Current Path : /usr/src/contrib/binutils/gas/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/binutils/gas/itbl-parse.y |
/* itbl-parse.y Copyright 1997, 2002, 2003, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ %{ /* Yacc grammar for instruction table entries. ======================================================================= Original Instruction table specification document: MIPS Coprocessor Table Specification ==================================== This document describes the format of the MIPS coprocessor table. The table specifies a list of valid functions, data registers and control registers that can be used in coprocessor instructions. This list, together with the coprocessor instruction classes listed below, specifies the complete list of coprocessor instructions that will be recognized and assembled by the GNU assembler. In effect, this makes the GNU assembler table-driven, where the table is specified by the programmer. The table is an ordinary text file that the GNU assembler reads when it starts. Using the information in the table, the assembler generates an internal list of valid coprocessor registers and functions. The assembler uses this internal list in addition to the standard MIPS registers and instructions which are built-in to the assembler during code generation. To specify the coprocessor table when invoking the GNU assembler, use the command line option "--itbl file", where file is the complete name of the table, including path and extension. Examples: gas -t cop.tbl test.s -o test.o gas -t /usr/local/lib/cop.tbl test.s -o test.o gas --itbl d:\gnu\data\cop.tbl test.s -o test.o Only one table may be supplied during a single invocation of the assembler. Instruction classes =================== Below is a list of the valid coprocessor instruction classes for any given coprocessor "z". These instructions are already recognized by the assembler, and are listed here only for reference. Class format instructions ------------------------------------------------- Class1: op base rt offset LWCz rt,offset (base) SWCz rt,offset (base) Class2: COPz sub rt rd 0 MTCz rt,rd MFCz rt,rd CTCz rt,rd CFCz rt,rd Class3: COPz CO cofun COPz cofun Class4: COPz BC br offset BCzT offset BCzF offset Class5: COPz sub rt rd 0 DMFCz rt,rd DMTCz rt,rd Class6: op base rt offset LDCz rt,offset (base) SDCz rt,offset (base) Class7: COPz BC br offset BCzTL offset BCzFL offset The coprocessor table defines coprocessor-specific registers that can be used with all of the above classes of instructions, where appropriate. It also defines additional coprocessor-specific functions for Class3 (COPz cofun) instructions, Thus, the table allows the programmer to use convenient mnemonics and operands for these functions, instead of the COPz mmenmonic and cofun operand. The names of the MIPS general registers and their aliases are defined by the assembler and will be recognized as valid register names by the assembler when used (where allowed) in coprocessor instructions. However, the names and values of all coprocessor data and control register mnemonics must be specified in the coprocessor table. Table Grammar ============= Here is the grammar for the coprocessor table: table -> entry* entry -> [z entrydef] [comment] '\n' entrydef -> type name val entrydef -> 'insn' name val funcdef ; type of entry (instruction) z -> 'p'['0'..'3'] ; processor number type -> ['dreg' | 'creg' | 'greg' ] ; type of entry (register) ; 'dreg', 'creg' or 'greg' specifies a data, control, or general ; register mnemonic, respectively name -> [ltr|dec]* ; mnemonic of register/function val -> [dec|hex] ; register/function number (integer constant) funcdef -> frange flags fields ; bitfield range for opcode ; list of fields' formats fields -> field* field -> [','] ftype frange flags flags -> ['*' flagexpr] flagexpr -> '[' flagexpr ']' flagexpr -> val '|' flagexpr ftype -> [ type | 'immed' | 'addr' ] ; 'immed' specifies an immediate value; see grammar for "val" above ; 'addr' specifies a C identifier; name of symbol to be resolved at ; link time frange -> ':' val '-' val ; starting to ending bit positions, where ; where 0 is least significant bit frange -> (null) ; default range of 31-0 will be assumed comment -> [';'|'#'] [char]* char -> any printable character ltr -> ['a'..'z'|'A'..'Z'] dec -> ['0'..'9']* ; value in decimal hex -> '0x'['0'..'9' | 'a'..'f' | 'A'..'F']* ; value in hexadecimal