Current Path : /usr/src/contrib/llvm/include/llvm/Support/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/include/llvm/Support/type_traits.h |
//===- llvm/Support/type_traits.h - Simplfied type traits -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides a template class that determines if a type is a class or // not. The basic mechanism, based on using the pointer to member function of // a zero argument to a function was "boosted" from the boost type_traits // library. See http://www.boost.org/ for all the gory details. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_TYPE_TRAITS_H #define LLVM_SUPPORT_TYPE_TRAITS_H #include "llvm/Support/DataTypes.h" #include <cstddef> #include <utility> // This is actually the conforming implementation which works with abstract // classes. However, enough compilers have trouble with it that most will use // the one in boost/type_traits/object_traits.hpp. This implementation actually // works with VC7.0, but other interactions seem to fail when we use it. namespace llvm { namespace dont_use { // These two functions should never be used. They are helpers to // the is_class template below. They cannot be located inside // is_class because doing so causes at least GCC to think that // the value of the "value" enumerator is not constant. Placing // them out here (for some strange reason) allows the sizeof // operator against them to magically be constant. This is // important to make the is_class<T>::value idiom zero cost. it // evaluates to a constant 1 or 0 depending on whether the // parameter T is a class or not (respectively). template<typename T> char is_class_helper(void(T::*)()); template<typename T> double is_class_helper(...); } template <typename T> struct is_class { // is_class<> metafunction due to Paul Mensonides (leavings@attbi.com). For // more details: // http://groups.google.com/groups?hl=en&selm=000001c1cc83%24e154d5e0%247772e50c%40c161550a&rnum=1 public: enum { value = sizeof(char) == sizeof(dont_use::is_class_helper<T>(0)) }; }; /// isPodLike - This is a type trait that is used to determine whether a given /// type can be copied around with memcpy instead of running ctors etc. template <typename T> struct isPodLike { // If we don't know anything else, we can (at least) assume that all non-class // types are PODs. static const bool value = !is_class<T>::value; }; // std::pair's are pod-like if their elements are. template<typename T, typename U> struct isPodLike<std::pair<T, U> > { static const bool value = isPodLike<T>::value && isPodLike<U>::value; }; template <class T, T v> struct integral_constant { typedef T value_type; static const value_type value = v; typedef integral_constant<T,v> type; operator value_type() { return value; } }; typedef integral_constant<bool, true> true_type; typedef integral_constant<bool, false> false_type; /// \brief Metafunction that determines whether the two given types are /// equivalent. template<typename T, typename U> struct is_same : public false_type {}; template<typename T> struct is_same<T, T> : public true_type {}; /// \brief Metafunction that removes const qualification from a type. template <typename T> struct remove_const { typedef T type; }; template <typename T> struct remove_const<const T> { typedef T type; }; /// \brief Metafunction that removes volatile qualification from a type. template <typename T> struct remove_volatile { typedef T type; }; template <typename T> struct remove_volatile<volatile T> { typedef T type; }; /// \brief Metafunction that removes both const and volatile qualification from /// a type. template <typename T> struct remove_cv { typedef typename remove_const<typename remove_volatile<T>::type>::type type; }; /// \brief Helper to implement is_integral metafunction. template <typename T> struct is_integral_impl : false_type {}; template <> struct is_integral_impl< bool> : true_type {}; template <> struct is_integral_impl< char> : true_type {}; template <> struct is_integral_impl< signed char> : true_type {}; template <> struct is_integral_impl<unsigned char> : true_type {}; template <> struct is_integral_impl< wchar_t> : true_type {}; template <> struct is_integral_impl< short> : true_type {}; template <> struct is_integral_impl<unsigned short> : true_type {}; template <> struct is_integral_impl< int> : true_type {}; template <> struct is_integral_impl<unsigned int> : true_type {}; template <> struct is_integral_impl< long> : true_type {}; template <> struct is_integral_impl<unsigned long> : true_type {}; template <> struct is_integral_impl< long long> : true_type {}; template <> struct is_integral_impl<unsigned long long> : true_type {}; /// \brief Metafunction that determines whether the given type is an integral /// type. template <typename T> struct is_integral : is_integral_impl<T> {}; /// \brief Metafunction to remove reference from a type. template <typename T> struct remove_reference { typedef T type; }; template <typename T> struct remove_reference<T&> { typedef T type; }; /// \brief Metafunction that determines whether the given type is a pointer /// type. template <typename T> struct is_pointer : false_type {}; template <typename T> struct is_pointer<T*> : true_type {}; template <typename T> struct is_pointer<T* const> : true_type {}; template <typename T> struct is_pointer<T* volatile> : true_type {}; template <typename T> struct is_pointer<T* const volatile> : true_type {}; /// \brief Metafunction that determines whether the given type is either an /// integral type or an enumeration type. /// /// Note that this accepts potentially more integral types than we whitelist /// above for is_integral because it is based on merely being convertible /// implicitly to an integral type. template <typename T> class is_integral_or_enum { // Provide an overload which can be called with anything implicitly // convertible to an unsigned long long. This should catch integer types and // enumeration types at least. We blacklist classes with conversion operators // below. static double check_int_convertible(unsigned long long); static char check_int_convertible(...); typedef typename remove_reference<T>::type UnderlyingT; static UnderlyingT &nonce_instance; public: enum { value = (!is_class<UnderlyingT>::value && !is_pointer<UnderlyingT>::value && !is_same<UnderlyingT, float>::value && !is_same<UnderlyingT, double>::value && sizeof(char) != sizeof(check_int_convertible(nonce_instance))) }; }; // enable_if_c - Enable/disable a template based on a metafunction template<bool Cond, typename T = void> struct enable_if_c { typedef T type; }; template<typename T> struct enable_if_c<false, T> { }; // enable_if - Enable/disable a template based on a metafunction template<typename Cond, typename T = void> struct enable_if : public enable_if_c<Cond::value, T> { }; namespace dont_use { template<typename Base> char base_of_helper(const volatile Base*); template<typename Base> double base_of_helper(...); } /// is_base_of - Metafunction to determine whether one type is a base class of /// (or identical to) another type. template<typename Base, typename Derived> struct is_base_of { static const bool value = is_class<Base>::value && is_class<Derived>::value && sizeof(char) == sizeof(dont_use::base_of_helper<Base>((Derived*)0)); }; // remove_pointer - Metafunction to turn Foo* into Foo. Defined in // C++0x [meta.trans.ptr]. template <typename T> struct remove_pointer { typedef T type; }; template <typename T> struct remove_pointer<T*> { typedef T type; }; template <typename T> struct remove_pointer<T*const> { typedef T type; }; template <typename T> struct remove_pointer<T*volatile> { typedef T type; }; template <typename T> struct remove_pointer<T*const volatile> { typedef T type; }; template <bool, typename T, typename F> struct conditional { typedef T type; }; template <typename T, typename F> struct conditional<false, T, F> { typedef F type; }; } #endif