Current Path : /usr/src/contrib/compiler-rt/lib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/compiler-rt/lib/extendsfdf2.c |
//===-- lib/extendsfdf2.c - single -> double conversion -----------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a fairly generic conversion from a narrower to a wider // IEEE-754 floating-point type. The constants and types defined following the // includes below parameterize the conversion. // // This routine can be trivially adapted to support conversions from // half-precision or to quad-precision. It does not support types that don't // use the usual IEEE-754 interchange formats; specifically, some work would be // needed to adapt it to (for example) the Intel 80-bit format or PowerPC // double-double format. // // Note please, however, that this implementation is only intended to support // *widening* operations; if you need to convert to a *narrower* floating-point // type (e.g. double -> float), then this routine will not do what you want it // to. // // It also requires that integer types at least as large as both formats // are available on the target platform; this may pose a problem when trying // to add support for quad on some 32-bit systems, for example. You also may // run into trouble finding an appropriate CLZ function for wide source types; // you will likely need to roll your own on some platforms. // // Finally, the following assumptions are made: // // 1. floating-point types and integer types have the same endianness on the // target platform // // 2. quiet NaNs, if supported, are indicated by the leading bit of the // significand field being set // //===----------------------------------------------------------------------===// #include "int_lib.h" typedef float src_t; typedef uint32_t src_rep_t; #define SRC_REP_C UINT32_C static const int srcSigBits = 23; #define src_rep_t_clz __builtin_clz typedef double dst_t; typedef uint64_t dst_rep_t; #define DST_REP_C UINT64_C static const int dstSigBits = 52; // End of specialization parameters. Two helper routines for conversion to and // from the representation of floating-point data as integer values follow. static inline src_rep_t srcToRep(src_t x) { const union { src_t f; src_rep_t i; } rep = {.f = x}; return rep.i; } static inline dst_t dstFromRep(dst_rep_t x) { const union { dst_t f; dst_rep_t i; } rep = {.i = x}; return rep.f; } // End helper routines. Conversion implementation follows. ARM_EABI_FNALIAS(f2d, extendsfdf2); dst_t __extendsfdf2(src_t a) { // Various constants whose values follow from the type parameters. // Any reasonable optimizer will fold and propagate all of these. const int srcBits = sizeof(src_t)*CHAR_BIT; const int srcExpBits = srcBits - srcSigBits - 1; const int srcInfExp = (1 << srcExpBits) - 1; const int srcExpBias = srcInfExp >> 1; const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); const src_rep_t srcAbsMask = srcSignMask - 1; const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); const src_rep_t srcNaNCode = srcQNaN - 1; const int dstBits = sizeof(dst_t)*CHAR_BIT; const int dstExpBits = dstBits - dstSigBits - 1; const int dstInfExp = (1 << dstExpBits) - 1; const int dstExpBias = dstInfExp >> 1; const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits; // Break a into a sign and representation of the absolute value const src_rep_t aRep = srcToRep(a); const src_rep_t aAbs = aRep & srcAbsMask; const src_rep_t sign = aRep & srcSignMask; dst_rep_t absResult; if (aAbs - srcMinNormal < srcInfinity - srcMinNormal) { // a is a normal number. // Extend to the destination type by shifting the significand and // exponent into the proper position and rebiasing the exponent. absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits); absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits; } else if (aAbs >= srcInfinity) { // a is NaN or infinity. // Conjure the result by beginning with infinity, then setting the qNaN // bit (if needed) and right-aligning the rest of the trailing NaN // payload field. absResult = (dst_rep_t)dstInfExp << dstSigBits; absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits); absResult |= aAbs & srcNaNCode; } else if (aAbs) { // a is denormal. // renormalize the significand and clear the leading bit, then insert // the correct adjusted exponent in the destination type. const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal); absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale); absResult ^= dstMinNormal; const int resultExponent = dstExpBias - srcExpBias - scale + 1; absResult |= (dst_rep_t)resultExponent << dstSigBits; } else { // a is zero. absResult = 0; } // Apply the signbit to (dst_t)abs(a). const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits); return dstFromRep(result); }