Current Path : /usr/src/contrib/llvm/include/llvm/Analysis/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/include/llvm/Analysis/ScalarEvolution.h |
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ScalarEvolution class is an LLVM pass which can be used to analyze and // categorize scalar expressions in loops. It specializes in recognizing // general induction variables, representing them with the abstract and opaque // SCEV class. Given this analysis, trip counts of loops and other important // properties can be obtained. // // This analysis is primarily useful for induction variable substitution and // strength reduction. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H #define LLVM_ANALYSIS_SCALAREVOLUTION_H #include "llvm/Pass.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Operator.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ConstantRange.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/DenseMap.h" #include <map> namespace llvm { class APInt; class Constant; class ConstantInt; class DominatorTree; class Type; class ScalarEvolution; class TargetData; class TargetLibraryInfo; class LLVMContext; class Loop; class LoopInfo; class Operator; class SCEVUnknown; class SCEV; template<> struct FoldingSetTrait<SCEV>; /// SCEV - This class represents an analyzed expression in the program. These /// are opaque objects that the client is not allowed to do much with /// directly. /// class SCEV : public FoldingSetNode { friend struct FoldingSetTrait<SCEV>; /// FastID - A reference to an Interned FoldingSetNodeID for this node. /// The ScalarEvolution's BumpPtrAllocator holds the data. FoldingSetNodeIDRef FastID; // The SCEV baseclass this node corresponds to const unsigned short SCEVType; protected: /// SubclassData - This field is initialized to zero and may be used in /// subclasses to store miscellaneous information. unsigned short SubclassData; private: SCEV(const SCEV &); // DO NOT IMPLEMENT void operator=(const SCEV &); // DO NOT IMPLEMENT public: /// NoWrapFlags are bitfield indices into SubclassData. /// /// Add and Mul expressions may have no-unsigned-wrap <NUW> or /// no-signed-wrap <NSW> properties, which are derived from the IR /// operator. NSW is a misnomer that we use to mean no signed overflow or /// underflow. /// /// AddRec expression may have a no-self-wraparound <NW> property if the /// result can never reach the start value. This property is independent of /// the actual start value and step direction. Self-wraparound is defined /// purely in terms of the recurrence's loop, step size, and /// bitwidth. Formally, a recurrence with no self-wraparound satisfies: /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth). /// /// Note that NUW and NSW are also valid properties of a recurrence, and /// either implies NW. For convenience, NW will be set for a recurrence /// whenever either NUW or NSW are set. enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee. FlagNW = (1 << 0), // No self-wrap. FlagNUW = (1 << 1), // No unsigned wrap. FlagNSW = (1 << 2), // No signed wrap. NoWrapMask = (1 << 3) -1 }; explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) : FastID(ID), SCEVType(SCEVTy), SubclassData(0) {} unsigned getSCEVType() const { return SCEVType; } /// getType - Return the LLVM type of this SCEV expression. /// Type *getType() const; /// isZero - Return true if the expression is a constant zero. /// bool isZero() const; /// isOne - Return true if the expression is a constant one. /// bool isOne() const; /// isAllOnesValue - Return true if the expression is a constant /// all-ones value. /// bool isAllOnesValue() const; /// isNonConstantNegative - Return true if the specified scev is negated, /// but not a constant. bool isNonConstantNegative() const; /// print - Print out the internal representation of this scalar to the /// specified stream. This should really only be used for debugging /// purposes. void print(raw_ostream &OS) const; /// dump - This method is used for debugging. /// void dump() const; }; // Specialize FoldingSetTrait for SCEV to avoid needing to compute // temporary FoldingSetNodeID values. template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { static void Profile(const SCEV &X, FoldingSetNodeID& ID) { ID = X.FastID; } static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { return ID == X.FastID; } static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { return X.FastID.ComputeHash(); } }; inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { S.print(OS); return OS; } /// SCEVCouldNotCompute - An object of this class is returned by queries that /// could not be answered. For example, if you ask for the number of /// iterations of a linked-list traversal loop, you will get one of these. /// None of the standard SCEV operations are valid on this class, it is just a /// marker. struct SCEVCouldNotCompute : public SCEV { SCEVCouldNotCompute(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCouldNotCompute *S) { return true; } static bool classof(const SCEV *S); }; /// ScalarEvolution - This class is the main scalar evolution driver. Because /// client code (intentionally) can't do much with the SCEV objects directly, /// they must ask this class for services. /// class ScalarEvolution : public FunctionPass { public: /// LoopDisposition - An enum describing the relationship between a /// SCEV and a loop. enum LoopDisposition { LoopVariant, ///< The SCEV is loop-variant (unknown). LoopInvariant, ///< The SCEV is loop-invariant. LoopComputable ///< The SCEV varies predictably with the loop. }; /// BlockDisposition - An enum describing the relationship between a /// SCEV and a basic block. enum BlockDisposition { DoesNotDominateBlock, ///< The SCEV does not dominate the block. DominatesBlock, ///< The SCEV dominates the block. ProperlyDominatesBlock ///< The SCEV properly dominates the block. }; /// Convenient NoWrapFlags manipulation that hides enum casts and is /// visible in the ScalarEvolution name space. static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) { return (SCEV::NoWrapFlags)(Flags & Mask); } static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) { return (SCEV::NoWrapFlags)(Flags | OnFlags); } static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { return (SCEV::NoWrapFlags)(Flags & ~OffFlags); } private: /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be /// notified whenever a Value is deleted. class SCEVCallbackVH : public CallbackVH { ScalarEvolution *SE; virtual void deleted(); virtual void allUsesReplacedWith(Value *New); public: SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0); }; friend class SCEVCallbackVH; friend class SCEVExpander; friend class SCEVUnknown; /// F - The function we are analyzing. /// Function *F; /// LI - The loop information for the function we are currently analyzing. /// LoopInfo *LI; /// TD - The target data information for the target we are targeting. /// TargetData *TD; /// TLI - The target library information for the target we are targeting. /// TargetLibraryInfo *TLI; /// DT - The dominator tree. /// DominatorTree *DT; /// CouldNotCompute - This SCEV is used to represent unknown trip /// counts and things. SCEVCouldNotCompute CouldNotCompute; /// ValueExprMapType - The typedef for ValueExprMap. /// typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> > ValueExprMapType; /// ValueExprMap - This is a cache of the values we have analyzed so far. /// ValueExprMapType ValueExprMap; /// ExitLimit - Information about the number of loop iterations for /// which a loop exit's branch condition evaluates to the not-taken path. /// This is a temporary pair of exact and max expressions that are /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo. struct ExitLimit { const SCEV *Exact; const SCEV *Max; /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {} ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {} /// hasAnyInfo - Test whether this ExitLimit contains any computed /// information, or whether it's all SCEVCouldNotCompute values. bool hasAnyInfo() const { return !isa<SCEVCouldNotCompute>(Exact) || !isa<SCEVCouldNotCompute>(Max); } }; /// ExitNotTakenInfo - Information about the number of times a particular /// loop exit may be reached before exiting the loop. struct ExitNotTakenInfo { AssertingVH<BasicBlock> ExitingBlock; const SCEV *ExactNotTaken; PointerIntPair<ExitNotTakenInfo*, 1> NextExit; ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {} /// isCompleteList - Return true if all loop exits are computable. bool isCompleteList() const { return NextExit.getInt() == 0; } void setIncomplete() { NextExit.setInt(1); } /// getNextExit - Return a pointer to the next exit's not-taken info. ExitNotTakenInfo *getNextExit() const { return NextExit.getPointer(); } void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); } }; /// BackedgeTakenInfo - Information about the backedge-taken count /// of a loop. This currently includes an exact count and a maximum count. /// class BackedgeTakenInfo { /// ExitNotTaken - A list of computable exits and their not-taken counts. /// Loops almost never have more than one computable exit. ExitNotTakenInfo ExitNotTaken; /// Max - An expression indicating the least maximum backedge-taken /// count of the loop that is known, or a SCEVCouldNotCompute. const SCEV *Max; public: BackedgeTakenInfo() : Max(0) {} /// Initialize BackedgeTakenInfo from a list of exact exit counts. BackedgeTakenInfo( SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, bool Complete, const SCEV *MaxCount); /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any /// computed information, or whether it's all SCEVCouldNotCompute /// values. bool hasAnyInfo() const { return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max); } /// getExact - Return an expression