ARGSUSED*/ static int pfcheck_wstr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_id_t base = ctf_type_resolve(ctfp, dnp->dn_type); uint_t kind = ctf_type_kind(ctfp, base); ctf_encoding_t e; ctf_arinfo_t r; return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 && (base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR && ctf_type_kind(ctfp, base) == CTF_K_INTEGER && ctf_type_encoding(ctfp, base, &e) == 0 && e.cte_bits == 32); } /*ARGSUSED*/ static int pfcheck_csi(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_integer(dnp) && dt_node_type_size(dnp) <= sizeof (int)); } /*ARGSUSED*/ static int pfcheck_fp(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_float(dnp)); } /*ARGSUSED*/ static int pfcheck_xint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (dt_node_is_integer(dnp)); } /*ARGSUSED*/ static int pfcheck_dint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { if (dnp->dn_flags & DT_NF_SIGNED) pfd->pfd_flags |= DT_PFCONV_SIGNED; else pfd->pfd_fmt[strlen(pfd->pfd_fmt) - 1] = 'u'; return (dt_node_is_integer(dnp)); } /*ARGSUSED*/ static int pfcheck_xshort(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type); char n[DT_TYPE_NAMELEN]; return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && ( strcmp(n, "short") == 0 || strcmp(n, "signed short") == 0 || strcmp(n, "unsigned short") == 0)); } /*ARGSUSED*/ static int pfcheck_xlong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type); char n[DT_TYPE_NAMELEN]; return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && ( strcmp(n, "long") == 0 || strcmp(n, "signed long") == 0 || strcmp(n, "unsigned long") == 0)); } /*ARGSUSED*/ static int pfcheck_xlonglong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_id_t type = dnp->dn_type; char n[DT_TYPE_NAMELEN]; if (ctf_type_name(ctfp, ctf_type_resolve(ctfp, type), n, sizeof (n)) != NULL && (strcmp(n, "long long") == 0 || strcmp(n, "signed long long") == 0 || strcmp(n, "unsigned long long") == 0)) return (1); /* * If the type used for %llx or %llX is not an [unsigned] long long, we * also permit it to be a [u]int64_t or any typedef thereof. We know * that these typedefs are guaranteed to work with %ll[xX] in either * compilation environment even though they alias to "long" in LP64. */ while (ctf_type_kind(ctfp, type) == CTF_K_TYPEDEF) { if (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && (strcmp(n, "int64_t") == 0 || strcmp(n, "uint64_t") == 0)) return (1); type = ctf_type_reference(ctfp, type); } return (0); } /*ARGSUSED*/ static int pfcheck_type(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp) { return (ctf_type_compat(dnp->dn_ctfp, ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type), pfd->pfd_conv->pfc_dctfp, pfd->pfd_conv->pfc_dtype)); } /*ARGSUSED*/ static int pfprint_sint(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t unormal) { int64_t normal = (int64_t)unormal; int32_t n = (int32_t)normal; switch (size) { case sizeof (int8_t): return (dt_printf(dtp, fp, format, (int32_t)*((int8_t *)addr) / n)); case sizeof (int16_t): return (dt_printf(dtp, fp, format, (int32_t)*((int16_t *)addr) / n)); case sizeof (int32_t): return (dt_printf(dtp, fp, format, *((int32_t *)addr) / n)); case sizeof (int64_t): return (dt_printf(dtp, fp, format, *((int64_t *)addr) / normal)); default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } } /*ARGSUSED*/ static int pfprint_uint(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { uint32_t n = (uint32_t)normal; switch (size) { case sizeof (uint8_t): return (dt_printf(dtp, fp, format, (uint32_t)*((uint8_t *)addr) / n)); case sizeof (uint16_t): return (dt_printf(dtp, fp, format, (uint32_t)*((uint16_t *)addr) / n)); case sizeof (uint32_t): return (dt_printf(dtp, fp, format, *((uint32_t *)addr) / n)); case sizeof (uint64_t): return (dt_printf(dtp, fp, format, *((uint64_t *)addr) / normal)); default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } } static int pfprint_dint(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { if (pfd->pfd_flags & DT_PFCONV_SIGNED) return (pfprint_sint(dtp, fp, format, pfd, addr, size, normal)); else return (pfprint_uint(dtp, fp, format, pfd, addr, size, normal)); } /*ARGSUSED*/ static int pfprint_fp(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { double n = (double)normal; long double ldn = (long double)normal; switch (size) { case sizeof (float): return (dt_printf(dtp, fp, format, (double)*((float *)addr) / n)); case sizeof (double): return (dt_printf(dtp, fp, format, *((double *)addr) / n)); #if !defined(__arm__) && !defined(__powerpc__) && !defined(__mips__) case sizeof (long double): return (dt_printf(dtp, fp, format, *((long double *)addr) / ldn)); #endif default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } } /*ARGSUSED*/ static int pfprint_addr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char *s; int n, len = 256; uint64_t val; switch (size) { case sizeof (uint32_t): val = *((uint32_t *)addr); break; case sizeof (uint64_t): val = *((uint64_t *)addr); break; default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } do { n = len; s = alloca(n); } while ((len = dtrace_addr2str(dtp, val, s, n)) > n); return (dt_printf(dtp, fp, format, s)); } /*ARGSUSED*/ static int pfprint_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_print_mod(dtp, fp, format, (caddr_t)addr)); } /*ARGSUSED*/ static int pfprint_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_print_umod(dtp, fp, format, (caddr_t)addr)); } /*ARGSUSED*/ static int pfprint_uaddr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char *s; int n, len = 256; uint64_t val, pid = 0; dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); switch (size) { case sizeof (uint32_t): val = (u_longlong_t)*((uint32_t *)addr); break; case sizeof (uint64_t): val = (u_longlong_t)*((uint64_t *)addr); break; case sizeof (uint64_t) * 2: pid = ((uint64_t *)(uintptr_t)addr)[0]; val = ((uint64_t *)(uintptr_t)addr)[1]; break; default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } if (pid == 0 && dtp->dt_vector == NULL && idp != NULL) pid = idp->di_id; do { n = len; s = alloca(n); } while ((len = dtrace_uaddr2str(dtp, pid, val, s, n)) > n); return (dt_printf(dtp, fp, format, s)); } /*ARGSUSED*/ static int pfprint_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *vaddr, size_t size, uint64_t normal) { int width; dtrace_optval_t saved = dtp->dt_options[DTRACEOPT_STACKINDENT]; const dtrace_recdesc_t *rec = pfd->pfd_rec; caddr_t addr = (caddr_t)vaddr; int err = 0; /* * We have stashed the value of the STACKINDENT option, and we will * now override it for the purposes of formatting the stack. If the * field has been specified as left-aligned (i.e. (%-#), we set the * indentation to be the width. This is a slightly odd semantic, but * it's useful functionality -- and it's slightly odd to begin with to * be using a single format specifier to be formatting multiple lines * of text... */ if (pfd->pfd_dynwidth < 0) { assert(pfd->pfd_flags & DT_PFCONV_DYNWIDTH); width = -pfd->pfd_dynwidth; } else if (pfd->pfd_flags & DT_PFCONV_LEFT) { width = pfd->pfd_dynwidth ? pfd->pfd_dynwidth : pfd->pfd_width; } else { width = 0; } dtp->dt_options[DTRACEOPT_STACKINDENT] = width; switch (rec->dtrd_action) { case DTRACEACT_USTACK: case DTRACEACT_JSTACK: err = dt_print_ustack(dtp, fp, format, addr, rec->dtrd_arg); break; case DTRACEACT_STACK: err = dt_print_stack(dtp, fp, format, addr, rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg); break; default: assert(0); } dtp->dt_options[DTRACEOPT_STACKINDENT] = saved; return (err); } /*ARGSUSED*/ static int pfprint_time(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char src[32], buf[32], *dst = buf; hrtime_t time = *((uint64_t *)addr); time_t sec = (time_t)(time / NANOSEC); int i; /* * ctime(3C) returns a string of the form "Dec 3 17:20:00 1973\n\0". * Below, we turn this into the canonical adb/mdb /[yY] format, * "1973 Dec 3 17:20:00". */ #if defined(sun) (void) ctime_r(&sec, src, sizeof (src)); #else (void) ctime_r(&sec, src); #endif /* * Place the 4-digit year at the head of the string... */ for (i = 20; i < 24; i++) *dst++ = src[i]; /* * ...and follow it with the remainder (month, day, hh:mm:ss). */ for (i = 3; i < 19; i++) *dst++ = src[i]; *dst = '\0'; return (dt_printf(dtp, fp, format, buf)); } /* * This prints the time in RFC 822 standard form. This is useful for emitting * notions of time that are consumed by standard tools (e.g., as part of an * RSS feed). */ /*ARGSUSED*/ static int pfprint_time822(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { hrtime_t time = *((uint64_t *)addr); time_t sec = (time_t)(time / NANOSEC); struct tm tm; char buf[64]; (void) localtime_r(&sec, &tm); (void) strftime(buf, sizeof (buf), "%a, %d %b %G %T %Z", &tm); return (dt_printf(dtp, fp, format, buf)); } /*ARGSUSED*/ static int pfprint_port(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { uint16_t port = htons(*((uint16_t *)addr)); char buf[256]; struct servent *sv, res; #if defined(sun) if ((sv = getservbyport_r(port, NULL, &res, buf, sizeof (buf))) != NULL) #else if (getservbyport_r(port, NULL, &res, buf, sizeof (buf), &sv) > 0) #endif return (dt_printf(dtp, fp, format, sv->s_name)); (void) snprintf(buf, sizeof (buf), "%d", *((uint16_t *)addr)); return (dt_printf(dtp, fp, format, buf)); } /*ARGSUSED*/ static int pfprint_inetaddr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char *s = alloca(size + 1); struct hostent *host, res; char inetaddr[NS_IN6ADDRSZ]; char buf[1024]; int e; bcopy(addr, s, size); s[size] = '\0'; if (strchr(s, ':') == NULL && inet_pton(AF_INET, s, inetaddr) != -1) { #if defined(sun) if ((host = gethostbyaddr_r(inetaddr, NS_INADDRSZ, AF_INET, &res, buf, sizeof (buf), &e)) != NULL) #else if (gethostbyaddr_r(inetaddr, NS_INADDRSZ, AF_INET, &res, buf, sizeof (buf), &host, &e) > 0) #endif return (dt_printf(dtp, fp, format, host->h_name)); } else if (inet_pton(AF_INET6, s, inetaddr) != -1) { if ((host = getipnodebyaddr(inetaddr, NS_IN6ADDRSZ, AF_INET6, &e)) != NULL) return (dt_printf(dtp, fp, format, host->h_name)); } return (dt_printf(dtp, fp, format, s)); } /*ARGSUSED*/ static int pfprint_cstr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char *s = alloca(size + 1); bcopy(addr, s, size); s[size] = '\0'; return (dt_printf(dtp, fp, format, s)); } /*ARGSUSED*/ static int pfprint_wstr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { wchar_t *ws = alloca(size + sizeof (wchar_t)); bcopy(addr, ws, size); ws[size / sizeof (wchar_t)] = L'\0'; return (dt_printf(dtp, fp, format, ws)); } /*ARGSUSED*/ static int pfprint_estr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char *s; int n; if ((s = strchr2esc(addr, size)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); n = dt_printf(dtp, fp, format, s); free(s); return (n); } static int pfprint_echr(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { char c; switch (size) { case sizeof (int8_t): c = *(int8_t *)addr; break; case sizeof (int16_t): c = *(int16_t *)addr; break; case sizeof (int32_t): c = *(int32_t *)addr; break; default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } return (pfprint_estr(dtp, fp, format, pfd, &c, 1, normal)); } /*ARGSUSED*/ static int pfprint_pct(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_printf(dtp, fp, "%%")); } static const char pfproto_xint[] = "char, short, int, long, or long long"; static const char pfproto_csi[] = "char, short, or int"; static const char pfproto_fp[] = "float, double, or long double"; static const char pfproto_addr[] = "pointer or integer"; static const char pfproto_uaddr[] = "pointer or integer (with -p/-c) or _usymaddr (without -p/-c)"; static const char pfproto_cstr[] = "char [] or string (or use stringof)"; static const char pfproto_wstr[] = "wchar_t []"; /* * Printf format conversion dictionary. This table should match the set of * conversions offered by printf(3C), as well as some additional extensions. * The second parameter is