Current Path : /usr/src/contrib/llvm/lib/Analysis/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/Analysis/LoopDependenceAnalysis.cpp |
//===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the (beginning) of an implementation of a loop dependence analysis // framework, which is used to detect dependences in memory accesses in loops. // // Please note that this is work in progress and the interface is subject to // change. // // TODO: adapt as implementation progresses. // // TODO: document lingo (pair, subscript, index) // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lda" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopDependenceAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/Instructions.h" #include "llvm/Operator.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" using namespace llvm; STATISTIC(NumAnswered, "Number of dependence queries answered"); STATISTIC(NumAnalysed, "Number of distinct dependence pairs analysed"); STATISTIC(NumDependent, "Number of pairs with dependent accesses"); STATISTIC(NumIndependent, "Number of pairs with independent accesses"); STATISTIC(NumUnknown, "Number of pairs with unknown accesses"); LoopPass *llvm::createLoopDependenceAnalysisPass() { return new LoopDependenceAnalysis(); } INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda", "Loop Dependence Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda", "Loop Dependence Analysis", false, true) char LoopDependenceAnalysis::ID = 0; //===----------------------------------------------------------------------===// // Utility Functions //===----------------------------------------------------------------------===// static inline bool IsMemRefInstr(const Value *V) { const Instruction *I = dyn_cast<const Instruction>(V); return I && (I->mayReadFromMemory() || I->mayWriteToMemory()); } static void GetMemRefInstrs(const Loop *L, SmallVectorImpl<Instruction*> &Memrefs) { for (Loop::block_iterator b = L->block_begin(), be = L->block_end(); b != be; ++b) for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end(); i != ie; ++i) if (IsMemRefInstr(i)) Memrefs.push_back(i); } static bool IsLoadOrStoreInst(Value *I) { // Returns true if the load or store can be analyzed. Atomic and volatile // operations have properties which this analysis does not understand. if (LoadInst *LI = dyn_cast<LoadInst>(I)) return LI->isUnordered(); else if (StoreInst *SI = dyn_cast<StoreInst>(I)) return SI->isUnordered(); return false; } static Value *GetPointerOperand(Value *I) { if (LoadInst *i = dyn_cast<LoadInst>(I)) return i->getPointerOperand(); if (StoreInst *i = dyn_cast<StoreInst>(I)) return i->getPointerOperand(); llvm_unreachable("Value is no load or store instruction!"); } static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA, const Value *A, const Value *B) { const Value *aObj = GetUnderlyingObject(A); const Value *bObj = GetUnderlyingObject(B); return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()), bObj, AA->getTypeStoreSize(bObj->getType())); } static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) { return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L); } //===----------------------------------------------------------------------===// // Dependence Testing //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::isDependencePair(const Value *A, const Value *B) const { return IsMemRefInstr(A) && IsMemRefInstr(B) && (cast<const Instruction>(A)->mayWriteToMemory() || cast<const Instruction>(B)->mayWriteToMemory()); } bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A, Value *B, DependencePair *&P) { void *insertPos = 0; FoldingSetNodeID id; id.AddPointer(A); id.AddPointer(B); P = Pairs.FindNodeOrInsertPos(id, insertPos); if (P) return true; P = new (PairAllocator) DependencePair(id, A, B); Pairs.InsertNode(P, insertPos); return false; } void LoopDependenceAnalysis::getLoops(const SCEV *S, DenseSet<const Loop*>* Loops) const { // Refactor this into an SCEVVisitor, if efficiency becomes a concern. for (const Loop *L = this->L; L != 0; L = L->getParentLoop()) if (!SE->isLoopInvariant(S, L)) Loops->insert(L); } bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const { DenseSet<const Loop*> loops; getLoops(S, &loops); return loops.empty(); } bool LoopDependenceAnalysis::isAffine(const SCEV *S) const { const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S); return isLoopInvariant(S) || (rec && rec->isAffine()); } bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const { return isLoopInvariant(A) && isLoopInvariant(B); } bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const { DenseSet<const Loop*> loops; getLoops(A, &loops); getLoops(B, &loops); return loops.size() == 1; } LoopDependenceAnalysis::DependenceResult LoopDependenceAnalysis::analyseZIV(const SCEV *A, const SCEV *B, Subscript *S) const { assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!"); return A == B ? Dependent : Independent; } LoopDependenceAnalysis::DependenceResult LoopDependenceAnalysis::analyseSIV(const SCEV *A, const SCEV *B, Subscript *S) const { return Unknown; // TODO: Implement. } LoopDependenceAnalysis::DependenceResult LoopDependenceAnalysis::analyseMIV(const SCEV *A, const SCEV *B, Subscript *S) const { return Unknown; // TODO: Implement. } LoopDependenceAnalysis::DependenceResult LoopDependenceAnalysis::analyseSubscript(const SCEV *A, const SCEV *B, Subscript *S) const { DEBUG(dbgs() << " Testing subscript: " << *A << ", " << *B << "\n"); if (A == B) { DEBUG(dbgs() << " -> [D] same SCEV\n"); return Dependent; } if (!isAffine(A) || !isAffine(B)) { DEBUG(dbgs() << " -> [?] not affine\n"); return Unknown; } if (isZIVPair(A, B)) return analyseZIV(A, B, S); if (isSIVPair(A, B)) return analyseSIV(A, B, S); return analyseMIV(A, B, S); } LoopDependenceAnalysis::DependenceResult LoopDependenceAnalysis::analysePair(DependencePair *P) const { DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n"); // We only analyse loads and stores but no possible memory accesses by e.g. // free, call, or invoke instructions. if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) { DEBUG(dbgs() << "--> [?] no load/store\n"); return Unknown; } Value *aPtr = GetPointerOperand(P->A); Value *bPtr = GetPointerOperand(P->B); switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) { case AliasAnalysis::MayAlias: case AliasAnalysis::PartialAlias: // We can not analyse objects if we do not know about their aliasing. DEBUG(dbgs() << "---> [?] may alias\n"); return Unknown; case AliasAnalysis::NoAlias: // If the objects noalias, they are distinct, accesses are independent. DEBUG(dbgs() << "---> [I] no alias\n"); return Independent; case AliasAnalysis::MustAlias: break; // The underlying objects alias, test accesses for dependence. } const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr); const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr); if (!aGEP || !bGEP) return Unknown; // FIXME: Is filtering coupled subscripts necessary? // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding // trailing zeroes to the smaller GEP, if needed. typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy; GEPOpdPairsTy opds; for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(), aEnd = aGEP->idx_end(), bIdx = bGEP->idx_begin(), bEnd = bGEP->idx_end(); aIdx != aEnd && bIdx != bEnd; aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) { const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE); const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE); opds.push_back(std::make_pair(aSCEV, bSCEV)); } if (!opds.empty() && opds[0].first != opds[0].second) { // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting // // TODO: this could be relaxed by adding the size of the underlying object // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we // know that x is a [100 x i8]*, we could modify the first subscript to be // (i, 200-i) instead of (i, -i). return Unknown; } // Now analyse the collected operand pairs (skipping the GEP ptr offsets). for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end(); i != end; ++i) { Subscript subscript; DependenceResult result = analyseSubscript(i->first, i->second, &subscript); if (result != Dependent) { // We either proved independence or failed to analyse this subscript. // Further subscripts will not improve the situation, so abort early. return result; } P->Subscripts.push_back(subscript); } // We successfully analysed all subscripts but failed to prove independence. return Dependent; } bool LoopDependenceAnalysis::depends(Value *A, Value *B) { assert(isDependencePair(A, B) && "Values form no dependence pair!"); ++NumAnswered; DependencePair *p; if (!findOrInsertDependencePair(A, B, p)) { // The pair is not cached, so analyse it. ++NumAnalysed; switch (p->Result = analysePair(p)) { case Dependent: ++NumDependent; break; case Independent: ++NumIndependent; break; case Unknown: ++NumUnknown; break; } } return p->Result != Independent; } //===----------------------------------------------------------------------===// // LoopDependenceAnalysis Implementation //===----------------------------------------------------------------------===// bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) { this->L = L; AA = &getAnalysis<AliasAnalysis>(); SE = &getAnalysis<ScalarEvolution>(); return false; } void LoopDependenceAnalysis::releaseMemory() { Pairs.clear(); PairAllocator.Reset(); } void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive<AliasAnalysis>(); AU.addRequiredTransitive<ScalarEvolution>(); } static void PrintLoopInfo(raw_ostream &OS, LoopDependenceAnalysis *LDA, const Loop *L) { if (!L->empty()) return; // ignore non-innermost loops SmallVector<Instruction*, 8> memrefs; GetMemRefInstrs(L, memrefs); OS << "Loop at depth " << L->getLoopDepth() << ", header block: "; WriteAsOperand(OS, L->getHeader(), false); OS << "\n"; OS << " Load/store instructions: " << memrefs.size() << "\n"; for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n"; OS << " Pairwise dependence results:\n"; for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(), end = memrefs.end(); x != end; ++x) for (SmallVector<Instruction*, 8>::const_iterator y = x + 1; y != end; ++y) if (LDA->isDependencePair(*x, *y)) OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin()) << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent") << "\n"; } void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const { // TODO: doc why const_cast is safe PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L); }