indicating the exact backedge-taken /// count of the loop if it is known, or SCEVCouldNotCompute /// otherwise. This is the number of times the loop header can be /// guaranteed to execute, minus one. const SCEV *getExact(ScalarEvolution *SE) const; /// getExact - Return the number of times this loop exit may fall through /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not /// to exit via this block before this number of iterations, but may exit /// via another block. const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const; /// getMax - Get the max backedge taken count for the loop. const SCEV *getMax(ScalarEvolution *SE) const; /// clear - Invalidate this result and free associated memory. void clear(); }; /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for /// this function as they are computed. DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts; /// ConstantEvolutionLoopExitValue - This map contains entries for all of /// the PHI instructions that we attempt to compute constant evolutions for. /// This allows us to avoid potentially expensive recomputation of these /// properties. An instruction maps to null if we are unable to compute its /// exit value. DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue; /// ValuesAtScopes - This map contains entries for all the expressions /// that we attempt to compute getSCEVAtScope information for, which can /// be expensive in extreme cases. DenseMap<const SCEV *, std::map<const Loop *, const SCEV *> > ValuesAtScopes; /// LoopDispositions - Memoized computeLoopDisposition results. DenseMap<const SCEV *, std::map<const Loop *, LoopDisposition> > LoopDispositions; /// computeLoopDisposition - Compute a LoopDisposition value. LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); /// BlockDispositions - Memoized computeBlockDisposition results. DenseMap<const SCEV *, std::map<const BasicBlock *, BlockDisposition> > BlockDispositions; /// computeBlockDisposition - Compute a BlockDisposition value. BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); /// UnsignedRanges - Memoized results from getUnsignedRange DenseMap<const SCEV *, ConstantRange> UnsignedRanges; /// SignedRanges - Memoized results from getSignedRange DenseMap<const SCEV *, ConstantRange> SignedRanges; /// setUnsignedRange - Set the memoized unsigned range for the given SCEV. const ConstantRange &setUnsignedRange(const SCEV *S, const ConstantRange &CR) { std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair = UnsignedRanges.insert(std::make_pair(S, CR)); if (!Pair.second) Pair.first->second = CR; return Pair.first->second; } /// setUnsignedRange - Set the memoized signed range for the given SCEV. const ConstantRange &setSignedRange(const SCEV *S, const ConstantRange &CR) { std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair = SignedRanges.insert(std::make_pair(S, CR)); if (!Pair.second) Pair.first->second = CR; return Pair.first->second; } /// createSCEV - We know that there is no SCEV for the specified value. /// Analyze the expression. const SCEV *createSCEV(Value *V); /// createNodeForPHI - Provide the special handling we need to analyze PHI /// SCEVs. const SCEV *createNodeForPHI(PHINode *PN); /// createNodeForGEP - Provide the special handling we need to analyze GEP /// SCEVs. const SCEV *createNodeForGEP(GEPOperator *GEP); /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called /// at most once for each SCEV+Loop pair. /// const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); /// ForgetSymbolicValue - This looks up computed SCEV values for all /// instructions that depend on the given instruction and removes them from /// the ValueExprMap map if they reference SymName. This is used during PHI /// resolution. void ForgetSymbolicName(Instruction *I, const SCEV *SymName); /// getBECount - Subtract the end and start values and divide by the step, /// rounding up, to get the number of times the backedge is executed. Return /// CouldNotCompute if an intermediate computation overflows. const SCEV *getBECount(const SCEV *Start, const SCEV *End, const SCEV *Step, bool NoWrap); /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given /// loop, lazily computing new values if the loop hasn't been analyzed /// yet. const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); /// ComputeBackedgeTakenCount - Compute the number of times the specified /// loop will iterate. BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L); /// ComputeExitLimit - Compute the number of times the backedge of the /// specified loop will execute if it exits via the specified block. ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock); /// ComputeExitLimitFromCond - Compute the number of times the backedge of /// the specified loop will execute if its exit condition were a conditional /// branch of ExitCond, TBB, and FBB. ExitLimit ComputeExitLimitFromCond(const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB); /// ComputeExitLimitFromICmp - Compute the number of times the backedge of /// the specified loop will execute if its exit condition were a conditional /// branch of the ICmpInst ExitCond, TBB, and FBB. ExitLimit ComputeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, BasicBlock *TBB, BasicBlock *FBB); /// ComputeLoadConstantCompareExitLimit - Given an exit condition /// of 'icmp op load X, cst', try to see if we can compute the /// backedge-taken count. ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate p); /// ComputeExitCountExhaustively - If the loop is known to execute a /// constant number of times (the condition evolves only from constants), /// try to evaluate a few iterations of the loop until we get the exit /// condition gets a value of ExitWhen (true or false). If we cannot /// evaluate the exit count of the loop, return CouldNotCompute. const SCEV *ComputeExitCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen); /// HowFarToZero - Return the number of times an exit condition comparing /// the specified value to zero will execute. If not computable, return /// CouldNotCompute. ExitLimit HowFarToZero(const SCEV *V, const Loop *L); /// HowFarToNonZero - Return the number of times an exit condition checking /// the specified value for nonzero will execute. If not computable, return /// CouldNotCompute. ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L); /// HowManyLessThans - Return the number of times an exit condition /// containing the specified less-than comparison will execute. If not /// computable, return CouldNotCompute. isSigned specifies whether the /// less-than is signed. ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned); /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB /// (which may not be an immediate predecessor) which has exactly one /// successor from which BB is reachable, or null if no such block is /// found. std::pair<BasicBlock *, BasicBlock *> getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); /// isImpliedCond - Test whether the condition described by Pred, LHS, and /// RHS is true whenever the given FoundCondValue value evaluates to true. bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, Value *FoundCondValue, bool Inverse); /// isImpliedCondOperands - Test whether the condition described by Pred, /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, /// and FoundRHS is true. bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// isImpliedCondOperandsHelper - Test whether the condition described by /// Pred, LHS, and RHS is true whenever the condition described by Pred, /// FoundLHS, and FoundRHS is true. bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS); /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is /// in the header of its containing loop, we know the loop executes a /// constant number of times, and the PHI node is just a recurrence /// involving constants, fold it. Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L); /// isKnownPredicateWithRanges - Test if the given expression is known to /// satisfy the condition described by Pred and the known constant ranges /// of LHS and RHS. /// bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// forgetMemoizedResults - Drop memoized information computed for S. void forgetMemoizedResults(const SCEV *S); public: static char ID; // Pass identification, replacement for typeid ScalarEvolution(); LLVMContext &getContext() const { return F->getContext(); } /// isSCEVable - Test if values of the given type are analyzable within /// the SCEV framework. This primarily includes integer types, and it /// can optionally include pointer types if the ScalarEvolution class /// has access to target-specific information. bool isSCEVable(Type *Ty) const; /// getTypeSizeInBits - Return the size in bits of the specified type, /// for which isSCEVable must return true. uint64_t getTypeSizeInBits(Type *Ty) const; /// getEffectiveSCEVType - Return a type with the same bitwidth as /// the given type and which represents how SCEV will treat the given /// type, for which isSCEVable must return true. For pointer types, /// this is the pointer-sized integer type. Type *getEffectiveSCEVType(Type *Ty) const; /// getSCEV - Return a SCEV expression for the full generality of the /// specified expression. const SCEV *getSCEV(Value *V); const SCEV *getConstant(ConstantInt *V); const SCEV *getConstant(const APInt& Val); const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty); const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector<const SCEV *, 2> Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getAddExpr(Ops, Flags); } const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector<const SCEV *, 3> Ops; Ops.push_back(Op0); Ops.push_back(Op1); Ops.push_back(Op2); return getAddExpr(Ops, Flags); } const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector<const