Current Path : /usr/src/contrib/llvm/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/CodeGen/Passes.cpp |
//===-- Passes.cpp - Target independent code generation passes ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines interfaces to access the target independent code // generation passes provided by the LLVM backend. // //===---------------------------------------------------------------------===// #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Transforms/Scalar.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden, cl::desc("Disable Post Regalloc")); static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden, cl::desc("Disable branch folding")); static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden, cl::desc("Disable tail duplication")); static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden, cl::desc("Disable pre-register allocation tail duplication")); static cl::opt<bool> DisableBlockPlacement("disable-block-placement", cl::Hidden, cl::desc("Disable the probability-driven block placement, and " "re-enable the old code placement pass")); static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats", cl::Hidden, cl::desc("Collect probability-driven block placement stats")); static cl::opt<bool> DisableCodePlace("disable-code-place", cl::Hidden, cl::desc("Disable code placement")); static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden, cl::desc("Disable Stack Slot Coloring")); static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden, cl::desc("Disable Machine Dead Code Elimination")); static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden, cl::desc("Disable Machine Common Subexpression Elimination")); static cl::opt<cl::boolOrDefault> OptimizeRegAlloc("optimize-regalloc", cl::Hidden, cl::desc("Enable optimized register allocation compilation path.")); static cl::opt<cl::boolOrDefault> EnableMachineSched("enable-misched", cl::Hidden, cl::desc("Enable the machine instruction scheduling pass.")); static cl::opt<bool> EnableStrongPHIElim("strong-phi-elim", cl::Hidden, cl::desc("Use strong PHI elimination.")); static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden, cl::desc("Disable Machine Sinking")); static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden, cl::desc("Disable Loop Strength Reduction Pass")); static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden, cl::desc("Disable Codegen Prepare")); static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden, cl::desc("Disable Copy Propagation pass")); static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden, cl::desc("Print LLVM IR produced by the loop-reduce pass")); static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden, cl::desc("Print LLVM IR input to isel pass")); static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden, cl::desc("Dump garbage collector data")); static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden, cl::desc("Verify generated machine code"), cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL)); /// Allow standard passes to be disabled by command line options. This supports /// simple binary flags that either suppress the pass or do nothing. /// i.e. -disable-mypass=false has no effect. /// These should be converted to boolOrDefault in order to use applyOverride. static AnalysisID applyDisable(AnalysisID ID, bool Override) { if (Override) return &NoPassID; return ID; } /// Allow Pass selection to be overriden by command line options. This supports /// flags with ternary conditions. TargetID is passed through by default. The /// pass is suppressed when the option is false. When the option is true, the /// StandardID is selected if the target provides no default. static AnalysisID applyOverride(AnalysisID TargetID, cl::boolOrDefault Override, AnalysisID StandardID) { switch (Override) { case cl::BOU_UNSET: return TargetID; case cl::BOU_TRUE: if (TargetID != &NoPassID) return TargetID; if (StandardID == &NoPassID) report_fatal_error("Target cannot enable pass"); return StandardID; case cl::BOU_FALSE: return &NoPassID; } llvm_unreachable("Invalid command line option state"); } /// Allow standard passes to be disabled by the command line, regardless of who /// is adding the pass. /// /// StandardID is the pass identified in the standard pass pipeline and provided /// to addPass(). It