Current Path : /usr/src/contrib/compiler-rt/lib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/compiler-rt/lib/comparesf2.c |
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the following soft-fp_t comparison routines: // // __eqsf2 __gesf2 __unordsf2 // __lesf2 __gtsf2 // __ltsf2 // __nesf2 // // The semantics of the routines grouped in each column are identical, so there // is a single implementation for each, and wrappers to provide the other names. // // The main routines behave as follows: // // __lesf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // 1 if either a or b is NaN // // __gesf2(a,b) returns -1 if a < b // 0 if a == b // 1 if a > b // -1 if either a or b is NaN // // __unordsf2(a,b) returns 0 if both a and b are numbers // 1 if either a or b is NaN // // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of // NaN values. // //===----------------------------------------------------------------------===// #define SINGLE_PRECISION #include "fp_lib.h" enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 }; enum LE_RESULT __lesf2(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; // If either a or b is NaN, they are unordered. if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; // If a and b are both zeros, they are equal. if ((aAbs | bAbs) == 0) return LE_EQUAL; // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a fp_ting-point compare. if ((aInt & bInt) >= 0) { if (aInt < bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. (This assumes a twos- or ones- // complement integer representation; if integers are represented in a // sign-magnitude representation, then this flip is incorrect). else { if (aInt > bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } } enum GE_RESULT { GE_LESS = -1, GE_EQUAL = 0, GE_GREATER = 1, GE_UNORDERED = -1 // Note: different from LE_UNORDERED }; enum GE_RESULT __gesf2(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; if ((aAbs | bAbs) == 0) return GE_EQUAL; if ((aInt & bInt) >= 0) { if (aInt < bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } else { if (aInt > bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } } int __unordsf2(fp_t a, fp_t b) { const rep_t aAbs = toRep(a) & absMask; const rep_t bAbs = toRep(b) & absMask; return aAbs > infRep || bAbs > infRep; } // The following are alternative names for the preceeding routines. enum LE_RESULT __eqsf2(fp_t a, fp_t b) { return __lesf2(a, b); } enum LE_RESULT __ltsf2(fp_t a, fp_t b) { return __lesf2(a, b); } enum LE_RESULT __nesf2(fp_t a, fp_t b) { return __lesf2(a, b); } enum GE_RESULT __gtsf2(fp_t a, fp_t b) { return __gesf2(a, b); }