an ASCII string which is either an actual type * name we should look up (if pfcheck_type is specified), or just a descriptive * string of the types expected for use in error messages. */ static const dt_pfconv_t _dtrace_conversions[] = { { "a", "s", pfproto_addr, pfcheck_kaddr, pfprint_addr }, { "A", "s", pfproto_uaddr, pfcheck_uaddr, pfprint_uaddr }, { "c", "c", pfproto_csi, pfcheck_csi, pfprint_sint }, { "C", "s", pfproto_csi, pfcheck_csi, pfprint_echr }, { "d", "d", pfproto_xint, pfcheck_dint, pfprint_dint }, { "e", "e", pfproto_fp, pfcheck_fp, pfprint_fp }, { "E", "E", pfproto_fp, pfcheck_fp, pfprint_fp }, { "f", "f", pfproto_fp, pfcheck_fp, pfprint_fp }, { "g", "g", pfproto_fp, pfcheck_fp, pfprint_fp }, { "G", "G", pfproto_fp, pfcheck_fp, pfprint_fp }, { "hd", "d", "short", pfcheck_type, pfprint_sint }, { "hi", "i", "short", pfcheck_type, pfprint_sint }, { "ho", "o", "unsigned short", pfcheck_type, pfprint_uint }, { "hu", "u", "unsigned short", pfcheck_type, pfprint_uint }, { "hx", "x", "short", pfcheck_xshort, pfprint_uint }, { "hX", "X", "short", pfcheck_xshort, pfprint_uint }, { "i", "i", pfproto_xint, pfcheck_dint, pfprint_dint }, { "I", "s", pfproto_cstr, pfcheck_str, pfprint_inetaddr }, { "k", "s", "stack", pfcheck_stack, pfprint_stack }, { "lc", "lc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wint_t */ { "ld", "d", "long", pfcheck_type, pfprint_sint }, { "li", "i", "long", pfcheck_type, pfprint_sint }, { "lo", "o", "unsigned long", pfcheck_type, pfprint_uint }, { "lu", "u", "unsigned long", pfcheck_type, pfprint_uint }, { "ls", "ls", pfproto_wstr, pfcheck_wstr, pfprint_wstr }, { "lx", "x", "long", pfcheck_xlong, pfprint_uint }, { "lX", "X", "long", pfcheck_xlong, pfprint_uint }, { "lld", "d", "long long", pfcheck_type, pfprint_sint }, { "lli", "i", "long long", pfcheck_type, pfprint_sint }, { "llo", "o", "unsigned long long", pfcheck_type, pfprint_uint }, { "llu", "u", "unsigned long long", pfcheck_type, pfprint_uint }, { "llx", "x", "long long", pfcheck_xlonglong, pfprint_uint }, { "llX", "X", "long long", pfcheck_xlonglong, pfprint_uint }, { "Le", "e", "long double", pfcheck_type, pfprint_fp }, { "LE", "E", "long double", pfcheck_type, pfprint_fp }, { "Lf", "f", "long double", pfcheck_type, pfprint_fp }, { "Lg", "g", "long double", pfcheck_type, pfprint_fp }, { "LG", "G", "long double", pfcheck_type, pfprint_fp }, { "o", "o", pfproto_xint, pfcheck_xint, pfprint_uint }, { "p", "x", pfproto_addr, pfcheck_addr, pfprint_uint }, { "P", "s", "uint16_t", pfcheck_type, pfprint_port }, { "s", "s", "char [] or string (or use stringof)", pfcheck_str, pfprint_cstr }, { "S", "s", pfproto_cstr, pfcheck_str, pfprint_estr }, { "T", "s", "int64_t", pfcheck_time, pfprint_time822 }, { "u", "u", pfproto_xint, pfcheck_xint, pfprint_uint }, { "wc", "wc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wchar_t */ { "ws", "ws", pfproto_wstr, pfcheck_wstr, pfprint_wstr }, { "x", "x", pfproto_xint, pfcheck_xint, pfprint_uint }, { "X", "X", pfproto_xint, pfcheck_xint, pfprint_uint }, { "Y", "s", "int64_t", pfcheck_time, pfprint_time }, { "%", "%", "void", pfcheck_type, pfprint_pct }, { NULL, NULL, NULL, NULL, NULL } }; int dt_pfdict_create(dtrace_hdl_t *dtp) { uint_t n = _dtrace_strbuckets; const dt_pfconv_t *pfd; dt_pfdict_t *pdi; if ((pdi = malloc(sizeof (dt_pfdict_t))) == NULL || (pdi->pdi_buckets = malloc(sizeof (dt_pfconv_t *) * n)) == NULL) { free(pdi); return (dt_set_errno(dtp, EDT_NOMEM)); } dtp->dt_pfdict = pdi; bzero(pdi->pdi_buckets, sizeof (dt_pfconv_t *) * n); pdi->pdi_nbuckets = n; for (pfd = _dtrace_conversions; pfd->pfc_name != NULL; pfd++) { dtrace_typeinfo_t dtt; dt_pfconv_t *pfc; uint_t h; if ((pfc = malloc(sizeof (dt_pfconv_t))) == NULL) { dt_pfdict_destroy(dtp); return (dt_set_errno(dtp, EDT_NOMEM)); } bcopy(pfd, pfc, sizeof (dt_pfconv_t)); h = dt_strtab_hash(pfc->pfc_name, NULL) % n; pfc->pfc_next = pdi->pdi_buckets[h]; pdi->pdi_buckets[h] = pfc; dtt.dtt_ctfp = NULL; dtt.dtt_type = CTF_ERR; /* * The "D" container or its parent must contain a definition of * any type referenced by a printf conversion. If none can be * found, we fail to initialize the printf dictionary. */ if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type( dtp, DTRACE_OBJ_DDEFS, pfc->pfc_tstr, &dtt) != 0) { dt_pfdict_destroy(dtp); return (dt_set_errno(dtp, EDT_NOCONV)); } pfc->pfc_dctfp = dtt.dtt_ctfp; pfc->pfc_dtype = dtt.dtt_type; /* * The "C" container may contain an alternate definition of an * explicit conversion type. If it does, use it; otherwise * just set pfc_ctype to pfc_dtype so it is always valid. */ if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type( dtp, DTRACE_OBJ_CDEFS, pfc->pfc_tstr, &dtt) == 0) { pfc->pfc_cctfp = dtt.dtt_ctfp; pfc->pfc_ctype = dtt.dtt_type; } else { pfc->pfc_cctfp = pfc->pfc_dctfp; pfc->pfc_ctype = pfc->pfc_dtype; } if (pfc->pfc_check == NULL || pfc->pfc_print == NULL || pfc->pfc_ofmt == NULL || pfc->pfc_tstr == NULL) { dt_pfdict_destroy(dtp); return (dt_set_errno(dtp, EDT_BADCONV)); } dt_dprintf("loaded printf conversion %%%s\n", pfc->pfc_name); } return (0); } void dt_pfdict_destroy(dtrace_hdl_t *dtp) { dt_pfdict_t *pdi = dtp->dt_pfdict; dt_pfconv_t *pfc, *nfc; uint_t i; if (pdi == NULL) return; for (i = 0; i < pdi->pdi_nbuckets; i++) { for (pfc = pdi->pdi_buckets[i]; pfc != NULL; pfc = nfc) { nfc = pfc->pfc_next; free(pfc); } } free(pdi->pdi_buckets); free(pdi); dtp->dt_pfdict = NULL; } static const dt_pfconv_t * dt_pfdict_lookup(dtrace_hdl_t *dtp, const char *name) { dt_pfdict_t *pdi = dtp->dt_pfdict; uint_t h = dt_strtab_hash(name, NULL) % pdi->pdi_nbuckets; const dt_pfconv_t *pfc; for (pfc = pdi->pdi_buckets[h]; pfc != NULL; pfc = pfc->pfc_next) { if (strcmp(pfc->pfc_name, name) == 0) break; } return (pfc); } static dt_pfargv_t * dt_printf_error(dtrace_hdl_t *dtp, int err) { if (yypcb != NULL) longjmp(yypcb->pcb_jmpbuf, err); (void) dt_set_errno(dtp, err); return (NULL); } dt_pfargv_t * dt_printf_create(dtrace_hdl_t *dtp, const