Current Path : /usr/src/cddl/contrib/opensolaris/lib/libzfs/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/cddl/contrib/opensolaris/lib/libzfs/common/libzfs_fru.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include <dlfcn.h> #include <errno.h> #include <libintl.h> #include <link.h> #include <pthread.h> #include <strings.h> #include <unistd.h> #include <libzfs.h> #include <fm/libtopo.h> #include <sys/fm/protocol.h> #include <sys/systeminfo.h> #include "libzfs_impl.h" /* * This file is responsible for determining the relationship between I/O * devices paths and physical locations. In the world of MPxIO and external * enclosures, the device path is not synonymous with the physical location. * If you remove a drive and insert it into a different slot, it will end up * with the same path under MPxIO. If you recable storage enclosures, the * device paths may change. All of this makes it difficult to implement the * 'autoreplace' property, which is supposed to automatically manage disk * replacement based on physical slot. * * In order to work around these limitations, we have a per-vdev FRU property * that is the libtopo path (minus disk-specific authority information) to the * physical location of the device on the system. This is an optional * property, and is only needed when using the 'autoreplace' property or when * generating FMA faults against vdevs. */ /* * Because the FMA packages depend on ZFS, we have to dlopen() libtopo in case * it is not present. We only need this once per library instance, so it is * not part of the libzfs handle. */ static void *_topo_dlhandle; static topo_hdl_t *(*_topo_open)(int, const char *, int *); static void (*_topo_close)(topo_hdl_t *); static char *(*_topo_snap_hold)(topo_hdl_t *, const char *, int *); static void (*_topo_snap_release)(topo_hdl_t *); static topo_walk_t *(*_topo_walk_init)(topo_hdl_t *, const char *, topo_walk_cb_t, void *, int *); static int (*_topo_walk_step)(topo_walk_t *, int); static void (*_topo_walk_fini)(topo_walk_t *); static void (*_topo_hdl_strfree)(topo_hdl_t *, char *); static char *(*_topo_node_name)(tnode_t *); static int (*_topo_prop_get_string)(tnode_t *, const char *, const char *, char **, int *); static int (*_topo_node_fru)(tnode_t *, nvlist_t **, nvlist_t *, int *); static int (*_topo_fmri_nvl2str)(topo_hdl_t *, nvlist_t *, char **, int *); static int (*_topo_fmri_strcmp_noauth)(topo_hdl_t *, const char *, const char *); #define ZFS_FRU_HASH_SIZE 257 static size_t fru_strhash(const char *key) { ulong_t g, h = 0; const char *p; for (p = key; *p != '\0'; p++) { h = (h << 4) + *p; if ((g = (h & 0xf0000000)) != 0) { h ^= (g >> 24); h ^= g; } } return (h % ZFS_FRU_HASH_SIZE); } static int libzfs_fru_gather(topo_hdl_t *thp, tnode_t *tn, void *arg) { libzfs_handle_t *hdl = arg; nvlist_t *fru; char *devpath, *frustr; int err; libzfs_fru_t *frup; size_t idx; /* * If this is the chassis node, and we don't yet have the system * chassis ID, then fill in this value now. */ if (hdl->libzfs_chassis_id[0] == '\0' && strcmp(_topo_node_name(tn), "chassis") == 0) { if (_topo_prop_get_string(tn, FM_FMRI_AUTHORITY, FM_FMRI_AUTH_CHASSIS, &devpath, &err) == 0) (void) strlcpy(hdl->libzfs_chassis_id, devpath, sizeof (hdl->libzfs_chassis_id)); } /* * Skip non-disk nodes. */ if (strcmp(_topo_node_name(tn), "disk") != 0) return (TOPO_WALK_NEXT); /* * Get the devfs path and FRU. */ if (_topo_prop_get_string(tn, "io", "devfs-path", &devpath, &err) != 0) return (TOPO_WALK_NEXT); if (libzfs_fru_lookup(hdl, devpath) != NULL) { _topo_hdl_strfree(thp, devpath); return (TOPO_WALK_NEXT); } if (_topo_node_fru(tn, &fru, NULL, &err) != 0) { _topo_hdl_strfree(thp, devpath); return (TOPO_WALK_NEXT); } /* * Convert the FRU into a string. */ if (_topo_fmri_nvl2str(thp, fru, &frustr, &err) != 0) { nvlist_free(fru); _topo_hdl_strfree(thp, devpath); return (TOPO_WALK_NEXT); } nvlist_free(fru); /* * Finally, we have a FRU string and device path. Add it to the hash. */ if ((frup = calloc(sizeof (libzfs_fru_t), 1)) == NULL) { _topo_hdl_strfree(thp, devpath); _topo_hdl_strfree(thp, frustr); return (TOPO_WALK_NEXT); } if ((frup->zf_device = strdup(devpath)) == NULL || (frup->zf_fru = strdup(frustr)) == NULL) { free(frup->zf_device); free(frup); _topo_hdl_strfree(thp, devpath); _topo_hdl_strfree(thp, frustr); return (TOPO_WALK_NEXT); } _topo_hdl_strfree(thp, devpath); _topo_hdl_strfree(thp, frustr); idx = fru_strhash(frup->zf_device); frup->zf_chain = hdl->libzfs_fru_hash[idx]; hdl->libzfs_fru_hash[idx] = frup; frup->zf_next = hdl->libzfs_fru_list; hdl->libzfs_fru_list = frup; return (TOPO_WALK_NEXT); } /* * Called during initialization to setup the dynamic libtopo connection. */ #pragma init(libzfs_init_fru) static void libzfs_init_fru(void) { char path[MAXPATHLEN]; char isa[257]; #if defined(_LP64) if (sysinfo(SI_ARCHITECTURE_64, isa, sizeof (isa)) < 0) isa[0] = '\0'; #else isa[0] = '\0'; #endif (void) snprintf(path, sizeof (path), "/usr/lib/fm/%s/libtopo.so", isa); if ((_topo_dlhandle = dlopen(path, RTLD_LAZY)) == NULL) return; _topo_open = (topo_hdl_t *(*)()) dlsym(_topo_dlhandle, "topo_open"); _topo_close = (void (*)()) dlsym(_topo_dlhandle, "topo_close"); _topo_snap_hold = (char *(*)()) dlsym(_topo_dlhandle, "topo_snap_hold"); _topo_snap_release = (void (*)()) dlsym(_topo_dlhandle, "topo_snap_release"); _topo_walk_init = (topo_walk_t *(*)()) dlsym(_topo_dlhandle, "topo_walk_init"); _topo_walk_step = (int (*)()) dlsym(_topo_dlhandle, "topo_walk_step"); _topo_walk_fini = (void (*)()) dlsym(_topo_dlhandle, "topo_walk_fini"); _topo_hdl_strfree = (void (*)()) dlsym(_topo_dlhandle, "topo_hdl_strfree"); _topo_node_name = (char *(*)()) dlsym(_topo_dlhandle, "topo_node_name"); _topo_prop_get_string = (int (*)()) dlsym(_topo_dlhandle, "topo_prop_get_string"); _topo_node_fru = (int (*)()) dlsym(_topo_dlhandle, "topo_node_fru"); _topo_fmri_nvl2str = (int (*)()) dlsym(_topo_dlhandle, "topo_fmri_nvl2str"); _topo_fmri_strcmp_noauth = (int (*)()) dlsym(_topo_dlhandle, "topo_fmri_strcmp_noauth"); if (_topo_open == NULL || _topo_close == NULL || _topo_snap_hold == NULL || _topo_snap_release == NULL || _topo_walk_init == NULL || _topo_walk_step == NULL || _topo_walk_fini == NULL || _topo_hdl_strfree == NULL || _topo_node_name == NULL || _topo_prop_get_string == NULL || _topo_node_fru == NULL || _topo_fmri_nvl2str == NULL || _topo_fmri_strcmp_noauth == NULL) { (void) dlclose(_topo_dlhandle); _topo_dlhandle = NULL; } } /* * Refresh the mappings from device path -> FMRI. We do this by walking the * hc topology looking for disk nodes, and recording the io/devfs-path and FRU. * Note that we strip out the disk-specific authority information (serial, * part, revision, etc) so that we are left with only the identifying * characteristics of the slot (hc path and chassis-id). */ void libzfs_fru_refresh(libzfs_handle_t *hdl) { int err; char *uuid; topo_hdl_t *thp; topo_walk_t *twp; if (_topo_dlhandle == NULL) return; /* * Clear the FRU hash and initialize our basic structures. */ libzfs_fru_clear(hdl, B_FALSE); if ((hdl->libzfs_topo_hdl = _topo_open(TOPO_VERSION, NULL, &err)) == NULL) return; thp = hdl->libzfs_topo_hdl; if ((uuid = _topo_snap_hold(thp, NULL, &err)) == NULL) return; _topo_hdl_strfree(thp, uuid); if (hdl->libzfs_fru_hash == NULL && (hdl->libzfs_fru_hash = calloc(ZFS_FRU_HASH_SIZE * sizeof (void *), 1)) == NULL) return; /* * We now have a topo snapshot, so iterate over the hc topology looking * for disks to add to the hash. */ twp = _topo_walk_init(thp, FM_FMRI_SCHEME_HC, libzfs_fru_gather, hdl, &err); if (twp != NULL) { (void) _topo_walk_step(twp, TOPO_WALK_CHILD); _topo_walk_fini(twp); } } /* * Given a devfs path, return the FRU for the device, if known. This will * automatically call libzfs_fru_refresh() if it hasn't already been called by * the consumer. The string returned is valid until the next call to * libzfs_fru_refresh(). */ const char * libzfs_fru_lookup(libzfs_handle_t *hdl, const char *devpath) { size_t idx = fru_strhash(devpath); libzfs_fru_t *frup; if (hdl->libzfs_fru_hash == NULL) libzfs_fru_refresh(hdl); if (hdl->libzfs_fru_hash == NULL) return (NULL); for (frup = hdl->libzfs_fru_hash[idx]; frup != NULL; frup = frup->zf_chain) { if (strcmp(devpath, frup->zf_device) == 0) return (frup->zf_fru); } return (NULL); } /* * Given a fru path, return the device path. This will automatically call * libzfs_fru_refresh() if it hasn't already been called by the consumer. The * string returned is valid until the next call to libzfs_fru_refresh(). */ const char * libzfs_fru_devpath(libzfs_handle_t *hdl, const char *fru) { libzfs_fru_t *frup; size_t idx; if (hdl->libzfs_fru_hash == NULL) libzfs_fru_refresh(hdl); if (hdl->libzfs_fru_hash == NULL) return (NULL); for (idx = 0; idx < ZFS_FRU_HASH_SIZE; idx++) { for (frup = hdl->libzfs_fru_hash[idx]; frup != NULL; frup = frup->zf_next) { if (_topo_fmri_strcmp_noauth(hdl->libzfs_topo_hdl, fru, frup->zf_fru)) return (frup->zf_device); } } return (NULL); } /* * Change the stored FRU for the given vdev. */ int zpool_fru_set(zpool_handle_t *zhp, uint64_t vdev_guid, const char *fru) { zfs_cmd_t zc = { 0 }; (void) strncpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strncpy(zc.zc_value, fru, sizeof (zc.zc_value)); zc.zc_guid = vdev_guid; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_VDEV_SETFRU, &zc) != 0) return (zpool_standard_error_fmt(zhp->zpool_hdl, errno, dgettext(TEXT_DOMAIN, "cannot set FRU"))); return (0); } /* * Compare to two FRUs, ignoring any authority information. */ boolean_t libzfs_fru_compare(libzfs_handle_t *hdl, const char *a, const char *b) { if (hdl->libzfs_fru_hash == NULL) libzfs_fru_refresh(hdl); if (hdl->libzfs_fru_hash == NULL) return (strcmp(a, b) == 0); return (_topo_fmri_strcmp_noauth(hdl->libzfs_topo_hdl, a, b)); } /* * This special function checks to see whether the FRU indicates it's supposed * to be in the system chassis, but the chassis-id doesn't match. This can * happen in a clustered case, where both head nodes have the same logical * disk, but opening the device on the other head node is meaningless. */ boolean_t libzfs_fru_notself(libzfs_handle_t *hdl, const char *fru) { const char *chassisid; size_t len; if (hdl->libzfs_fru_hash == NULL) libzfs_fru_refresh(hdl); if (hdl->libzfs_chassis_id[0] == '\0') return (B_FALSE); if (strstr(fru, "/chassis=0/") == NULL) return (B_FALSE); if ((chassisid = strstr(fru, ":chassis-id=")) == NULL) return (B_FALSE); chassisid += 12; len = strlen(hdl->libzfs_chassis_id); if (strncmp(chassisid, hdl->libzfs_chassis_id, len) == 0 && (chassisid[len] == '/' || chassisid[len] == ':')) return (B_FALSE); return (B_TRUE); } /* * Clear memory associated with the FRU hash. */ void libzfs_fru_clear(libzfs_handle_t *hdl, boolean_t final) { libzfs_fru_t *frup; while ((frup = hdl->libzfs_fru_list) != NULL) { hdl->libzfs_fru_list = frup->zf_next; free(frup->zf_device); free(frup->zf_fru); free(frup); } hdl->libzfs_fru_list = NULL; if (hdl->libzfs_topo_hdl != NULL) { _topo_snap_release(hdl->libzfs_topo_hdl); _topo_close(hdl->libzfs_topo_hdl); hdl->libzfs_topo_hdl = NULL; } if (final) { free(hdl->libzfs_fru_hash); } else if (hdl->libzfs_fru_hash != NULL) { bzero(hdl->libzfs_fru_hash, ZFS_FRU_HASH_SIZE * sizeof (void *)); } }