Current Path : /usr/src/contrib/llvm/include/llvm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/include/llvm/CallingConv.h |
//===-- llvm/CallingConv.h - LLVM Calling Conventions -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines LLVM's set of calling conventions. // //===----------------------------------------------------------------------===// #ifndef LLVM_CALLINGCONV_H #define LLVM_CALLINGCONV_H namespace llvm { /// CallingConv Namespace - This namespace contains an enum with a value for /// the well-known calling conventions. /// namespace CallingConv { /// A set of enums which specify the assigned numeric values for known llvm /// calling conventions. /// @brief LLVM Calling Convention Representation enum ID { /// C - The default llvm calling convention, compatible with C. This /// convention is the only calling convention that supports varargs calls. /// As with typical C calling conventions, the callee/caller have to /// tolerate certain amounts of prototype mismatch. C = 0, // Generic LLVM calling conventions. None of these calling conventions // support varargs calls, and all assume that the caller and callee // prototype exactly match. /// Fast - This calling convention attempts to make calls as fast as /// possible (e.g. by passing things in registers). Fast = 8, // Cold - This calling convention attempts to make code in the caller as // efficient as possible under the assumption that the call is not commonly // executed. As such, these calls often preserve all registers so that the // call does not break any live ranges in the caller side. Cold = 9, // GHC - Calling convention used by the Glasgow Haskell Compiler (GHC). GHC = 10, // Target - This is the start of the target-specific calling conventions, // e.g. fastcall and thiscall on X86. FirstTargetCC = 64, /// X86_StdCall - stdcall is the calling conventions mostly used by the /// Win32 API. It is basically the same as the C convention with the /// difference in that the callee is responsible for popping the arguments /// from the stack. X86_StdCall = 64, /// X86_FastCall - 'fast' analog of X86_StdCall. Passes first two arguments /// in ECX:EDX registers, others - via stack. Callee is responsible for /// stack cleaning. X86_FastCall = 65, /// ARM_APCS - ARM Procedure Calling Standard calling convention (obsolete, /// but still used on some targets). ARM_APCS = 66, /// ARM_AAPCS - ARM Architecture Procedure Calling Standard calling /// convention (aka EABI). Soft float variant. ARM_AAPCS = 67, /// ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI. ARM_AAPCS_VFP = 68, /// MSP430_INTR - Calling convention used for MSP430 interrupt routines. MSP430_INTR = 69, /// X86_ThisCall - Similar to X86_StdCall. Passes first argument in ECX, /// others via stack. Callee is responsible for stack cleaning. MSVC uses /// this by default for methods in its ABI. X86_ThisCall = 70, /// PTX_Kernel - Call to a PTX kernel. /// Passes all arguments in parameter space. PTX_Kernel = 71, /// PTX_Device - Call to a PTX device function. /// Passes all arguments in register or parameter space. PTX_Device = 72, /// MBLAZE_INTR - Calling convention used for MBlaze interrupt routines. MBLAZE_INTR = 73, /// MBLAZE_INTR - Calling convention used for MBlaze interrupt support /// routines (i.e. GCC's save_volatiles attribute). MBLAZE_SVOL = 74 }; } // End CallingConv namespace } // End llvm namespace #endif