Current Path : /usr/src/contrib/llvm/include/llvm/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/include/llvm/CodeGen/MachineBasicBlock.h |
//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H #define LLVM_CODEGEN_MACHINEBASICBLOCK_H #include "llvm/CodeGen/MachineInstr.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/Support/DataTypes.h" #include <functional> namespace llvm { class Pass; class BasicBlock; class MachineFunction; class MCSymbol; class SlotIndexes; class StringRef; class raw_ostream; class MachineBranchProbabilityInfo; template <> struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> { private: mutable ilist_half_node<MachineInstr> Sentinel; // this is only set by the MachineBasicBlock owning the LiveList friend class MachineBasicBlock; MachineBasicBlock* Parent; public: MachineInstr *createSentinel() const { return static_cast<MachineInstr*>(&Sentinel); } void destroySentinel(MachineInstr *) const {} MachineInstr *provideInitialHead() const { return createSentinel(); } MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); } static void noteHead(MachineInstr*, MachineInstr*) {} void addNodeToList(MachineInstr* N); void removeNodeFromList(MachineInstr* N); void transferNodesFromList(ilist_traits &SrcTraits, ilist_iterator<MachineInstr> first, ilist_iterator<MachineInstr> last); void deleteNode(MachineInstr *N); private: void createNode(const MachineInstr &); }; class MachineBasicBlock : public ilist_node<MachineBasicBlock> { typedef ilist<MachineInstr> Instructions; Instructions Insts; const BasicBlock *BB; int Number; MachineFunction *xParent; /// Predecessors/Successors - Keep track of the predecessor / successor /// basicblocks. std::vector<MachineBasicBlock *> Predecessors; std::vector<MachineBasicBlock *> Successors; /// Weights - Keep track of the weights to the successors. This vector /// has the same order as Successors, or it is empty if we don't use it /// (disable optimization). std::vector<uint32_t> Weights; typedef std::vector<uint32_t>::iterator weight_iterator; typedef std::vector<uint32_t>::const_iterator const_weight_iterator; /// LiveIns - Keep track of the physical registers that are livein of /// the basicblock. std::vector<unsigned> LiveIns; /// Alignment - Alignment of the basic block. Zero if the basic block does /// not need to be aligned. /// The alignment is specified as log2(bytes). unsigned Alignment; /// IsLandingPad - Indicate that this basic block is entered via an /// exception handler. bool IsLandingPad; /// AddressTaken - Indicate that this basic block is potentially the /// target of an indirect branch. bool AddressTaken; // Intrusive list support MachineBasicBlock() {} explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb); ~MachineBasicBlock(); // MachineBasicBlocks are allocated and owned by MachineFunction. friend class MachineFunction; public: /// getBasicBlock - Return the LLVM basic block that this instance /// corresponded to originally. Note that this may be NULL if this instance /// does not correspond directly to an LLVM basic block. /// const BasicBlock *getBasicBlock() const { return BB; } /// getName - Return the name of the corresponding LLVM basic block, or /// "(null)". StringRef getName() const; /// getFullName - Return a formatted string to identify this block and its /// parent function. std::string getFullName() const; /// hasAddressTaken - Test whether this block is potentially the target /// of an indirect branch. bool hasAddressTaken() const { return AddressTaken; } /// setHasAddressTaken - Set this block to reflect that it potentially /// is the target of an indirect branch. void setHasAddressTaken() { AddressTaken = true; } /// getParent - Return the MachineFunction containing this basic block. /// const MachineFunction *getParent() const { return xParent; } MachineFunction *getParent() { return xParent; } /// bundle_iterator - MachineBasicBlock iterator that automatically skips over /// MIs that are inside bundles (i.e. walk top level MIs only). template<typename Ty, typename IterTy> class bundle_iterator : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> { IterTy MII; public: bundle_iterator(IterTy mii) : MII(mii) { assert(!MII->isInsideBundle() && "It's not legal to initialize bundle_iterator with a bundled MI"); } bundle_iterator(Ty &mi) : MII(mi) { assert(!mi.isInsideBundle() && "It's not legal to initialize bundle_iterator with a bundled MI"); } bundle_iterator(Ty *mi) : MII(mi) { assert((!mi || !mi->isInsideBundle()) && "It's not legal to initialize bundle_iterator with a bundled MI"); } bundle_iterator(const bundle_iterator &I) : MII(I.MII) {} bundle_iterator() : MII(0) {} Ty &operator*() const { return *MII; } Ty *operator->() const { return &operator*(); } operator Ty*() const { return MII; } bool operator==(const bundle_iterator &x) const { return MII == x.MII; } bool operator!