Current Path : /usr/src/contrib/llvm/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/CodeGen/InterferenceCache.cpp |
//===-- InterferenceCache.cpp - Caching per-block interference ---------*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InterferenceCache remembers per-block interference in LiveIntervalUnions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "InterferenceCache.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" using namespace llvm; // Static member used for null interference cursors. InterferenceCache::BlockInterference InterferenceCache::Cursor::NoInterference; void InterferenceCache::init(MachineFunction *mf, LiveIntervalUnion *liuarray, SlotIndexes *indexes, LiveIntervals *lis, const TargetRegisterInfo *tri) { MF = mf; LIUArray = liuarray; TRI = tri; PhysRegEntries.assign(TRI->getNumRegs(), 0); for (unsigned i = 0; i != CacheEntries; ++i) Entries[i].clear(mf, indexes, lis); } InterferenceCache::Entry *InterferenceCache::get(unsigned PhysReg) { unsigned E = PhysRegEntries[PhysReg]; if (E < CacheEntries && Entries[E].getPhysReg() == PhysReg) { if (!Entries[E].valid(LIUArray, TRI)) Entries[E].revalidate(); return &Entries[E]; } // No valid entry exists, pick the next round-robin entry. E = RoundRobin; if (++RoundRobin == CacheEntries) RoundRobin = 0; for (unsigned i = 0; i != CacheEntries; ++i) { // Skip entries that are in use. if (Entries[E].hasRefs()) { if (++E == CacheEntries) E = 0; continue; } Entries[E].reset(PhysReg, LIUArray, TRI, MF); PhysRegEntries[PhysReg] = E; return &Entries[E]; } llvm_unreachable("Ran out of interference cache entries."); } /// revalidate - LIU contents have changed, update tags. void InterferenceCache::Entry::revalidate() { // Invalidate all block entries. ++Tag; // Invalidate all iterators. PrevPos = SlotIndex(); for (unsigned i = 0, e = Aliases.size(); i != e; ++i) Aliases[i].second = Aliases[i].first->getTag(); } void InterferenceCache::Entry::reset(unsigned physReg, LiveIntervalUnion *LIUArray, const TargetRegisterInfo *TRI, const MachineFunction *MF) { assert(!hasRefs() && "Cannot reset cache entry with references"); // LIU's changed, invalidate cache. ++Tag; PhysReg = physReg; Blocks.resize(MF->getNumBlockIDs()); Aliases.clear(); for (const uint16_t *AS = TRI->getOverlaps(PhysReg); *AS; ++AS) { LiveIntervalUnion *LIU = LIUArray + *AS; Aliases.push_back(std::make_pair(LIU, LIU->getTag())); } // Reset iterators. PrevPos = SlotIndex(); unsigned e = Aliases.size(); Iters.resize(e); for (unsigned i = 0; i != e; ++i) Iters[i].setMap(Aliases[i].first->getMap()); } bool InterferenceCache::Entry::valid(LiveIntervalUnion *LIUArray, const TargetRegisterInfo *TRI) { unsigned i = 0, e = Aliases.size(); for (const uint16_t *AS = TRI->getOverlaps(PhysReg); *AS; ++AS, ++i) { LiveIntervalUnion *LIU = LIUArray + *AS; if (i == e || Aliases[i].first != LIU) return false; if (LIU->changedSince(Aliases[i].second)) return false; } return i == e; } void InterferenceCache::Entry::update(unsigned MBBNum) { SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); // Use advanceTo only when possible. if (PrevPos != Start) { if (!PrevPos.isValid() || Start < PrevPos) for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].find(Start); else for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].advanceTo(Start); PrevPos = Start; } MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum); BlockInterference *BI = &Blocks[MBBNum]; ArrayRef<SlotIndex> RegMaskSlots; ArrayRef<const uint32_t*> RegMaskBits; for (;;) { BI->Tag = Tag; BI->First = BI->Last = SlotIndex(); // Check for first interference. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid()) continue; SlotIndex StartI = I.start(); if (StartI >= Stop) continue; if (!BI->First.isValid() || StartI < BI->First) BI->First = StartI; } // Also check for register mask interference. RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum); RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum); SlotIndex Limit = BI->First.isValid() ? BI->First : Stop; for (unsigned i = 0, e = RegMaskSlots.size(); i != e && RegMaskSlots[i] < Limit; ++i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) { // Register mask i clobbers PhysReg before the LIU interference. BI->First = RegMaskSlots[i]; break; } PrevPos = Stop; if (BI->First.isValid()) break; // No interference in this block? Go ahead and precompute the next block. if (++MFI == MF->end()) return; MBBNum = MFI->getNumber(); BI = &Blocks[MBBNum]; if (BI->Tag == Tag) return; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); } // Check for last interference in block. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid() || I.start() >= Stop) continue; I.advanceTo(Stop); bool Backup = !I.valid() || I.start() >= Stop; if (Backup) --I; SlotIndex StopI = I.stop(); if (!BI->Last.isValid() || StopI > BI->Last) BI->Last = StopI; if (Backup) ++I; } // Also check for register mask interference. SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start; for (unsigned i = RegMaskSlots.size(); i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) { // Register mask i-1 clobbers PhysReg after the LIU interference. // Model the regmask clobber as a dead def. BI->Last = RegMaskSlots[i-1].getDeadSlot(); break; } }