SCEV *, 2> Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getMulExpr(Ops, Flags); } const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { SmallVector<const SCEV *, 3> Ops; Ops.push_back(Op0); Ops.push_back(Op1); Ops.push_back(Op2); return getMulExpr(Ops, Flags); } const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, const Loop *L, SCEV::NoWrapFlags Flags); const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, const Loop *L, SCEV::NoWrapFlags Flags) { SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); return getAddRecExpr(NewOp, L, Flags); } const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS); const SCEV *getUnknown(Value *V); const SCEV *getCouldNotCompute(); /// getSizeOfExpr - Return an expression for sizeof on the given type. /// const SCEV *getSizeOfExpr(Type *AllocTy); /// getAlignOfExpr - Return an expression for alignof on the given type. /// const SCEV *getAlignOfExpr(Type *AllocTy); /// getOffsetOfExpr - Return an expression for offsetof on the given field. /// const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo); /// getOffsetOfExpr - Return an expression for offsetof on the given field. /// const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo); /// getNegativeSCEV - Return the SCEV object corresponding to -V. /// const SCEV *getNegativeSCEV(const SCEV *V); /// getNotSCEV - Return the SCEV object corresponding to ~V. /// const SCEV *getNotSCEV(const SCEV *V); /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is zero extended. const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty); /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is sign extended. const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty); /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is zero extended. The conversion must not be narrowing. const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is sign extended. The conversion must not be narrowing. const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is extended with unspecified bits. The conversion must not be /// narrowing. const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the /// input value to the specified type. The conversion must not be /// widening. const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); /// getUMaxFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umax operation /// with them. const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); /// getUMinFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umin operation /// with them. const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); /// getPointerBase - Transitively follow the chain of pointer-type operands /// until reaching a SCEV that does not have a single pointer operand. This /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, /// but corner cases do exist. const SCEV *getPointerBase(const SCEV *V); /// getSCEVAtScope - Return a SCEV expression for the specified value /// at the specified scope in the program. The L value specifies a loop /// nest to evaluate the expression at, where null is the top-level or a /// specified loop is immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); /// getSCEVAtScope - This is a convenience function which does /// getSCEVAtScope(getSCEV(V), L). const SCEV *getSCEVAtScope(Value *V, const Loop *L); /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected /// by a conditional between LHS and RHS. This is used to help avoid max /// expressions in loop trip counts, and to eliminate casts. bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is /// protected by a conditional between LHS and RHS. This is used to /// to eliminate casts. bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// getSmallConstantTripCount - Returns the maximum trip count of this loop /// as a normal unsigned value. Returns 0 if the trip count is unknown or /// not constant. This "trip count" assumes that control exits via /// ExitingBlock. More precisely, it is the number of times that control may /// reach ExitingBlock before taking the branch. For loops with multiple /// exits, it may not be the number times that the loop header executes if /// the loop exits prematurely via another branch. unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock); /// getSmallConstantTripMultiple - Returns the largest constant divisor of /// the trip count of this loop as a normal unsigned value, if /// possible. This means that the actual trip count is always a multiple of /// the returned value (don't forget the trip count could very well be zero /// as well!). As explained in the comments for getSmallConstantTripCount, /// this assumes that control exits the loop via ExitingBlock. unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock); // getExitCount - Get the expression for the number of loop iterations for // which this loop is guaranteed not to exit via ExitingBlock. Otherwise // return