Current Path : /usr/src/contrib/gcc/config/sparc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/gcc/config/sparc/lb1spc.asm |
/* This is an assembly language implementation of mulsi3, divsi3, and modsi3 for the sparc processor. These routines are derived from the SPARC Architecture Manual, version 8, slightly edited to match the desired calling convention, and also to optimize them for our purposes. */ #ifdef L_mulsi3 .text .align 4 .global .umul .proc 4 .umul: or %o0, %o1, %o4 ! logical or of multiplier and multiplicand mov %o0, %y ! multiplier to Y register andncc %o4, 0xfff, %o5 ! mask out lower 12 bits be mul_shortway ! can do it the short way andcc %g0, %g0, %o4 ! zero the partial product and clear NV cc ! ! long multiply ! mulscc %o4, %o1, %o4 ! first iteration of 33 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 ! 32nd iteration mulscc %o4, %g0, %o4 ! last iteration only shifts ! the upper 32 bits of product are wrong, but we do not care retl rd %y, %o0 ! ! short multiply ! mul_shortway: mulscc %o4, %o1, %o4 ! first iteration of 13 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 mulscc %o4, %o1, %o4 ! 12th iteration mulscc %o4, %g0, %o4 ! last iteration only shifts rd %y, %o5 sll %o4, 12, %o4 ! left shift partial product by 12 bits srl %o5, 20, %o5 ! right shift partial product by 20 bits retl or %o5, %o4, %o0 ! merge for true product #endif #ifdef L_divsi3 /* * Division and remainder, from Appendix E of the SPARC Version 8 * Architecture Manual, with fixes from Gordon Irlam. */ /* * Input: dividend and divisor in %o0 and %o1 respectively. * * m4 parameters: * .div name of function to generate * div div=div => %o0 / %o1; div=rem => %o0 % %o1 * true true=true => signed; true=false => unsigned * * Algorithm parameters: * N how many bits per iteration we try to get (4) * WORDSIZE total number of bits (32) * * Derived constants: * TOPBITS number of bits in the top decade of a number * * Important variables: * Q the partial quotient under development (initially 0) * R the remainder so far, initially the dividend * ITER number of main division loop iterations required; * equal to ceil(log2(quotient) / N). Note that this * is the log base (2^N) of the quotient. * V the current comparand, initially divisor*2^(ITER*N-1) * * Cost: * Current estimate for non-large dividend is * ceil(log2(quotient) / N) * (10 + 7N/2) + C * A large dividend is one greater than 2^(31-TOPBITS) and takes a * different path, as the upper bits of the quotient must be developed * one bit at a time. */ .global .udiv .align 4 .proc 4 .text .udiv: b ready_to_divide mov 0, %g3 ! result is always positive .global .div .align 4 .proc 4 .text .div: ! compute sign of result; if neither is negative, no problem orcc %o1, %o0, %g0 ! either negative? bge ready_to_divide ! no, go do the divide xor %o1, %o0, %g3 ! compute sign in any case tst %o1 bge 1f tst %o0 ! %o1 is definitely negative; %o0 might also be negative bge ready_to_divide ! if %o0 not negative... sub %g0, %o1, %o1 ! in any case, make %o1 nonneg 1: ! %o0 is negative, %o1 is nonnegative sub %g0, %o0, %o0 ! make %o0 nonnegative ready_to_divide: ! Ready to divide. Compute size of quotient; scale comparand. orcc %o1, %g0, %o5 bne 1f mov %o0, %o3 ! Divide by zero trap. If it returns, return 0 (about as ! wrong as possible, but that is what SunOS does...). ta 0x2 ! ST_DIV0 retl clr %o0 1: cmp %o3, %o5 ! if %o1 exceeds %o0, done blu got_result ! (and algorithm fails otherwise) clr %o2 sethi %hi(1 << (32 - 4 - 1)), %g1 cmp %o3, %g1 blu not_really_big clr %o4 ! Here the dividend is >= 2**(31-N) or so. We must be careful here, ! as our usual N-at-a-shot divide step will cause overflow and havoc. ! The number of bits in the result here is N*ITER+SC, where SC <= N. ! Compute ITER in an unorthodox manner: know we need to shift V into ! the top decade: so do not even bother to compare to R. 1: cmp %o5, %g1 bgeu 3f mov 1, %g2 sll %o5, 4, %o5 b 1b add %o4, 1, %o4 ! Now compute %g2. 