=(const bundle_iterator &x) const { return !operator==(x); } // Increment and decrement operators... bundle_iterator &operator--() { // predecrement - Back up do { --MII; } while (MII->isInsideBundle()); return *this; } bundle_iterator &operator++() { // preincrement - Advance do { ++MII; } while (MII->isInsideBundle()); return *this; } bundle_iterator operator--(int) { // postdecrement operators... bundle_iterator tmp = *this; do { --MII; } while (MII->isInsideBundle()); return tmp; } bundle_iterator operator++(int) { // postincrement operators... bundle_iterator tmp = *this; do { ++MII; } while (MII->isInsideBundle()); return tmp; } IterTy getInstrIterator() const { return MII; } }; typedef Instructions::iterator instr_iterator; typedef Instructions::const_iterator const_instr_iterator; typedef std::reverse_iterator<instr_iterator> reverse_instr_iterator; typedef std::reverse_iterator<const_instr_iterator> const_reverse_instr_iterator; typedef bundle_iterator<MachineInstr,instr_iterator> iterator; typedef bundle_iterator<const MachineInstr,const_instr_iterator> const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; unsigned size() const { return (unsigned)Insts.size(); } bool empty() const { return Insts.empty(); } MachineInstr& front() { return Insts.front(); } MachineInstr& back() { return Insts.back(); } const MachineInstr& front() const { return Insts.front(); } const MachineInstr& back() const { return Insts.back(); } instr_iterator instr_begin() { return Insts.begin(); } const_instr_iterator instr_begin() const { return Insts.begin(); } instr_iterator instr_end() { return Insts.end(); } const_instr_iterator instr_end() const { return Insts.end(); } reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); } const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); } reverse_instr_iterator instr_rend () { return Insts.rend(); } const_reverse_instr_iterator instr_rend () const { return Insts.rend(); } iterator begin() { return Insts.begin(); } const_iterator begin() const { return Insts.begin(); } iterator end() { instr_iterator II = instr_end(); if (II != instr_begin()) { while (II->isInsideBundle()) --II; } return II; } const_iterator end() const { const_instr_iterator II = instr_end(); if (II != instr_begin()) { while (II->isInsideBundle()) --II; } return II; } reverse_iterator rbegin() { reverse_instr_iterator II = instr_rbegin(); if (II != instr_rend()) { while (II->isInsideBundle()) ++II; } return II; } const_reverse_iterator rbegin() const { const_reverse_instr_iterator II = instr_rbegin(); if (II != instr_rend()) { while (II->isInsideBundle()) ++II; } return II; } reverse_iterator rend () { return Insts.rend(); } const_reverse_iterator rend () const { return Insts.rend(); } // Machine-CFG iterators typedef std::vector<MachineBasicBlock *>::iterator pred_iterator; typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator; typedef std::vector<MachineBasicBlock *>::iterator succ_iterator; typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator; typedef std::vector<MachineBasicBlock *>::reverse_iterator pred_reverse_iterator; typedef std::vector<MachineBasicBlock *>::const_reverse_iterator const_pred_reverse_iterator; typedef std::vector<MachineBasicBlock *>::reverse_iterator succ_reverse_iterator; typedef std::vector<MachineBasicBlock *>::const_reverse_iterator const_succ_reverse_iterator; pred_iterator pred_begin() { return Predecessors.begin(); } const_pred_iterator pred_begin() const { return Predecessors.begin(); } pred_iterator pred_end() { return Predecessors.end(); } const_pred_iterator pred_end() const { return Predecessors.end(); } pred_reverse_iterator pred_rbegin() { return Predecessors.rbegin();} const_pred_reverse_iterator pred_rbegin() const { return Predecessors.rbegin();} pred_reverse_iterator pred_rend() { return Predecessors.rend(); } const_pred_reverse_iterator pred_rend() const { return Predecessors.rend(); } unsigned pred_size() const { return (unsigned)Predecessors.size(); } bool pred_empty() const { return Predecessors.empty(); } succ_iterator succ_begin() { return Successors.begin(); } const_succ_iterator