char *s) { dt_pfargd_t *pfd, *nfd = NULL; dt_pfargv_t *pfv; const char *p, *q; char *format; if ((pfv = malloc(sizeof (dt_pfargv_t))) == NULL || (format = strdup(s)) == NULL) { free(pfv); return (dt_printf_error(dtp, EDT_NOMEM)); } pfv->pfv_format = format; pfv->pfv_argv = NULL; pfv->pfv_argc = 0; pfv->pfv_flags = 0; pfv->pfv_dtp = dtp; for (q = format; (p = strchr(q, '%')) != NULL; q = *p ? p + 1 : p) { uint_t namelen = 0; int digits = 0; int dot = 0; char name[8]; char c; int n; if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) { dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_NOMEM)); } if (pfv->pfv_argv != NULL) nfd->pfd_next = pfd; else pfv->pfv_argv = pfd; bzero(pfd, sizeof (dt_pfargd_t)); pfv->pfv_argc++; nfd = pfd; if (p > q) { pfd->pfd_preflen = (size_t)(p - q); pfd->pfd_prefix = q; } fmt_switch: switch (c = *++p) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (dot == 0 && digits == 0 && c == '0') { pfd->pfd_flags |= DT_PFCONV_ZPAD; pfd->pfd_flags &= ~DT_PFCONV_LEFT; goto fmt_switch; } for (n = 0; isdigit(c); c = *++p) n = n * 10 + c - '0'; if (dot) pfd->pfd_prec = n; else pfd->pfd_width = n; p--; digits++; goto fmt_switch; case '#': pfd->pfd_flags |= DT_PFCONV_ALT; goto fmt_switch; case '*': n = dot ? DT_PFCONV_DYNPREC : DT_PFCONV_DYNWIDTH; if (pfd->pfd_flags & n) { yywarn("format conversion #%u has more than " "one '*' specified for the output %s\n", pfv->pfv_argc, n ? "precision" : "width"); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); } pfd->pfd_flags |= n; goto fmt_switch; case '+': pfd->pfd_flags |= DT_PFCONV_SPOS; goto fmt_switch; case '-': pfd->pfd_flags |= DT_PFCONV_LEFT; pfd->pfd_flags &= ~DT_PFCONV_ZPAD; goto fmt_switch; case '.': if (dot++ != 0) { yywarn("format conversion #%u has more than " "one '.' specified\n", pfv->pfv_argc); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); } digits = 0; goto fmt_switch; case '?': if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) pfd->pfd_width = 16; else pfd->pfd_width = 8; goto fmt_switch; case '@': pfd->pfd_flags |= DT_PFCONV_AGG; goto fmt_switch; case '\'': pfd->pfd_flags |= DT_PFCONV_GROUP; goto fmt_switch; case ' ': pfd->pfd_flags |= DT_PFCONV_SPACE; goto fmt_switch; case '$': yywarn("format conversion #%u uses unsupported " "positional format (%%n$)\n", pfv->pfv_argc); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); case '%': if (p[-1] == '%') goto default_lbl; /* if %% then use "%" conv */ yywarn("format conversion #%u cannot be combined " "with other format flags: %%%%\n", pfv->pfv_argc); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); case '\0': yywarn("format conversion #%u name expected before " "end of format string\n", pfv->pfv_argc); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); case 'h': case 'l': case 'L': case 'w': if (namelen < sizeof (name) - 2) name[namelen++] = c; goto fmt_switch; default_lbl: default: name[namelen++] = c; name[namelen] = '\0'; } pfd->pfd_conv = dt_pfdict_lookup(dtp, name); if (pfd->pfd_conv == NULL) { yywarn("format conversion #%u is undefined: %%%s\n", pfv->pfv_argc, name); dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_COMPILER)); } } if (*q != '\0' || *format == '\0') { if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) { dt_printf_destroy(pfv); return (dt_printf_error(dtp, EDT_NOMEM)); } if (pfv->pfv_argv != NULL) nfd->pfd_next = pfd; else pfv->pfv_argv = pfd; bzero(pfd, sizeof (dt_pfargd_t)); pfv->pfv_argc++; pfd->pfd_prefix = q; pfd->pfd_preflen = strlen(q); } return (pfv); } void dt_printf_destroy(dt_pfargv_t *pfv) { dt_pfargd_t *pfd, *nfd; for (pfd = pfv->pfv_argv; pfd != NULL; pfd = nfd) { nfd = pfd->pfd_next; free(pfd); } free(pfv->pfv_format); free(pfv); } void dt_printf_validate(dt_pfargv_t *pfv, uint_t flags, dt_ident_t *idp, int foff, dtrace_actkind_t kind, dt_node_t *dnp) { dt_pfargd_t *pfd = pfv->pfv_argv; const char *func = idp->di_name; char n[DT_TYPE_NAMELEN]; dtrace_typeinfo_t dtt; const char *aggtype; dt_node_t aggnode; int i, j; if (pfv->pfv_format[0] == '\0') { xyerror(D_PRINTF_FMT_EMPTY, "%s( ) format string is empty\n", func); } pfv->pfv_flags = flags; /* * We fake up a parse node representing the type that can be used with * an aggregation result conversion, which -- for all but count() -- * is a signed quantity. */ if (kind != DTRACEAGG_COUNT) aggtype = "int64_t"; else aggtype = "uint64_t"; if (dt_type_lookup(aggtype, &dtt) != 0) xyerror(D_TYPE_ERR, "failed to lookup agg type %s\n", aggtype); bzero(&aggnode, sizeof (aggnode)); dt_node_type_assign(&aggnode, dtt.dtt_ctfp, dtt.dtt_type); for (i = 0, j = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) { const dt_pfconv_t *pfc = pfd->pfd_conv; const char *dyns[2]; int dync = 0; char vname[64]; dt_node_t *vnp; if (pfc == NULL) continue; /* no checking if argd is just a prefix */ if (pfc->pfc_print == &pfprint_pct) { (void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt); continue; } if (pfd->pfd_flags & DT_PFCONV_DYNPREC) dyns[dync++] = ".*"; if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH) dyns[dync++] = "*"; for (; dync != 0; dync--) { if (dnp == NULL) { xyerror(D_PRINTF_DYN_PROTO, "%s( ) prototype mismatch: conversion " "#%d (%%%s) is missing a corresponding " "\"%s\" argument\n", func, i + 1, pfc->pfc_name, dyns[dync - 1]); } if (dt_node_is_integer(dnp) == 0) { xyerror(D_PRINTF_DYN_TYPE, "%s( ) argument #%d is incompatible " "with conversion #%d prototype:\n" "\tconversion: %% %s %s\n" "\t prototype: int\n\t argument: %s\n", func, j + foff + 1, i + 1, dyns[dync - 1], pfc->pfc_name, dt_node_type_name(dnp, n, sizeof (n))); } dnp = dnp->dn_list; j++; } /* * If this conversion is consuming the aggregation data, set * the value node pointer (vnp) to a fake node based on the * aggregating function result type. Otherwise assign vnp to * the next parse node in the argument list, if there is one. */ if (pfd->pfd_flags & DT_PFCONV_AGG) { if (!