2: addcc %o5, %o5, %o5 bcc not_too_big add %g2, 1, %g2 ! We get here if the %o1 overflowed while shifting. ! This means that %o3 has the high-order bit set. ! Restore %o5 and subtract from %o3. sll %g1, 4, %g1 ! high order bit srl %o5, 1, %o5 ! rest of %o5 add %o5, %g1, %o5 b do_single_div sub %g2, 1, %g2 not_too_big: 3: cmp %o5, %o3 blu 2b nop be do_single_div nop /* NB: these are commented out in the V8-SPARC manual as well */ /* (I do not understand this) */ ! %o5 > %o3: went too far: back up 1 step ! srl %o5, 1, %o5 ! dec %g2 ! do single-bit divide steps ! ! We have to be careful here. We know that %o3 >= %o5, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- ! order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: subcc %g2, 1, %g2 bl end_regular_divide nop sub %o3, %o5, %o3 mov 1, %o2 b end_single_divloop nop single_divloop: sll %o2, 1, %o2 bl 1f srl %o5, 1, %o5 ! %o3 >= 0 sub %o3, %o5, %o3 b 2f add %o2, 1, %o2 1: ! %o3 < 0 add %o3, %o5, %o3 sub %o2, 1, %o2 2: end_single_divloop: subcc %g2, 1, %g2 bge single_divloop tst %o3 b,a end_regular_divide not_really_big: 1: sll %o5, 4, %o5 cmp %o5, %o3 bleu 1b addcc %o4, 1, %o4 be got_result sub %o4, 1, %o4 tst %o3 ! set up for initial iteration divloop: sll %o2, 4, %o2 ! depth 1, accumulated bits 0 bl L1.16 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 2, accumulated bits 1 bl L2.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 3, accumulated bits 3 bl L3.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits 7 bl L4.23 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (7*2+1), %o2 L4.23: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (7*2-1), %o2 L3.19: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits 5 bl L4.21 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (5*2+1), %o2 L4.21: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (5*2-1), %o2 L2.17: ! remainder is negative addcc %o3,%o5,%o3 ! depth 3, accumulated bits 1 bl L3.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits 3 bl L4.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (3*2+1), %o2 L4.19: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (3*2-1), %o2 L3.17: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits 1 bl L4.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (1*2+1), %o2 L4.17: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (1*2-1), %o2 L1.16: ! remainder is negative addcc %o3,%o5,%o3 ! depth 2, accumulated bits -1 bl L2.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 3, accumulated bits -1 bl L3.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits -1 bl L4.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-1*2+1), %o2 L4.15: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-1*2-1), %o2 L3.15: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits -3 bl L4.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-3*2+1), %o2 L4.13: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-3*2-1), %o2 L2.15: ! remainder is negative addcc %o3,%o5,%o3 ! depth 3, accumulated bits -3 bl L3.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits -5 bl L4.11 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-5*2+1), %o2 L4.11: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-5*2-1), %o2 L3.13: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits -7 bl L4.9 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-7*2+1), %o2 L4.9: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-7*2-1), %o2 9: end_regular_divide: subcc %o4, 1, %o4 bge divloop tst %o3 bl,a got_result ! non-restoring fixup here (one instruction only!) sub %o2, 1, %o2 got_result: ! check to see if answer should be < 0 tst %g3 bl,a 1f sub %g0, %o2, %o2 1: retl mov %o2, %o0 #endif #ifdef L_modsi3 /* This implementation was taken from glibc: * * Input: dividend and divisor in %o0 and %o1 respectively. * * Algorithm parameters: * N how many bits per iteration we try to get (4) * WORDSIZE total number of bits (32) * * Derived constants: * TOPBITS number of bits in the top decade of a number * * Important variables: * Q the partial quotient under development (initially 0) * R the remainder so far, initially the dividend * ITER number of main division loop iterations required; * equal to ceil(log2(quotient) / N). Note that this * is the log base (2^N) of the quotient. * V the current comparand, initially divisor*2^(ITER*N-1) * * Cost: * Current estimate for non-large dividend is * ceil(log2(quotient) / N) * (10 + 7N/2) + C * A large dividend is one greater than 2^(31-TOPBITS) and takes a * different path, as the upper bits of the quotient must be developed * one bit at a time. */ .text .align 4 .global .urem .proc 4 .urem: b divide mov 0, %g3 ! result always positive .align 4 .global .rem .proc 4 .rem: ! compute sign of result; if neither is negative, no problem orcc %o1, %o0, %g0 ! either negative? bge 2f ! no, go do the divide mov %o0, %g3 ! sign of remainder matches %o0 tst %o1 bge 1f tst %o0 ! %o1 is definitely negative; %o0 might also be negative bge 2f ! if %o0 not negative... sub %g0, %o1, %o1 ! in any case, make %o1 nonneg 1: ! %o0 is negative, %o1 is nonnegative sub %g0, %o0, %o0 ! make %o0 nonnegative 2: ! Ready to