succ_begin() const { return Successors.begin(); } succ_iterator succ_end() { return Successors.end(); } const_succ_iterator succ_end() const { return Successors.end(); } succ_reverse_iterator succ_rbegin() { return Successors.rbegin(); } const_succ_reverse_iterator succ_rbegin() const { return Successors.rbegin(); } succ_reverse_iterator succ_rend() { return Successors.rend(); } const_succ_reverse_iterator succ_rend() const { return Successors.rend(); } unsigned succ_size() const { return (unsigned)Successors.size(); } bool succ_empty() const { return Successors.empty(); } // LiveIn management methods. /// addLiveIn - Add the specified register as a live in. Note that it /// is an error to add the same register to the same set more than once. void addLiveIn(unsigned Reg) { LiveIns.push_back(Reg); } /// removeLiveIn - Remove the specified register from the live in set. /// void removeLiveIn(unsigned Reg); /// isLiveIn - Return true if the specified register is in the live in set. /// bool isLiveIn(unsigned Reg) const; // Iteration support for live in sets. These sets are kept in sorted // order by their register number. typedef std::vector<unsigned>::const_iterator livein_iterator; livein_iterator livein_begin() const { return LiveIns.begin(); } livein_iterator livein_end() const { return LiveIns.end(); } bool livein_empty() const { return LiveIns.empty(); } /// getAlignment - Return alignment of the basic block. /// The alignment is specified as log2(bytes). /// unsigned getAlignment() const { return Alignment; } /// setAlignment - Set alignment of the basic block. /// The alignment is specified as log2(bytes). /// void setAlignment(unsigned Align) { Alignment = Align; } /// isLandingPad - Returns true if the block is a landing pad. That is /// this basic block is entered via an exception handler. bool isLandingPad() const { return IsLandingPad; } /// setIsLandingPad - Indicates the block is a landing pad. That is /// this basic block is entered via an exception handler. void setIsLandingPad(bool V = true) { IsLandingPad = V; } /// getLandingPadSuccessor - If this block has a successor that is a landing /// pad, return it. Otherwise return NULL. const MachineBasicBlock *getLandingPadSuccessor() const; // Code Layout methods. /// moveBefore/moveAfter - move 'this' block before or after the specified /// block. This only moves the block, it does not modify the CFG or adjust /// potential fall-throughs at the end of the block. void moveBefore(MachineBasicBlock *NewAfter); void moveAfter(MachineBasicBlock *NewBefore); /// updateTerminator - Update the terminator instructions in block to account /// for changes to the layout. If the block previously used a fallthrough, /// it may now need a branch, and if it previously used branching it may now /// be able to use a fallthrough. void updateTerminator(); // Machine-CFG mutators /// addSuccessor - Add succ as a successor of this MachineBasicBlock. /// The Predecessors list of succ is automatically updated. WEIGHT /// parameter is stored in Weights list and it may be used by /// MachineBranchProbabilityInfo analysis to calculate branch probability. /// void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0); /// removeSuccessor - Remove successor from the successors list of this /// MachineBasicBlock. The Predecessors list of succ is automatically updated. /// void removeSuccessor(MachineBasicBlock *succ); /// removeSuccessor - Remove specified successor from the successors list of /// this MachineBasicBlock. The Predecessors list of succ is automatically /// updated. Return the iterator to the element after the one removed. /// succ_iterator removeSuccessor(succ_iterator I); /// replaceSuccessor - Replace successor OLD with NEW and update weight info. /// void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New); /// transferSuccessors - Transfers all the successors from MBB to this /// machine basic block (i.e., copies all the successors fromMBB and /// remove all the successors from fromMBB). void transferSuccessors(MachineBasicBlock *fromMBB); /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as /// in transferSuccessors, and update PHI operands in the successor blocks /// which refer to fromMBB to refer to this. void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB); /// isSuccessor - Return true if the specified MBB is a successor of this /// block. bool isSuccessor(const MachineBasicBlock *MBB) const; /// isLayoutSuccessor - Return