may be a target-specific ID in the case that the target /// directly adds its own pass, but in that case we harmlessly fall through. /// /// TargetID is the pass that the target has configured to override StandardID. /// /// StandardID may be a pseudo ID. In that case TargetID is the name of the real /// pass to run. This allows multiple options to control a single pass depending /// on where in the pipeline that pass is added. static AnalysisID overridePass(AnalysisID StandardID, AnalysisID TargetID) { if (StandardID == &PostRASchedulerID) return applyDisable(TargetID, DisablePostRA); if (StandardID == &BranchFolderPassID) return applyDisable(TargetID, DisableBranchFold); if (StandardID == &TailDuplicateID) return applyDisable(TargetID, DisableTailDuplicate); if (StandardID == &TargetPassConfig::EarlyTailDuplicateID) return applyDisable(TargetID, DisableEarlyTailDup); if (StandardID == &MachineBlockPlacementID) return applyDisable(TargetID, DisableCodePlace); if (StandardID == &CodePlacementOptID) return applyDisable(TargetID, DisableCodePlace); if (StandardID == &StackSlotColoringID) return applyDisable(TargetID, DisableSSC); if (StandardID == &DeadMachineInstructionElimID) return applyDisable(TargetID, DisableMachineDCE); if (StandardID == &MachineLICMID) return applyDisable(TargetID, DisableMachineLICM); if (StandardID == &MachineCSEID) return applyDisable(TargetID, DisableMachineCSE); if (StandardID == &MachineSchedulerID) return applyOverride(TargetID, EnableMachineSched, StandardID); if (StandardID == &TargetPassConfig::PostRAMachineLICMID) return applyDisable(TargetID, DisablePostRAMachineLICM); if (StandardID == &MachineSinkingID) return applyDisable(TargetID, DisableMachineSink); if (StandardID == &MachineCopyPropagationID) return applyDisable(TargetID, DisableCopyProp); return TargetID; } //===---------------------------------------------------------------------===// /// TargetPassConfig //===---------------------------------------------------------------------===// INITIALIZE_PASS(TargetPassConfig, "targetpassconfig", "Target Pass Configuration", false, false) char TargetPassConfig::ID = 0; static char NoPassIDAnchor = 0; char &llvm::NoPassID = NoPassIDAnchor; // Pseudo Pass IDs. char TargetPassConfig::EarlyTailDuplicateID = 0; char TargetPassConfig::PostRAMachineLICMID = 0; namespace llvm { class PassConfigImpl { public: // List of passes explicitly substituted by this target. Normally this is // empty, but it is a convenient way to suppress or replace specific passes // that are part of a standard pass pipeline without overridding the entire // pipeline. This mechanism allows target options to inherit a standard pass's // user interface. For example, a target may disable a standard pass by // default by substituting NoPass, and the user may still enable that standard // pass with an explicit command line option. DenseMap<AnalysisID,AnalysisID> TargetPasses; }; } // namespace llvm // Out of line virtual method. TargetPassConfig::~TargetPassConfig() { delete Impl; } // Out of line constructor provides default values for pass options and // registers all common codegen passes. TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm) : ImmutablePass(ID), TM(tm), PM(&pm), Impl(0), Initialized(false), DisableVerify(false), EnableTailMerge(true) { Impl = new PassConfigImpl(); // Register all target independent codegen passes to activate their PassIDs, // including this pass itself. initializeCodeGen(*PassRegistry::getPassRegistry()); // Substitute Pseudo Pass IDs for real ones. substitutePass(EarlyTailDuplicateID, TailDuplicateID); substitutePass(PostRAMachineLICMID, MachineLICMID); // Temporarily disable experimental passes. substitutePass(MachineSchedulerID, NoPassID); } /// createPassConfig - Create a pass configuration object to be used by /// addPassToEmitX methods for generating a pipeline of CodeGen passes. /// /// Targets may override this to extend TargetPassConfig. TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) { return new TargetPassConfig(this, PM); } TargetPassConfig::TargetPassConfig() : ImmutablePass(ID), PM(0) { llvm_unreachable("TargetPassConfig should not be constructed on-the-fly"); } // Helper to verify the analysis is really immutable. void TargetPassConfig::setOpt(bool &Opt, bool Val) { assert(!Initialized && "PassConfig is immutable"); Opt = Val; } void TargetPassConfig::substitutePass(char &StandardID, char &TargetID) { Impl->TargetPasses[&StandardID] = &TargetID; } AnalysisID TargetPassConfig::getPassSubstitution(AnalysisID ID) const { DenseMap<AnalysisID, AnalysisID>::const_iterator I = Impl->TargetPasses.find(ID); if (I == Impl->TargetPasses.end()) return ID; return I->second; } /// Add a CodeGen pass at this point in the pipeline after checking for target /// and command line overrides. AnalysisID TargetPassConfig::addPass(char &ID) { assert(!Initialized && "PassConfig is immutable"); AnalysisID TargetID = getPassSubstitution(&ID); AnalysisID FinalID = overridePass(&ID, TargetID); if (FinalID == &NoPassID) return FinalID; Pass *P = Pass::createPass(FinalID); if (!P) llvm_unreachable("Pass ID not registered"); PM->add(P); return FinalID; } void TargetPassConfig::printAndVerify(const char *Banner) const { if (TM->shouldPrintMachineCode()) PM->add(createMachineFunctionPrinterPass(dbgs(), Banner)); if (VerifyMachineCode) PM->add(createMachineVerifierPass(Banner)); } /// Add common target configurable passes that perform LLVM IR to IR transforms /// following machine independent optimization. void TargetPassConfig::addIRPasses() { // Basic AliasAnalysis support. // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM->add(createTypeBasedAliasAnalysisPass()); PM->add(createBasicAliasAnalysisPass()); // Before running any passes, run the verifier to determine if the input // coming from the front-end and/or optimizer is valid. if (!DisableVerify) PM->add(createVerifierPass()); // Run loop strength reduction before anything else. if (getOptLevel() != CodeGenOpt::None && !DisableLSR) { PM->add(createLoopStrengthReducePass(getTargetLowering())); if (PrintLSR) PM->add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs())); } PM->add(createGCLoweringPass()); // Make sure that no unreachable blocks are instruction selected. PM->add(createUnreachableBlockEliminationPass()); } /// Add common passes that perform LLVM IR to IR transforms in preparation for /// instruction selection. void TargetPassConfig::addISelPrepare() { if (getOptLevel() != CodeGenOpt::None && !DisableCGP) PM->add(createCodeGenPreparePass(getTargetLowering())); PM->add(createStackProtectorPass(getTargetLowering())); addPreISel(); if (PrintISelInput) PM->add(createPrintFunctionPass("\n\n" "*** Final LLVM Code input to ISel ***\n", &dbgs())); // All passes which modify the LLVM IR are now complete; run the verifier // to ensure that the IR is valid. if (!DisableVerify) PM->add(createVerifierPass()); } /// Add the complete set of target-independent postISel code generator passes. /// /// This can be read as the standard order of major LLVM CodeGen stages. Stages /// with nontrivial configuration or multiple passes are broken out below in /// add%Stage routines. /// /// Any TargetPassConfig::addXX routine may be overriden by the Target. The /// addPre/Post methods with empty header implementations allow injecting /// target-specific fixups just before or after major stages. Additionally, /// targets have the flexibility to change pass order within a stage by /// overriding default implementation of add%Stage routines below. Each /// technique has maintainability tradeoffs because alternate pass orders are /// not well supported. addPre/Post works better if the target pass is easily /// tied to a common pass. But if it has subtle dependencies on multiple passes, /// the target should override the stage instead. /// /// TODO: We could use a single addPre/Post(ID) hook to allow pass injection /// before/after any target-independent pass. But it's currently overkill. void TargetPassConfig::addMachinePasses() { // Print the instruction selected machine code... printAndVerify("After Instruction Selection"); // Expand pseudo-instructions emitted by ISel. addPass(ExpandISelPseudosID); // Add passes that optimize machine instructions in SSA form. if (getOptLevel() != CodeGenOpt::None) { addMachineSSAOptimization(); } else { // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. addPass(LocalStackSlotAllocationID); } // Run pre-ra passes. if (addPreRegAlloc()) printAndVerify("After PreRegAlloc passes"); // Run register allocation and passes that are tightly coupled with it, // including phi elimination and scheduling. if (getOptimizeRegAlloc()) addOptimizedRegAlloc(createRegAllocPass(true)); else