SCEVCouldNotCompute. const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock); /// getBackedgeTakenCount - If the specified loop has a predictable /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute /// object. The backedge-taken count is the number of times the loop header /// will be branched to from within the loop. This is one less than the /// trip count of the loop, since it doesn't count the first iteration, /// when the header is branched to from outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// const SCEV *getBackedgeTakenCount(const Loop *L); /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except /// return the least SCEV value that is known never to be less than the /// actual backedge taken count. const SCEV *getMaxBackedgeTakenCount(const Loop *L); /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop /// has an analyzable loop-invariant backedge-taken count. bool hasLoopInvariantBackedgeTakenCount(const Loop *L); /// forgetLoop - This method should be called by the client when it has /// changed a loop in a way that may effect ScalarEvolution's ability to /// compute a trip count, or if the loop is deleted. void forgetLoop(const Loop *L); /// forgetValue - This method should be called by the client when it has /// changed a value in a way that may effect its value, or which may /// disconnect it from a def-use chain linking it to a loop. void forgetValue(Value *V); /// GetMinTrailingZeros - Determine the minimum number of zero bits that S /// is guaranteed to end in (at every loop iteration). It is, at the same /// time, the minimum number of times S is divisible by 2. For example, /// given {4,+,8} it returns 2. If S is guaranteed to be 0, it returns the /// bitwidth of S. uint32_t GetMinTrailingZeros(const SCEV *S); /// getUnsignedRange - Determine the unsigned range for a particular SCEV. /// ConstantRange getUnsignedRange(const SCEV *S); /// getSignedRange - Determine the signed range for a particular SCEV. /// ConstantRange getSignedRange(const SCEV *S); /// isKnownNegative - Test if the given expression is known to be negative. /// bool isKnownNegative(const SCEV *S); /// isKnownPositive - Test if the given expression is known to be positive. /// bool isKnownPositive(const SCEV *S); /// isKnownNonNegative - Test if the given expression is known to be /// non-negative. /// bool isKnownNonNegative(const SCEV *S); /// isKnownNonPositive - Test if the given expression is known to be /// non-positive. /// bool isKnownNonPositive(const SCEV *S); /// isKnownNonZero - Test if the given expression is known to be /// non-zero. /// bool isKnownNonZero(const SCEV *S); /// isKnownPredicate - Test if the given expression is known to satisfy /// the condition described by Pred, LHS, and RHS. /// bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with /// predicate Pred. Return true iff any changes were made. If the /// operands are provably equal or inequal, LHS and RHS are set to /// the same value and Pred is set to either ICMP_EQ or ICMP_NE. /// bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, const SCEV *&RHS); /// getLoopDisposition - Return the "disposition" of the given SCEV with /// respect to the given loop. LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); /// isLoopInvariant - Return true if the value of the given SCEV is /// unchanging in the specified loop. bool isLoopInvariant(const SCEV *S, const Loop *L); /// hasComputableLoopEvolution - Return true if the given SCEV changes value /// in a known way in the specified loop. This property being true implies /// that the value is variant in the loop AND that we can emit an expression /// to compute the value of the expression at any particular loop iteration. bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); /// getLoopDisposition - Return the "disposition" of the given SCEV with /// respect to the given block. BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); /// dominates - Return true if elements that makes up the given SCEV /// dominate the specified basic block. bool dominates(const SCEV *S, const BasicBlock *BB); /// properlyDominates - Return true if elements that makes up the given SCEV /// properly dominate the specified basic block. bool properlyDominates(const SCEV *S, const BasicBlock *BB); /// hasOperand - Test whether the given SCEV has Op as a direct or /// indirect operand. bool hasOperand(const SCEV *S, const SCEV *Op) const; virtual bool runOnFunction(Function &F); virtual void releaseMemory(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void print(raw_ostream &OS, const Module* = 0) const; private: FoldingSet<SCEV> UniqueSCEVs; BumpPtrAllocator SCEVAllocator; /// FirstUnknown - The head of a linked list of all SCEVUnknown /// values that have been allocated. This is used by releaseMemory /// to locate them all and call their destructors. SCEVUnknown *FirstUnknown; }; } #endif