(flags & DT_PRINTF_AGGREGATION)) { xyerror(D_PRINTF_AGG_CONV, "%%@ conversion requires an aggregation" " and is not for use with %s( )\n", func); } (void) strlcpy(vname, "aggregating action", sizeof (vname)); vnp = &aggnode; } else if (dnp == NULL) { xyerror(D_PRINTF_ARG_PROTO, "%s( ) prototype mismatch: conversion #%d (%%" "%s) is missing a corresponding value argument\n", func, i + 1, pfc->pfc_name); } else { (void) snprintf(vname, sizeof (vname), "argument #%d", j + foff + 1); vnp = dnp; dnp = dnp->dn_list; j++; } /* * Fill in the proposed final format string by prepending any * size-related prefixes to the pfconv's format string. The * pfc_check() function below may optionally modify the format * as part of validating the type of the input argument. */ if (pfc->pfc_print == &pfprint_sint || pfc->pfc_print == &pfprint_uint || pfc->pfc_print == &pfprint_dint) { if (dt_node_type_size(vnp) == sizeof (uint64_t)) (void) strcpy(pfd->pfd_fmt, "ll"); } else if (pfc->pfc_print == &pfprint_fp) { if (dt_node_type_size(vnp) == sizeof (long double)) (void) strcpy(pfd->pfd_fmt, "L"); } (void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt); /* * Validate the format conversion against the value node type. * If the conversion is good, create the descriptor format * string by concatenating together any required printf(3C) * size prefixes with the conversion's native format string. */ if (pfc->pfc_check(pfv, pfd, vnp) == 0) { xyerror(D_PRINTF_ARG_TYPE, "%s( ) %s is incompatible with " "conversion #%d prototype:\n\tconversion: %%%s\n" "\t prototype: %s\n\t argument: %s\n", func, vname, i + 1, pfc->pfc_name, pfc->pfc_tstr, dt_node_type_name(vnp, n, sizeof (n))); } } if ((flags & DT_PRINTF_EXACTLEN) && dnp != NULL) { xyerror(D_PRINTF_ARG_EXTRA, "%s( ) prototype mismatch: only %d arguments " "required by this format string\n", func, j); } } void dt_printa_validate(dt_node_t *lhs, dt_node_t *rhs) { dt_ident_t *lid, *rid; dt_node_t *lproto, *rproto; int largc, rargc, argn; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; assert(lhs->dn_kind == DT_NODE_AGG); assert(rhs->dn_kind == DT_NODE_AGG); lid = lhs->dn_ident; rid = rhs->dn_ident; lproto = ((dt_idsig_t *)lid->di_data)->dis_args; rproto = ((dt_idsig_t *)rid->di_data)->dis_args; /* * First, get an argument count on each side. These must match. */ for (largc = 0; lproto != NULL; lproto = lproto->dn_list) largc++; for (rargc = 0; rproto != NULL; rproto = rproto->dn_list) rargc++; if (largc != rargc) { xyerror(D_PRINTA_AGGKEY, "printa( ): @%s and @%s do not have " "matching key signatures: @%s has %d key%s, @%s has %d " "key%s", lid->di_name, rid->di_name, lid->di_name, largc, largc == 1 ? "" : "s", rid->di_name, rargc, rargc == 1 ? "" : "s"); } /* * Now iterate over the keys to verify that each type matches. */ lproto = ((dt_idsig_t *)lid->di_data)->dis_args; rproto = ((dt_idsig_t *)rid->di_data)->dis_args; for (argn = 1; lproto != NULL; argn++, lproto = lproto->dn_list, rproto = rproto->dn_list) { assert(rproto != NULL); if (dt_node_is_argcompat(lproto, rproto)) continue; xyerror(D_PRINTA_AGGPROTO, "printa( ): @%s[ ] key #%d is " "incompatible with @%s:\n%9s key #%d: %s\n" "%9s key #%d: %s\n", rid->di_name, argn, lid->di_name, lid->di_name, argn, dt_node_type_name(lproto, n1, sizeof (n1)), rid->di_name, argn, dt_node_type_name(rproto, n2, sizeof (n2))); } } static int dt_printf_getint(dtrace_hdl_t *dtp, const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len, int *ip) { uintptr_t addr; if (nrecs == 0) return (dt_set_errno(dtp, EDT_DMISMATCH)); addr = (uintptr_t)buf + recp->dtrd_offset; if (addr + sizeof (int) > (uintptr_t)buf + len) return (dt_set_errno(dtp, EDT_DOFFSET)); if (addr & (recp->dtrd_alignment - 1)) return (dt_set_errno(dtp, EDT_DALIGN)); switch (recp->dtrd_size) { case sizeof (int8_t): *ip = (int)*((int8_t *)addr); break; case sizeof (int16_t): *ip = (int)*((int16_t *)addr); break; case sizeof (int32_t): *ip = (int)*((int32_t *)addr); break; case sizeof (int64_t): *ip = (int)*((int64_t *)addr); break; default: return (dt_set_errno(dtp, EDT_DMISMATCH)); } return (0); } /*ARGSUSED*/ static int pfprint_average(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { const uint64_t *data = addr; if (size != sizeof (uint64_t) * 2) return (dt_set_errno(dtp, EDT_DMISMATCH)); return (dt_printf(dtp, fp, format, data[0] ? data[1] / normal / data[0] : 0)); } /*ARGSUSED*/ static int pfprint_stddev(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { const uint64_t *data = addr; if (size != sizeof (uint64_t) * 4) return (dt_set_errno(dtp, EDT_DMISMATCH)); return (dt_printf(dtp, fp, format, dt_stddev((uint64_t *)data, normal))); } /*ARGSUSED*/ static int pfprint_quantize(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_print_quantize(dtp, fp, addr, size, normal)); } /*ARGSUSED*/ static int pfprint_lquantize(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_print_lquantize(dtp, fp, addr, size, normal)); } /*ARGSUSED*/ static int pfprint_llquantize(dtrace_hdl_t *dtp, FILE *fp, const char *format, const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal) { return (dt_print_llquantize(dtp, fp, addr, size, normal)); } static int dt_printf_format(dtrace_hdl_t *dtp, FILE *fp, const dt_pfargv_t *pfv, const dtrace_recdesc_t *recs, uint_t nrecs, const void *buf, size_t len, const dtrace_aggdata_t **aggsdata, int naggvars) { dt_pfargd_t *pfd = pfv->pfv_argv; const dtrace_recdesc_t *recp = recs; const dtrace_aggdata_t *aggdata; dtrace_aggdesc_t *agg; caddr_t lim = (caddr_t)buf + len, limit; char format[64] = "%"; int i, aggrec, curagg = -1; uint64_t normal; /* * If we are formatting an aggregation, set 'aggrec' to the index of * the final record description (the aggregation result) so we can use * this record index with any conversion where DT_PFCONV_AGG is set. * (The actual aggregation used will vary as we increment through the * aggregation variables that we have been passed.) Finally, we * decrement nrecs to prevent this record from being used with any * other conversion. */ if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) { assert(aggsdata != NULL); assert(naggvars > 0); if (nrecs == 0) return (dt_set_errno(dtp, EDT_DMISMATCH)); curagg = naggvars > 1 ? 