addFastRegAlloc(createRegAllocPass(false)); // Run post-ra passes. if (addPostRegAlloc()) printAndVerify("After PostRegAlloc passes"); // Insert prolog/epilog code. Eliminate abstract frame index references... addPass(PrologEpilogCodeInserterID); printAndVerify("After PrologEpilogCodeInserter"); /// Add passes that optimize machine instructions after register allocation. if (getOptLevel() != CodeGenOpt::None) addMachineLateOptimization(); // Expand pseudo instructions before second scheduling pass. addPass(ExpandPostRAPseudosID); printAndVerify("After ExpandPostRAPseudos"); // Run pre-sched2 passes. if (addPreSched2()) printAndVerify("After PreSched2 passes"); // Second pass scheduler. if (getOptLevel() != CodeGenOpt::None) { addPass(PostRASchedulerID); printAndVerify("After PostRAScheduler"); } // GC addPass(GCMachineCodeAnalysisID); if (PrintGCInfo) PM->add(createGCInfoPrinter(dbgs())); // Basic block placement. if (getOptLevel() != CodeGenOpt::None) addBlockPlacement(); if (addPreEmitPass()) printAndVerify("After PreEmit passes"); } /// Add passes that optimize machine instructions in SSA form. void TargetPassConfig::addMachineSSAOptimization() { // Pre-ra tail duplication. if (addPass(EarlyTailDuplicateID) != &NoPassID) printAndVerify("After Pre-RegAlloc TailDuplicate"); // Optimize PHIs before DCE: removing dead PHI cycles may make more // instructions dead. addPass(OptimizePHIsID); // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. addPass(LocalStackSlotAllocationID); // With optimization, dead code should already be eliminated. However // there is one known exception: lowered code for arguments that are only // used by tail calls, where the tail calls reuse the incoming stack // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). addPass(DeadMachineInstructionElimID); printAndVerify("After codegen DCE pass"); addPass(MachineLICMID); addPass(MachineCSEID); addPass(MachineSinkingID); printAndVerify("After Machine LICM, CSE and Sinking passes"); addPass(PeepholeOptimizerID); printAndVerify("After codegen peephole optimization pass"); } //===---------------------------------------------------------------------===// /// Register Allocation Pass Configuration //===---------------------------------------------------------------------===// bool TargetPassConfig::getOptimizeRegAlloc() const { switch (OptimizeRegAlloc) { case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None; case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } llvm_unreachable("Invalid optimize-regalloc state"); } /// RegisterRegAlloc's global Registry tracks allocator registration. MachinePassRegistry RegisterRegAlloc::Registry; /// A dummy default pass factory indicates whether the register allocator is /// overridden on the command line. static FunctionPass *useDefaultRegisterAllocator() { return 0; } static RegisterRegAlloc defaultRegAlloc("default", "pick register allocator based on -O option", useDefaultRegisterAllocator); /// -regalloc=... command line option. static cl::opt<RegisterRegAlloc::FunctionPassCtor, false, RegisterPassParser<RegisterRegAlloc> > RegAlloc("regalloc", cl::init(&useDefaultRegisterAllocator), cl::desc("Register allocator to use")); /// Instantiate the default register allocator pass for this target for either /// the optimized or unoptimized allocation path. This will be added to the pass /// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc /// in the optimized case. /// /// A target that uses the standard regalloc pass order for fast or optimized /// allocation may still override this for per-target regalloc /// selection. But -regalloc=... always takes precedence. FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) { if (Optimized) return createGreedyRegisterAllocator(); else return createFastRegisterAllocator(); } /// Find and instantiate the register allocation pass requested by this target /// at the current optimization level. Different register allocators are /// defined as separate passes because they may require different analysis. /// /// This helper ensures that the regalloc= option is always available, /// even for targets that override the default allocator. /// /// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs, /// this can be folded into