Current Path : /usr/src/contrib/compiler-rt/lib/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/compiler-rt/lib/muldf3.c |
//===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements double-precision soft-float multiplication // with the IEEE-754 default rounding (to nearest, ties to even). // //===----------------------------------------------------------------------===// #define DOUBLE_PRECISION #include "fp_lib.h" ARM_EABI_FNALIAS(dmul, muldf3); COMPILER_RT_ABI fp_t __muldf3(fp_t a, fp_t b) { const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; rep_t aSignificand = toRep(a) & significandMask; rep_t bSignificand = toRep(b) & significandMask; int scale = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { const rep_t aAbs = toRep(a) & absMask; const rep_t bAbs = toRep(b) & absMask; // NaN * anything = qNaN if (aAbs > infRep) return fromRep(toRep(a) | quietBit); // anything * NaN = qNaN if (bAbs > infRep) return fromRep(toRep(b) | quietBit); if (aAbs == infRep) { // infinity * non-zero = +/- infinity if (bAbs) return fromRep(aAbs | productSign); // infinity * zero = NaN else return fromRep(qnanRep); } if (bAbs == infRep) { // non-zero * infinity = +/- infinity if (aAbs) return fromRep(bAbs | productSign); // zero * infinity = NaN else return fromRep(qnanRep); } // zero * anything = +/- zero if (!aAbs) return fromRep(productSign); // anything * zero = +/- zero if (!bAbs) return fromRep(productSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale += normalize(&aSignificand); if (bAbs < implicitBit) scale += normalize(&bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; // Get the significand of a*b. Before multiplying the significands, shift // one of them left to left-align it in the field. Thus, the product will // have (exponentBits + 2) integral digits, all but two of which must be // zero. Normalizing this result is just a conditional left-shift by one // and bumping the exponent accordingly. rep_t productHi, productLo; wideMultiply(aSignificand, bSignificand << exponentBits, &productHi, &productLo); int productExponent = aExponent + bExponent - exponentBias + scale; // Normalize the significand, adjust exponent if needed. if (productHi & implicitBit) productExponent++; else wideLeftShift(&productHi, &productLo, 1); // If we have overflowed the type, return +/- infinity. if (productExponent >= maxExponent) return fromRep(infRep | productSign); if (productExponent <= 0) { // Result is denormal before rounding // // If the result is so small that it just underflows to zero, return // a zero of the appropriate sign. Mathematically there is no need to // handle this case separately, but we make it a special case to // simplify the shift logic. const int shift = 1 - productExponent; if (shift >= typeWidth) return fromRep(productSign); // Otherwise, shift the significand of the result so that the round // bit is the high bit of productLo. wideRightShiftWithSticky(&productHi, &productLo, shift); } else { // Result is normal before rounding; insert the exponent. productHi &= significandMask; productHi |= (rep_t)productExponent << significandBits; } // Insert the sign of the result: productHi |= productSign; // Final rounding. The final result may overflow to infinity, or underflow // to zero, but those are the correct results in those cases. We use the // default IEEE-754 round-to-nearest, ties-to-even rounding mode. if (productLo > signBit) productHi++; if (productLo == signBit) productHi += productHi & 1; return fromRep(productHi); }