1 : 0; aggdata = aggsdata[0]; aggrec = aggdata->dtada_desc->dtagd_nrecs - 1; nrecs--; } for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) { const dt_pfconv_t *pfc = pfd->pfd_conv; int width = pfd->pfd_width; int prec = pfd->pfd_prec; int rval; char *f = format + 1; /* skip initial '%' */ const dtrace_recdesc_t *rec; dt_pfprint_f *func; caddr_t addr; size_t size; uint32_t flags; if (pfd->pfd_preflen != 0) { char *tmp = alloca(pfd->pfd_preflen + 1); bcopy(pfd->pfd_prefix, tmp, pfd->pfd_preflen); tmp[pfd->pfd_preflen] = '\0'; if ((rval = dt_printf(dtp, fp, tmp)) < 0) return (rval); if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) { /* * For printa(), we flush the buffer after each * prefix, setting the flags to indicate that * this is part of the printa() format string. */ flags = DTRACE_BUFDATA_AGGFORMAT; if (pfc == NULL && i == pfv->pfv_argc - 1) flags |= DTRACE_BUFDATA_AGGLAST; if (dt_buffered_flush(dtp, NULL, NULL, aggdata, flags) < 0) return (-1); } } if (pfc == NULL) { if (pfv->pfv_argc == 1) return (nrecs != 0); continue; } /* * If the conversion is %%, just invoke the print callback * with no data record and continue; it consumes no record. */ if (pfc->pfc_print == &pfprint_pct) { if (pfc->pfc_print(dtp, fp, NULL, pfd, NULL, 0, 1) >= 0) continue; return (-1); /* errno is set for us */ } if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH) { if (dt_printf_getint(dtp, recp++, nrecs--, buf, len, &width) == -1) return (-1); /* errno is set for us */ pfd->pfd_dynwidth = width; } else { pfd->pfd_dynwidth = 0; } if ((pfd->pfd_flags & DT_PFCONV_DYNPREC) && dt_printf_getint( dtp, recp++, nrecs--, buf, len, &prec) == -1) return (-1); /* errno is set for us */ if (pfd->pfd_flags & DT_PFCONV_AGG) { /* * This should be impossible -- the compiler shouldn't * create a DT_PFCONV_AGG conversion without an * aggregation present. Still, we'd rather fail * gracefully than blow up... */ if (aggsdata == NULL) return (dt_set_errno(dtp, EDT_DMISMATCH)); aggdata = aggsdata[curagg]; agg = aggdata->dtada_desc; /* * We increment the current aggregation variable, but * not beyond the number of aggregation variables that * we're printing. This has the (desired) effect that * DT_PFCONV_AGG conversions beyond the number of * aggregation variables (re-)convert the aggregation * value of the last aggregation variable. */ if (curagg < naggvars - 1) curagg++; rec = &agg->dtagd_rec[aggrec]; addr = aggdata->dtada_data + rec->dtrd_offset; limit = addr + aggdata->dtada_size; normal = aggdata->dtada_normal; flags = DTRACE_BUFDATA_AGGVAL; } else { if (nrecs == 0) return (dt_set_errno(dtp, EDT_DMISMATCH)); if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) { /* * When printing aggregation keys, we always * set the aggdata to be the representative * (zeroth) aggregation. The aggdata isn't * actually used here in this case, but it is * passed to the buffer handler and must * therefore still be correct. */ aggdata = aggsdata[0]; flags = DTRACE_BUFDATA_AGGKEY; } rec = recp++; nrecs--; addr = (caddr_t)buf + rec->dtrd_offset; limit = lim; normal = 1; } size = rec->dtrd_size; if (addr + size > limit) { dt_dprintf("bad size: addr=%p size=0x%x lim=%p\n", (void *)addr, rec->dtrd_size, (void *)lim); return (dt_set_errno(dtp, EDT_DOFFSET)); } if (rec->dtrd_alignment != 0 && ((uintptr_t)addr & (rec->dtrd_alignment - 1)) != 0) { dt_dprintf("bad align: addr=%p size=0x%x align=0x%x\n", (void *)addr, rec->dtrd_size, rec->dtrd_alignment); return (dt_set_errno(dtp, EDT_DALIGN)); } switch (rec->dtrd_action) { case DTRACEAGG_AVG: func = pfprint_average; break; case DTRACEAGG_STDDEV: func = pfprint_stddev; break; case DTRACEAGG_QUANTIZE: func = pfprint_quantize; break; case DTRACEAGG_LQUANTIZE: func = pfprint_lquantize; break; case DTRACEAGG_LLQUANTIZE: func = pfprint_llquantize; break; case DTRACEACT_MOD: func = pfprint_mod; break; case DTRACEACT_UMOD: func = pfprint_umod; break; default: func = pfc->pfc_print; break; } if (pfd->pfd_flags & DT_PFCONV_ALT) *f++ = '#'; if (pfd->pfd_flags & DT_PFCONV_ZPAD) *f++ = '0'; if (width < 0 || (pfd->pfd_flags & DT_PFCONV_LEFT)) *f++ = '-'; if (pfd->pfd_flags & DT_PFCONV_SPOS) *f++ = '+'; if (pfd->pfd_flags & DT_PFCONV_GROUP) *f++ = '\''; if (pfd->pfd_flags & DT_PFCONV_SPACE) *f++ = ' '; /* * If we're printing a stack and DT_PFCONV_LEFT is set, we * don't add the width to the format string. See the block * comment in pfprint_stack() for a description of the * behavior in this case. */ if (func == pfprint_stack && (pfd->pfd_flags & DT_PFCONV_LEFT)) width = 0; if (width != 0) f += snprintf(f, sizeof (format), "%d", ABS(width)); if (prec > 0) f += snprintf(f, sizeof (format), ".%d", prec); (void) strcpy(f, pfd->pfd_fmt); pfd->pfd_rec = rec; if (func(dtp, fp, format, pfd, addr, size, normal) < 0) return (-1); /* errno is set for us */ if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) { /* * For printa(), we flush the buffer after each tuple * element, inidicating that this is the last record * as appropriate. */ if (i == pfv->pfv_argc - 1) flags |= DTRACE_BUFDATA_AGGLAST; if (dt_buffered_flush(dtp, NULL, rec, aggdata, flags) < 0) return (-1); } } return ((int)(recp - recs)); } int dtrace_sprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len) { dtrace_optval_t size; int rval; rval = dtrace_getopt(dtp, "strsize", &size); assert(rval == 0); assert(dtp->dt_sprintf_buflen == 0); if (dtp->dt_sprintf_buf != NULL) free(dtp->dt_sprintf_buf); if ((dtp->dt_sprintf_buf = malloc(size)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); bzero(dtp->dt_sprintf_buf, size); dtp->dt_sprintf_buflen = size; rval = dt_printf_format(dtp, fp, fmtdata, recp, nrecs, buf, len, NULL, 0); dtp->dt_sprintf_buflen = 0; if (rval == -1) free(dtp->dt_sprintf_buf); return (rval); } /*ARGSUSED*/ int