Examples ======== Example 1: The table: p1 dreg d1 1 ; data register "d1" for COP1 has value 1 p1 creg c3 3 ; ctrl register "c3" for COP1 has value 3 p3 func fill 0x1f:24-20 ; function "fill" for COP3 has value 31 and ; no fields will allow the assembler to accept the following coprocessor instructions: LWC1 d1,0x100 ($2) fill Here, the general purpose register "$2", and instruction "LWC1", are standard mnemonics built-in to the MIPS assembler. Example 2: The table: p3 dreg d3 3 ; data register "d3" for COP3 has value 3 p3 creg c2 22 ; control register "c2" for COP3 has value 22 p3 func fee 0x1f:24-20 dreg:17-13 creg:12-8 immed:7-0 ; function "fee" for COP3 has value 31, and 3 fields ; consisting of a data register, a control register, ; and an immediate value. will allow the assembler to accept the following coprocessor instruction: fee d3,c2,0x1 and will emit the object code: 31-26 25 24-20 19-18 17-13 12-8 7-0 COPz CO fun dreg creg immed 010011 1 11111 00 00011 10110 00000001 0x4ff07601 Example 3: The table: p3 dreg d3 3 ; data register "d3" for COP3 has value 3 p3 creg c2 22 ; control register "c2" for COP3 has value 22 p3 func fuu 0x01f00001 dreg:17-13 creg:12-8 will allow the assembler to accept the following coprocessor instruction: fuu d3,c2 and will emit the object code: 31-26 25 24-20 19-18 17-13 12-8 7-0 COPz CO fun dreg creg 010011 1 11111 00 00011 10110 00000001 0x4ff07601 In this way, the programmer can force arbitrary bits of an instruction to have predefined values. ======================================================================= Additional notes: Encoding of ranges: To handle more than one bit position range within an instruction, use 0s to mask out the ranges which don't apply. May decide to modify the syntax to allow commas separate multiple ranges within an instruction (range','range). Changes in grammar: The number of parms argument to the function entry was deleted from the original format such that we now count the fields. ---- FIXME! should really change lexical analyzer to recognize 'dreg' etc. in context sensitive way. Currently function names or mnemonics may be incorrectly parsed as keywords FIXME! hex is ambiguous with any digit */ #include "as.h" #include "itbl-lex.h" #include "itbl-ops.h" /* #define DEBUG */ #ifdef DEBUG #ifndef DBG_LVL #define DBG_LVL 1 #endif #else #define DBG_LVL 0 #endif #if DBG_LVL >= 1 #define DBG(x) printf x #else #define DBG(x) #endif #if DBG_LVL >= 2 #define DBGL2(x) printf x #else #define DBGL2(x) #endif static int sbit, ebit; static struct itbl_entry *insn=0; static int yyerror (const char *); %} %union { char *str; int num; int processor; unsigned long val; } %token DREG CREG GREG IMMED ADDR INSN NUM ID NL PNUM %type <val> value flags flagexpr %type <num> number NUM ftype regtype pnum PNUM %type <str> ID name %start insntbl %% insntbl: entrys ; entrys: entry entrys | ; entry: pnum regtype name value NL { DBG (("line %d: entry pnum=%d type=%d name=%s value=x%x\n", insntbl_line, $1, $2, $3, $4)); itbl_add_reg ($1, $2, $3, $4); } | pnum INSN name value range flags { DBG (("line %d: entry pnum=%d type=INSN name=%s value=x%x", insntbl_line, $1, $3, $4)); DBG ((" sbit=%d ebit=%d flags=0x%x\n", sbit, ebit, $6)); insn=itbl_add_insn ($1, $3, $4, sbit, ebit, $6); } fieldspecs NL {} | NL | error NL ; fieldspecs: ',' fieldspec fieldspecs | fieldspec fieldspecs | ; ftype: regtype { DBGL2 (("ftype\n")); $$ = $1; } | ADDR { DBGL2 (("addr\n")); $$ = ADDR; } | IMMED { DBGL2 (("immed\n")); $$ = IMMED; } ; fieldspec: ftype range flags { DBG (("line %d: field type=%d sbit=%d ebit=%d, flags=0x%x\n", insntbl_line, $1, sbit, ebit, $3)); itbl_add_operand (insn, $1, sbit, ebit, $3); } ; flagexpr: NUM '|' flagexpr { $$ = $1 | $3; } | '[' flagexpr ']' { $$ = $2; } | NUM { $$ = $1; } ; flags: '*' flagexpr { DBGL2 (("flags=%d\n", $2)); $$ = $2; } | { $$ = 0; } ; range: ':' NUM '-' NUM { DBGL2 (("range %d %d\n", $2, $4)); sbit = $2; ebit = $4; } | { sbit = 31; ebit = 0; } ; pnum: PNUM { DBGL2 (("pnum=%d\n",$1)); $$ = $1; } ; regtype: DREG { DBGL2 (("dreg\n")); $$ = DREG; } | CREG { DBGL2 (("creg\n")); $$ = CREG; } | GREG { DBGL2 (("greg\n")); $$ = GREG; } ; name: ID { DBGL2 (("name=%s\n",$1)); $$ = $1; } ; number: NUM { DBGL2 (("num=%d\n",$1)); $$ = $1; } ; value: NUM { DBGL2 (("val=x%x\n",$1)); $$ = $1; } ; %% static int yyerror (msg) const char *msg; { printf ("line %d: %s\n", insntbl_line, msg); return 0; }