true if the specified MBB will be emitted /// immediately after this block, such that if this block exits by /// falling through, control will transfer to the specified MBB. Note /// that MBB need not be a successor at all, for example if this block /// ends with an unconditional branch to some other block. bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; /// canFallThrough - Return true if the block can implicitly transfer /// control to the block after it by falling off the end of it. This should /// return false if it can reach the block after it, but it uses an explicit /// branch to do so (e.g., a table jump). True is a conservative answer. bool canFallThrough(); /// Returns a pointer to the first instructon in this block that is not a /// PHINode instruction. When adding instruction to the beginning of the /// basic block, they should be added before the returned value, not before /// the first instruction, which might be PHI. /// Returns end() is there's no non-PHI instruction. iterator getFirstNonPHI(); /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is /// not a PHI or a label. This is the correct point to insert copies at the /// beginning of a basic block. iterator SkipPHIsAndLabels(iterator I); /// getFirstTerminator - returns an iterator to the first terminator /// instruction of this basic block. If a terminator does not exist, /// it returns end() iterator getFirstTerminator(); const_iterator getFirstTerminator() const; /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles /// and return an instr_iterator instead. instr_iterator getFirstInstrTerminator(); /// getLastNonDebugInstr - returns an iterator to the last non-debug /// instruction in the basic block, or end() iterator getLastNonDebugInstr(); const_iterator getLastNonDebugInstr() const; /// SplitCriticalEdge - Split the critical edge from this block to the /// given successor block, and return the newly created block, or null /// if splitting is not possible. /// /// This function updates LiveVariables, MachineDominatorTree, and /// MachineLoopInfo, as applicable. MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P); void pop_front() { Insts.pop_front(); } void pop_back() { Insts.pop_back(); } void push_back(MachineInstr *MI) { Insts.push_back(MI); } template<typename IT> void insert(instr_iterator I, IT S, IT E) { Insts.insert(I, S, E); } instr_iterator insert(instr_iterator I, MachineInstr *M) { return Insts.insert(I, M); } instr_iterator insertAfter(instr_iterator I, MachineInstr *M) { return Insts.insertAfter(I, M); } template<typename IT> void insert(iterator I, IT S, IT E) { Insts.insert(I.getInstrIterator(), S, E); } iterator insert(iterator I, MachineInstr *M) { return Insts.insert(I.getInstrIterator(), M); } iterator insertAfter(iterator I, MachineInstr *M) { return Insts.insertAfter(I.getInstrIterator(), M); } /// erase - Remove the specified element or range from the instruction list. /// These functions delete any instructions removed. /// instr_iterator erase(instr_iterator I) { return Insts.erase(I); } instr_iterator erase(instr_iterator I, instr_iterator E) { return Insts.erase(I, E); } instr_iterator erase_instr(MachineInstr *I) { instr_iterator MII(I); return erase(MII); } iterator erase(iterator I); iterator erase(iterator I, iterator E) { return Insts.erase(I.getInstrIterator(), E.getInstrIterator()); } iterator erase(MachineInstr *I) { iterator MII(I); return erase(MII); } /// remove - Remove the instruction from the instruction list. This function /// does not delete the instruction. WARNING: Note, if the specified /// instruction is a bundle this function will remove all the bundled /// instructions as well. It is up to the caller to keep a list of the /// bundled instructions and re-insert them if desired. This function is /// *not recommended* for manipulating instructions with bundles. Use /// splice instead. MachineInstr *remove(MachineInstr *I); void clear() { Insts.clear(); } /// splice - Take an instruction from MBB 'Other' at the position From, /// and insert it into this MBB right before 'where'. void splice(instr_iterator where, MachineBasicBlock *Other, instr_iterator From) { Insts.splice(where, Other->Insts, From); } void splice(iterator where, MachineBasicBlock *Other, iterator From); /// splice - Take a block of instructions from MBB 'Other' in the range [From, /// To), and insert them into this MBB right before 'where'. void splice(instr_iterator where, MachineBasicBlock *Other, instr_iterator