dtrace_system(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len) { int rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len); if (rval == -1) return (rval); /* * Before we execute the specified command, flush fp to assure that * any prior dt_printf()'s appear before the output of the command * not after it. */ (void) fflush(fp); if (system(dtp->dt_sprintf_buf) == -1) return (dt_set_errno(dtp, errno)); return (rval); } int dtrace_freopen(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len) { char selfbuf[40], restorebuf[40], *filename; FILE *nfp; int rval, errval; dt_pfargv_t *pfv = fmtdata; dt_pfargd_t *pfd = pfv->pfv_argv; rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len); if (rval == -1 || fp == NULL) return (rval); #if defined(sun) if (pfd->pfd_preflen != 0 && strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) { /* * The only way to have the format string set to the value * DT_FREOPEN_RESTORE is via the empty freopen() string -- * denoting that we should restore the old stdout. */ assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0); if (dtp->dt_stdout_fd == -1) { /* * We could complain here by generating an error, * but it seems like overkill: it seems that calling * freopen() to restore stdout when freopen() has * never before been called should just be a no-op, * so we just return in this case. */ return (rval); } (void) snprintf(restorebuf, sizeof (restorebuf), "/dev/fd/%d", dtp->dt_stdout_fd); filename = restorebuf; } else { filename = dtp->dt_sprintf_buf; } /* * freopen(3C) will always close the specified stream and underlying * file descriptor -- even if the specified file can't be opened. * Even for the semantic cesspool that is standard I/O, this is * surprisingly brain-dead behavior: it means that any failure to * open the specified file destroys the specified stream in the * process -- which is particularly relevant when the specified stream * happens (or rather, happened) to be stdout. This could be resolved * were there an "fdreopen()" equivalent of freopen() that allowed one * to pass a file descriptor instead of the name of a file, but there * is no such thing. However, we can effect this ourselves by first * fopen()'ing the desired file, and then (assuming that that works), * freopen()'ing "/dev/fd/[fileno]", where [fileno] is the underlying * file descriptor for the fopen()'d file. This way, if the fopen() * fails, we can fail the operation without destroying stdout. */ if ((nfp = fopen(filename, "aF")) == NULL) { char *msg = strerror(errno); char *faultstr; int len = 80; len += strlen(msg) + strlen(filename); faultstr = alloca(len); (void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s", filename, strerror(errno)); if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0) return (rval); return (errval); } (void) snprintf(selfbuf, sizeof (selfbuf), "/dev/fd/%d", fileno(nfp)); if (dtp->dt_stdout_fd == -1) { /* * If this is the first time that we're calling freopen(), * we're going to stash away the file descriptor for stdout. * We don't expect the dup(2) to fail, so if it does we must * return failure. */ if ((dtp->dt_stdout_fd = dup(fileno(fp))) == -1) { (void) fclose(nfp); return (dt_set_errno(dtp, errno)); } } if (freopen(selfbuf, "aF", fp) == NULL) { (void) fclose(nfp); return (dt_set_errno(dtp, errno)); } (void) fclose(nfp); #else /* * The 'standard output' (which is not necessarily stdout) * treatment on FreeBSD is implemented differently than on * Solaris because FreeBSD's freopen() will attempt to re-use * the current file descriptor, causing the previous file to * be closed and thereby preventing it from be re-activated * later. * * For FreeBSD we use the concept of setting an output file * pointer in the DTrace handle if a dtrace_freopen() has * enabled another output file and we leave the caller's * file pointer untouched. If it was actually stdout, then * stdout remains open. If it was another file, then that * file remains open. While a dtrace_freopen() has activated * another file, we keep a pointer to that which we use in * the output functions by preference and only use the caller's * file pointer if no dtrace_freopen() call has been made. * * The check to see if we're re-activating the caller's * output file is much the same as on Solaris. */ if (pfd->pfd_preflen != 0 && strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) { /* * The only way to have the format string set to the value * DT_FREOPEN_RESTORE is via the empty freopen() string -- * denoting that we should restore the old stdout. */ assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0); if (dtp->dt_freopen_fp == NULL) { /* * We could complain here by generating an error, * but it seems like overkill: it seems that calling * freopen() to restore stdout when freopen() has * never before been called should just be a no-op, * so we just return in this case. */ return (rval); } /* * At this point, to re-active the original output file, * on FreeBSD we only code the current file that this * function opened previously. */ (void) fclose(dtp->dt_freopen_fp); dtp->dt_freopen_fp = NULL; return (rval); } if ((nfp = fopen(dtp->dt_sprintf_buf, "a")) == NULL) { char *msg = strerror(errno); char *faultstr; int len = 80; len += strlen(msg) + strlen(dtp->dt_sprintf_buf); faultstr = alloca(len); (void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s", dtp->dt_sprintf_buf, strerror(errno)); if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0) return (rval); return (errval); } if (dtp->dt_freopen_fp != NULL) (void) fclose(dtp->dt_freopen_fp); /* Remember that the output has been redirected to the new file. */ dtp->dt_freopen_fp = nfp; #endif return (rval); } /*ARGSUSED*/ int dtrace_fprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const dtrace_probedata_t *data, const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len) { return (dt_printf_format(dtp, fp, fmtdata, recp, nrecs, buf, len, NULL, 0)); } void * dtrace_printf_create(dtrace_hdl_t *dtp, const char *s) { dt_pfargv_t *pfv = dt_printf_create(dtp, s); dt_pfargd_t *pfd; int i; if (pfv == NULL) return (NULL); /* errno has been set for us */ pfd = pfv->pfv_argv; for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) { const dt_pfconv_t *pfc = pfd->pfd_conv; if (pfc == NULL) continue; /* * If the output format is not %s then we assume that we have * been given a correctly-sized format string, so we copy the * true format name including the size modifier. If the output * format is %s, then either the input format is %s as well or * it is one of our custom formats (e.g. pfprint_addr), so we * must set pfd_fmt to be the output format conversion "s". */ if (strcmp(pfc->pfc_ofmt, "s") != 0) (void) strcat(pfd->pfd_fmt, pfc->pfc_name); else (void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt); } return (pfv); } void * dtrace_printa_create(dtrace_hdl_t *dtp, const char *s) { dt_pfargv_t *pfv = dtrace_printf_create(dtp, s); if (pfv == NULL) return (NULL); /* errno has been set for us */ pfv->pfv_flags |= DT_PRINTF_AGGREGATION; return (pfv); } /*ARGSUSED*/ size_t dtrace_printf_format(dtrace_hdl_t *dtp, void *fmtdata, char *s, size_t len) { dt_pfargv_t *pfv = fmtdata; dt_pfargd_t *pfd = pfv->pfv_argv; /* * An upper bound on the string length is the length of the original * format string, plus three times the number of conversions (each * conversion could add up an additional "ll" and/or pfd_width digit * in the case of converting %? to %16) plus one for a terminating \0. */ size_t formatlen = strlen(pfv->pfv_format) + 3 * pfv->pfv_argc + 1; char *format = alloca(formatlen); char *f = format; int i, j; for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) { const dt_pfconv_t *pfc = pfd->pfd_conv; const char *str; int width = pfd->pfd_width; int prec = pfd->pfd_prec; if (pfd->pfd_preflen != 0) { for (j = 0; j < pfd->pfd_preflen; j++) *f++ = pfd->pfd_prefix[j]; } if (pfc == NULL) continue; *f++ = '%'; if (pfd->pfd_flags & DT_PFCONV_ALT) *f++ = '#'; if (pfd->pfd_flags & DT_PFCONV_ZPAD) *f++ = '0'; if (pfd->pfd_flags & DT_PFCONV_LEFT) *f++ = '-'; if (pfd->pfd_flags & DT_PFCONV_SPOS) *f++ = '+'; if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH) *f++ = '*'; if (pfd->pfd_flags & DT_PFCONV_DYNPREC) { *f++ = '.'; *f++ = '*'; } if (pfd->pfd_flags & DT_PFCONV_GROUP) *f++ = '\''; if (pfd->pfd_flags & DT_PFCONV_SPACE) *f++ = ' '; if (pfd->pfd_flags & DT_PFCONV_AGG) *f++ = '@'; if (width != 0) f += snprintf(f, sizeof (format), "%d", width); if (prec != 0) f += snprintf(f, sizeof (format), ".%d", prec); /* * If the output format is %s, then either %s is the underlying * conversion or the conversion is one of our customized ones, * e.g. pfprint_addr. In these cases, put the original string * name of the conversion (pfc_name) into the pickled format * string rather than the derived conversion (pfd_fmt). */ if (strcmp(pfc->pfc_ofmt, "s") == 0) str = pfc->pfc_name; else str = pfd->pfd_fmt; for (j = 0; str[j] != '\0'; j++) *f++ = str[j]; } *f = '\0'; /* insert nul byte; do not count in return value */ assert(f < format + formatlen); (void) strncpy(s, format, len); return ((size_t)(f - format)); } static int dt_fprinta(const dtrace_aggdata_t *adp, void *arg) { const dtrace_aggdesc_t *agg = adp->dtada_desc; const dtrace_recdesc_t *recp = &agg->dtagd_rec[0]; uint_t nrecs = agg->dtagd_nrecs; dt_pfwalk_t *pfw = arg; dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp; int id; if (dt_printf_getint(dtp, recp++, nrecs--, adp->dtada_data, adp->dtada_size, &id) != 0 || pfw->pfw_aid != id) return (0); /* no aggregation id or id does not match */ if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv, recp, nrecs, adp->dtada_data, adp->dtada_size, &adp, 1) == -1) return (pfw->pfw_err = dtp->dt_errno); /* * Cast away the const to set the bit indicating that this aggregation * has been printed. */ ((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED; return (0); } static int dt_fprintas(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) { const dtrace_aggdata_t *aggdata = aggsdata[0]; const dtrace_aggdesc_t *agg = aggdata->dtada_desc; const dtrace_recdesc_t *rec = &agg->dtagd_rec[1]; uint_t nrecs = agg->dtagd_nrecs - 1; dt_pfwalk_t *pfw = arg; dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp; int i; if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv, rec, nrecs, aggdata->dtada_data, aggdata->dtada_size, aggsdata, naggvars) == -1) return (pfw->pfw_err = dtp->dt_errno); /* * For each aggregation, indicate that it has been printed, casting * away the const as necessary. */ for (i = 1; i < naggvars; i++) { agg = aggsdata[i]->dtada_desc; ((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED; } return (0); } /*ARGSUSED*/ int dtrace_fprinta(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata, const dtrace_probedata_t *data, const dtrace_recdesc_t *recs, uint_t nrecs, const void *buf, size_t len) { dt_pfwalk_t pfw; int i, naggvars = 0; dtrace_aggvarid_t *aggvars; aggvars = alloca(nrecs * sizeof (dtrace_aggvarid_t)); /* * This might be a printa() with multiple aggregation variables. We * need to scan forward through the records until we find a record from * a different statement. */ for (i = 0; i < nrecs; i++) { const dtrace_recdesc_t *nrec = &recs[i]; if (nrec->dtrd_uarg != recs->dtrd_uarg) break; if (nrec->dtrd_action != recs->dtrd_action) return (dt_set_errno(dtp, EDT_BADAGG)); aggvars[naggvars++] = /* LINTED - alignment */ *((dtrace_aggvarid_t *)((caddr_t)buf + nrec->dtrd_offset)); } if (naggvars == 0) return (dt_set_errno(dtp, EDT_BADAGG)); pfw.pfw_argv = fmtdata; pfw.pfw_fp = fp; pfw.pfw_err = 0; if (naggvars == 1) { pfw.pfw_aid = aggvars[0]; if (dtrace_aggregate_walk_sorted(dtp, dt_fprinta, &pfw) == -1 || pfw.pfw_err != 0) return (-1); /* errno is set for us */ } else { if (dtrace_aggregate_walk_joined(dtp, aggvars, naggvars, dt_fprintas, &pfw) == -1 || pfw.pfw_err != 0) return (-1); /* errno is set for us */ } return (i); }