addPass. FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) { RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault(); // Initialize the global default. if (!Ctor) { Ctor = RegAlloc; RegisterRegAlloc::setDefault(RegAlloc); } if (Ctor != useDefaultRegisterAllocator) return Ctor(); // With no -regalloc= override, ask the target for a regalloc pass. return createTargetRegisterAllocator(Optimized); } /// Add the minimum set of target-independent passes that are required for /// register allocation. No coalescing or scheduling. void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { addPass(PHIEliminationID); addPass(TwoAddressInstructionPassID); PM->add(RegAllocPass); printAndVerify("After Register Allocation"); } /// Add standard target-independent passes that are tightly coupled with /// optimized register allocation, including coalescing, machine instruction /// scheduling, and register allocation itself. void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { // LiveVariables currently requires pure SSA form. // // FIXME: Once TwoAddressInstruction pass no longer uses kill flags, // LiveVariables can be removed completely, and LiveIntervals can be directly // computed. (We still either need to regenerate kill flags after regalloc, or // preferably fix the scavenger to not depend on them). addPass(LiveVariablesID); // Add passes that move from transformed SSA into conventional SSA. This is a // "copy coalescing" problem. // if (!EnableStrongPHIElim) { // Edge splitting is smarter with machine loop info. addPass(MachineLoopInfoID); addPass(PHIEliminationID); } addPass(TwoAddressInstructionPassID); // FIXME: Either remove this pass completely, or fix it so that it works on // SSA form. We could modify LiveIntervals to be independent of this pass, But // it would be even better to simply eliminate *all* IMPLICIT_DEFs before // leaving SSA. addPass(ProcessImplicitDefsID); if (EnableStrongPHIElim) addPass(StrongPHIEliminationID); addPass(RegisterCoalescerID); // PreRA instruction scheduling. if (addPass(MachineSchedulerID) != &NoPassID) printAndVerify("After Machine Scheduling"); // Add the selected register allocation pass. PM->add(RegAllocPass); printAndVerify("After Register Allocation"); // FinalizeRegAlloc is convenient until MachineInstrBundles is more mature, // but eventually, all users of it should probably be moved to addPostRA and // it can go away. Currently, it's the intended place for targets to run // FinalizeMachineBundles, because passes other than MachineScheduling an // RegAlloc itself may not be aware of bundles. if (addFinalizeRegAlloc()) printAndVerify("After RegAlloc finalization"); // Perform stack slot coloring and post-ra machine LICM. // // FIXME: Re-enable coloring with register when it's capable of adding // kill markers. addPass(StackSlotColoringID); // Run post-ra machine LICM to hoist reloads / remats. // // FIXME: can this move into MachineLateOptimization? addPass(PostRAMachineLICMID); printAndVerify("After StackSlotColoring and postra Machine LICM"); } //===---------------------------------------------------------------------===// /// Post RegAlloc Pass Configuration //===---------------------------------------------------------------------===// /// Add passes that optimize machine instructions after register allocation. void TargetPassConfig::addMachineLateOptimization() { // Branch folding must be run after regalloc and prolog/epilog insertion. if (addPass(BranchFolderPassID) != &NoPassID) printAndVerify("After BranchFolding"); // Tail duplication. if (addPass(TailDuplicateID) != &NoPassID) printAndVerify("After TailDuplicate"); // Copy propagation. if (addPass(MachineCopyPropagationID) != &NoPassID) printAndVerify("After copy propagation pass"); } /// Add standard basic block placement passes. void TargetPassConfig::addBlockPlacement() { AnalysisID ID = &NoPassID; if (!DisableBlockPlacement) { // MachineBlockPlacement is a new pass which subsumes the functionality of // CodPlacementOpt. The old code placement pass can be restored by // disabling block placement, but eventually it will be removed. ID = addPass(MachineBlockPlacementID); } else { ID = addPass(CodePlacementOptID); } if (ID != &NoPassID) { // Run a separate pass to collect block placement statistics. if (EnableBlockPlacementStats) addPass(MachineBlockPlacementStatsID); printAndVerify("After machine block placement."); } }