From, instr_iterator To) { Insts.splice(where, Other->Insts, From, To); } void splice(iterator where, MachineBasicBlock *Other, iterator From, iterator To) { Insts.splice(where.getInstrIterator(), Other->Insts, From.getInstrIterator(), To.getInstrIterator()); } /// removeFromParent - This method unlinks 'this' from the containing /// function, and returns it, but does not delete it. MachineBasicBlock *removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing /// function and deletes it. void eraseFromParent(); /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to /// 'Old', change the code and CFG so that it branches to 'New' instead. void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in /// the CFG to be inserted. If we have proven that MBB can only branch to /// DestA and DestB, remove any other MBB successors from the CFG. DestA and /// DestB can be null. Besides DestA and DestB, retain other edges leading /// to LandingPads (currently there can be only one; we don't check or require /// that here). Note it is possible that DestA and/or DestB are LandingPads. bool CorrectExtraCFGEdges(MachineBasicBlock *DestA, MachineBasicBlock *DestB, bool isCond); /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping /// any DBG_VALUE instructions. Return UnknownLoc if there is none. DebugLoc findDebugLoc(instr_iterator MBBI); DebugLoc findDebugLoc(iterator MBBI) { return findDebugLoc(MBBI.getInstrIterator()); } // Debugging methods. void dump() const; void print(raw_ostream &OS, SlotIndexes* = 0) const; /// getNumber - MachineBasicBlocks are uniquely numbered at the function /// level, unless they're not in a MachineFunction yet, in which case this /// will return -1. /// int getNumber() const { return Number; } void setNumber(int N) { Number = N; } /// getSymbol - Return the MCSymbol for this basic block. /// MCSymbol *getSymbol() const; private: /// getWeightIterator - Return weight iterator corresponding to the I /// successor iterator. weight_iterator getWeightIterator(succ_iterator I); const_weight_iterator getWeightIterator(const_succ_iterator I) const; friend class MachineBranchProbabilityInfo; /// getSuccWeight - Return weight of the edge from this block to MBB. This /// method should NOT be called directly, but by using getEdgeWeight method /// from MachineBranchProbabilityInfo class. uint32_t getSuccWeight(const MachineBasicBlock *succ) const; // Methods used to maintain doubly linked list of blocks... friend struct ilist_traits<MachineBasicBlock>; // Machine-CFG mutators /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock. /// Don't do this unless you know what you're doing, because it doesn't /// update pred's successors list. Use pred->addSuccessor instead. /// void addPredecessor(MachineBasicBlock *pred); /// removePredecessor - Remove pred as a predecessor of this /// MachineBasicBlock. Don't do this unless you know what you're /// doing, because it doesn't update pred's successors list. Use /// pred->removeSuccessor instead. /// void removePredecessor(MachineBasicBlock *pred); }; raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t); // This is useful when building IndexedMaps keyed on basic block pointers. struct MBB2NumberFunctor : public std::unary_function<const MachineBasicBlock*, unsigned> { unsigned operator()(const MachineBasicBlock *MBB) const { return MBB->getNumber(); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for machine basic block graphs (machine-CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks... // template <> struct GraphTraits<MachineBasicBlock *> { typedef MachineBasicBlock NodeType; typedef MachineBasicBlock::succ_iterator ChildIteratorType; static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; template <> struct GraphTraits<const MachineBasicBlock *> { typedef const MachineBasicBlock NodeType; typedef MachineBasicBlock::const_succ_iterator ChildIteratorType; static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks... and to walk it // in inverse order. Inverse order for a function is considered // to be when traversing the predecessor edges of a MBB // instead of the successor edges. // template <> struct GraphTraits<Inverse<MachineBasicBlock*> > { typedef MachineBasicBlock NodeType; typedef MachineBasicBlock::pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > { typedef const MachineBasicBlock NodeType; typedef MachineBasicBlock::const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; } // End llvm namespace #endif