divide. Compute size of quotient; scale comparand. divide: orcc %o1, %g0, %o5 bne 1f mov %o0, %o3 ! Divide by zero trap. If it returns, return 0 (about as ! wrong as possible, but that is what SunOS does...). ta 0x2 !ST_DIV0 retl clr %o0 1: cmp %o3, %o5 ! if %o1 exceeds %o0, done blu got_result ! (and algorithm fails otherwise) clr %o2 sethi %hi(1 << (32 - 4 - 1)), %g1 cmp %o3, %g1 blu not_really_big clr %o4 ! Here the dividend is >= 2**(31-N) or so. We must be careful here, ! as our usual N-at-a-shot divide step will cause overflow and havoc. ! The number of bits in the result here is N*ITER+SC, where SC <= N. ! Compute ITER in an unorthodox manner: know we need to shift V into ! the top decade: so do not even bother to compare to R. 1: cmp %o5, %g1 bgeu 3f mov 1, %g2 sll %o5, 4, %o5 b 1b add %o4, 1, %o4 ! Now compute %g2. 2: addcc %o5, %o5, %o5 bcc not_too_big add %g2, 1, %g2 ! We get here if the %o1 overflowed while shifting. ! This means that %o3 has the high-order bit set. ! Restore %o5 and subtract from %o3. sll %g1, 4, %g1 ! high order bit srl %o5, 1, %o5 ! rest of %o5 add %o5, %g1, %o5 b do_single_div sub %g2, 1, %g2 not_too_big: 3: cmp %o5, %o3 blu 2b nop be do_single_div nop /* NB: these are commented out in the V8-SPARC manual as well */ /* (I do not understand this) */ ! %o5 > %o3: went too far: back up 1 step ! srl %o5, 1, %o5 ! dec %g2 ! do single-bit divide steps ! ! We have to be careful here. We know that %o3 >= %o5, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- ! order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: subcc %g2, 1, %g2 bl end_regular_divide nop sub %o3, %o5, %o3 mov 1, %o2 b end_single_divloop nop single_divloop: sll %o2, 1, %o2 bl 1f srl %o5, 1, %o5 ! %o3 >= 0 sub %o3, %o5, %o3 b 2f add %o2, 1, %o2 1: ! %o3 < 0 add %o3, %o5, %o3 sub %o2, 1, %o2 2: end_single_divloop: subcc %g2, 1, %g2 bge single_divloop tst %o3 b,a end_regular_divide not_really_big: 1: sll %o5, 4, %o5 cmp %o5, %o3 bleu 1b addcc %o4, 1, %o4 be got_result sub %o4, 1, %o4 tst %o3 ! set up for initial iteration divloop: sll %o2, 4, %o2 ! depth 1, accumulated bits 0 bl L1.16 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 2, accumulated bits 1 bl L2.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 3, accumulated bits 3 bl L3.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits 7 bl L4.23 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (7*2+1), %o2 L4.23: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (7*2-1), %o2 L3.19: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits 5 bl L4.21 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (5*2+1), %o2 L4.21: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (5*2-1), %o2 L2.17: ! remainder is negative addcc %o3,%o5,%o3 ! depth 3, accumulated bits 1 bl L3.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits 3 bl L4.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (3*2+1), %o2 L4.19: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (3*2-1), %o2 L3.17: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits 1 bl L4.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (1*2+1), %o2 L4.17: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (1*2-1), %o2 L1.16: ! remainder is negative addcc %o3,%o5,%o3 ! depth 2, accumulated bits -1 bl L2.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 3, accumulated bits -1 bl L3.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits -1 bl L4.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-1*2+1), %o2 L4.15: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-1*2-1), %o2 L3.15: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits -3 bl L4.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-3*2+1), %o2 L4.13: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-3*2-1), %o2 L2.15: ! remainder is negative addcc %o3,%o5,%o3 ! depth 3, accumulated bits -3 bl L3.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 ! depth 4, accumulated bits -5 bl L4.11 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-5*2+1), %o2 L4.11: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-5*2-1), %o2 L3.13: ! remainder is negative addcc %o3,%o5,%o3 ! depth 4, accumulated bits -7 bl L4.9 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-7*2+1), %o2 L4.9: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-7*2-1), %o2 9: end_regular_divide: subcc %o4, 1, %o4 bge divloop tst %o3 bl,a got_result ! non-restoring fixup here (one instruction only!) add %o3, %o1, %o3 got_result: ! check to see if answer should be < 0 tst %g3 bl,a 1f sub %g0, %o3, %o3 1: retl mov %o3, %o0 #endif