Current Path : /usr/src/contrib/compiler-rt/lib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/compiler-rt/lib/divxc3.c |
/* ===-- divxc3.c - Implement __divxc3 -------------------------------------=== * * The LLVM Compiler Infrastructure * * This file is dual licensed under the MIT and the University of Illinois Open * Source Licenses. See LICENSE.TXT for details. * * ===----------------------------------------------------------------------=== * * This file implements __divxc3 for the compiler_rt library. * */ #if !_ARCH_PPC #include "int_lib.h" #include "int_math.h" /* Returns: the quotient of (a + ib) / (c + id) */ long double _Complex __divxc3(long double __a, long double __b, long double __c, long double __d) { int __ilogbw = 0; long double __logbw = crt_logbl(crt_fmaxl(crt_fabsl(__c), crt_fabsl(__d))); if (crt_isfinite(__logbw)) { __ilogbw = (int)__logbw; __c = crt_scalbnl(__c, -__ilogbw); __d = crt_scalbnl(__d, -__ilogbw); } long double __denom = __c * __c + __d * __d; long double _Complex z; __real__ z = crt_scalbnl((__a * __c + __b * __d) / __denom, -__ilogbw); __imag__ z = crt_scalbnl((__b * __c - __a * __d) / __denom, -__ilogbw); if (crt_isnan(__real__ z) && crt_isnan(__imag__ z)) { if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) { __real__ z = crt_copysignl(CRT_INFINITY, __c) * __a; __imag__ z = crt_copysignl(CRT_INFINITY, __c) * __b; } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) && crt_isfinite(__d)) { __a = crt_copysignl(crt_isinf(__a) ? 1 : 0, __a); __b = crt_copysignl(crt_isinf(__b) ? 1 : 0, __b); __real__ z = CRT_INFINITY * (__a * __c + __b * __d); __imag__ z = CRT_INFINITY * (__b * __c - __a * __d); } else if (crt_isinf(__logbw) && __logbw > 0 && crt_isfinite(__a) && crt_isfinite(__b)) { __c = crt_copysignl(crt_isinf(__c) ? 1 : 0, __c); __d = crt_copysignl(crt_isinf(__d) ? 1 : 0, __d); __real__ z = 0 * (__a * __c + __b * __d); __imag__ z = 0 * (__b * __c - __a * __d); } } return z; } #endif