Current Path : /usr/src/contrib/llvm/lib/CodeGen/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //usr/src/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp |
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RAGreedy function pass for register allocation in // optimized builds. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "AllocationOrder.h" #include "InterferenceCache.h" #include "LiveDebugVariables.h" #include "RegAllocBase.h" #include "Spiller.h" #include "SpillPlacement.h" #include "SplitKit.h" #include "VirtRegMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/EdgeBundles.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" #include <queue> using namespace llvm; STATISTIC(NumGlobalSplits, "Number of split global live ranges"); STATISTIC(NumLocalSplits, "Number of split local live ranges"); STATISTIC(NumEvicted, "Number of interferences evicted"); static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode("split-spill-mode", cl::Hidden, cl::desc("Spill mode for splitting live ranges"), cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), clEnumValEnd), cl::init(SplitEditor::SM_Partition)); static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", createGreedyRegisterAllocator); namespace { class RAGreedy : public MachineFunctionPass, public RegAllocBase, private LiveRangeEdit::Delegate { // context MachineFunction *MF; // analyses SlotIndexes *Indexes; LiveStacks *LS; MachineDominatorTree *DomTree; MachineLoopInfo *Loops; EdgeBundles *Bundles; SpillPlacement *SpillPlacer; LiveDebugVariables *DebugVars; // state std::auto_ptr<Spiller> SpillerInstance; std::priority_queue<std::pair<unsigned, unsigned> > Queue; unsigned NextCascade; // Live ranges pass through a number of stages as we try to allocate them. // Some of the stages may also create new live ranges: // // - Region splitting. // - Per-block splitting. // - Local splitting. // - Spilling. // // Ranges produced by one of the stages skip the previous stages when they are // dequeued. This improves performance because we can skip interference checks // that are unlikely to give any results. It also guarantees that the live // range splitting algorithm terminates, something that is otherwise hard to // ensure. enum LiveRangeStage { /// Newly created live range that has never been queued. RS_New, /// Only attempt assignment and eviction. Then requeue as RS_Split. RS_Assign, /// Attempt live range splitting if assignment is impossible. RS_Split, /// Attempt more aggressive live range splitting that is guaranteed to make /// progress. This is used for split products that may not be making /// progress. RS_Split2, /// Live range will be spilled. No more splitting will be attempted. RS_Spill, /// There is nothing more we can do to this live range. Abort compilation /// if it can't be assigned. RS_Done }; static const char *const StageName[]; // RegInfo - Keep additional information about each live range. struct RegInfo { LiveRangeStage Stage; // Cascade - Eviction loop prevention. See canEvictInterference(). unsigned Cascade; RegInfo() : Stage(RS_New), Cascade(0) {} }; IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; LiveRangeStage getStage(const LiveInterval &VirtReg) const { return ExtraRegInfo[VirtReg.reg].Stage; } void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { ExtraRegInfo.resize(MRI->getNumVirtRegs()); ExtraRegInfo[VirtReg.reg].Stage = Stage; } template<typename Iterator> void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { ExtraRegInfo.resize(MRI->getNumVirtRegs()); for (;Begin != End; ++Begin) { unsigned Reg = (*Begin)->reg; if (ExtraRegInfo[Reg].Stage == RS_New) ExtraRegInfo[Reg].Stage = NewStage; } } /// Cost of evicting interference. struct EvictionCost { unsigned BrokenHints; ///< Total number of broken hints. float MaxWeight; ///< Maximum spill weight evicted. EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} bool operator<(const EvictionCost &O) const { if (BrokenHints != O.BrokenHints) return BrokenHints < O.BrokenHints; return MaxWeight < O.MaxWeight; } }; // Register mask interference. The current VirtReg is checked for register // mask interference on entry to selectOrSplit(). If there is no // interference, UsableRegs is left empty. If there is interference, // UsableRegs has a bit mask of registers that can be used without register // mask interference. BitVector UsableRegs; /// clobberedByRegMask - Returns true if PhysReg is not directly usable /// because of register mask clobbers. bool clobberedByRegMask(unsigned PhysReg) const { return !UsableRegs.empty() && !UsableRegs.test(PhysReg); } // splitting state. std::auto_ptr<SplitAnalysis> SA; std::auto_ptr<SplitEditor> SE; /// Cached per-block interference maps InterferenceCache IntfCache; /// All basic blocks where the current register has uses. SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; /// Global live range splitting candidate info. struct GlobalSplitCandidate { // Register intended for assignment, or 0. unsigned PhysReg; // SplitKit interval index for this candidate. unsigned IntvIdx; // Interference for PhysReg. InterferenceCache::Cursor Intf; // Bundles where this candidate should be live. BitVector LiveBundles; SmallVector<unsigned, 8> ActiveBlocks; void reset(InterferenceCache &Cache, unsigned Reg) { PhysReg = Reg; IntvIdx = 0; Intf.setPhysReg(Cache, Reg); LiveBundles.clear(); ActiveBlocks.clear(); } // Set B[i] = C for every live bundle where B[i] was NoCand. unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { unsigned Count = 0; for (int i = LiveBundles.find_first(); i >= 0; i = LiveBundles.find_next(i)) if (B[i] == NoCand) { B[i] = C; Count++; } return Count; } }; /// Candidate info for for each PhysReg in AllocationOrder. /// This vector never shrinks, but grows to the size of the largest register /// class. SmallVector<GlobalSplitCandidate, 32> GlobalCand; enum { NoCand = ~0u }; /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to /// NoCand which indicates the stack interval. SmallVector<unsigned, 32> BundleCand; public: RAGreedy(); /// Return the pass name. virtual const char* getPassName() const { return "Greedy Register Allocator"; } /// RAGreedy analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual void enqueue(LiveInterval *LI); virtual LiveInterval *dequeue(); virtual unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<LiveInterval*>&); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; private: bool LRE_CanEraseVirtReg(unsigned); void LRE_WillShrinkVirtReg(unsigned); void LRE_DidCloneVirtReg(unsigned, unsigned); float calcSpillCost(); bool addSplitConstraints(InterferenceCache::Cursor, float&); void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); void growRegion(GlobalSplitCandidate &Cand); float calcGlobalSplitCost(GlobalSplitCandidate&); bool calcCompactRegion(GlobalSplitCandidate&); void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); void calcGapWeights(unsigned, SmallVectorImpl<float>&); bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); void evictInterference(LiveInterval&, unsigned, SmallVectorImpl<LiveInterval*>&); unsigned tryAssign(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&); unsigned tryEvict(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&); unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&); unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&); unsigned trySplit(LiveInterval&, AllocationOrder&, SmallVectorImpl<LiveInterval*>&); }; } // end anonymous namespace char RAGreedy::ID = 0; #ifndef NDEBUG const char *const RAGreedy::StageName[] = { "RS_New", "RS_Assign", "RS_Split", "RS_Split2", "RS_Spill", "RS_Done" }; #endif // Hysteresis to use when comparing floats. // This helps stabilize decisions based on float comparisons. const float Hysteresis = 0.98f; FunctionPass* llvm::createGreedyRegisterAllocator() { return new RAGreedy(); } RAGreedy::RAGreedy(): MachineFunctionPass(ID) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); } void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AliasAnalysis>(); AU.addPreserved<AliasAnalysis>(); AU.addRequired<LiveIntervals>(); AU.addRequired<SlotIndexes>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveDebugVariables>(); AU.addPreserved<LiveDebugVariables>(); AU.addRequired<CalculateSpillWeights>(); AU.addRequired<LiveStacks>(); AU.addPreserved<LiveStacks>(); AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); AU.addRequired<VirtRegMap>(); AU.addPreserved<VirtRegMap>(); AU.addRequired<EdgeBundles>(); AU.addRequired<SpillPlacement>(); MachineFunctionPass::getAnalysisUsage(AU); } //===----------------------------------------------------------------------===// // LiveRangeEdit delegate methods //===----------------------------------------------------------------------===// bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { if (unsigned PhysReg = VRM->getPhys(VirtReg)) { unassign(LIS->getInterval(VirtReg), PhysReg); return true; } // Unassigned virtreg is probably in the priority queue. // RegAllocBase will erase it after dequeueing. return false; } void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { unsigned PhysReg = VRM->getPhys(VirtReg); if (!PhysReg) return; // Register is assigned, put it back on the queue for reassignment. LiveInterval &LI = LIS->getInterval(VirtReg); unassign(LI, PhysReg); enqueue(&LI); } void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { // Cloning a register we haven't even heard about yet? Just ignore it. if (!ExtraRegInfo.inBounds(Old)) return; // LRE may clone a virtual register because dead code elimination causes it to // be split into connected components. The new components are much smaller // than the original, so they should get a new chance at being assigned. // same stage as the parent. ExtraRegInfo[Old].Stage = RS_Assign; ExtraRegInfo.grow(New); ExtraRegInfo[New] = ExtraRegInfo[Old]; } void RAGreedy::releaseMemory() { SpillerInstance.reset(0); ExtraRegInfo.clear(); GlobalCand.clear(); RegAllocBase::releaseMemory(); } void RAGreedy::enqueue(LiveInterval *LI) { // Prioritize live ranges by size, assigning larger ranges first. // The queue holds (size, reg) pairs. const unsigned Size = LI->getSize(); const unsigned Reg = LI->reg; assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Can only enqueue virtual registers"); unsigned Prio; ExtraRegInfo.grow(Reg); if (ExtraRegInfo[Reg].Stage == RS_New) ExtraRegInfo[Reg].Stage = RS_Assign; if (ExtraRegInfo[Reg].Stage == RS_Split) { // Unsplit ranges that couldn't be allocated immediately are deferred until // everything else has been allocated. Prio = Size; } else { // Everything is allocated in long->short order. Long ranges that don't fit // should be spilled (or split) ASAP so they don't create interference. Prio = (1u << 31) + Size; // Boost ranges that have a physical register hint. if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) Prio |= (1u << 30); } Queue.push(std::make_pair(Prio, ~Reg)); } LiveInterval *RAGreedy::dequeue() { if (Queue.empty()) return 0; LiveInterval *LI = &LIS->getInterval(~Queue.top().second); Queue.pop(); return LI; } //===----------------------------------------------------------------------===// // Direct Assignment //===----------------------------------------------------------------------===// /// tryAssign - Try to assign VirtReg to an available register. unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*> &NewVRegs) { Order.rewind(); unsigned PhysReg; while ((PhysReg = Order.next())) { if (clobberedByRegMask(PhysReg)) continue; if (!checkPhysRegInterference(VirtReg, PhysReg)) break; } if (!PhysReg || Order.isHint(PhysReg)) return PhysReg; // PhysReg is available, but there may be a better choice. // If we missed a simple hint, try to cheaply evict interference from the // preferred register. if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) if (Order.isHint(Hint) && !clobberedByRegMask(Hint)) { DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); EvictionCost MaxCost(1); if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { evictInterference(VirtReg, Hint, NewVRegs); return Hint; } } // Try to evict interference from a cheaper alternative. unsigned Cost = TRI->getCostPerUse(PhysReg); // Most registers have 0 additional cost. if (!Cost) return PhysReg; DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost << '\n'); unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); return CheapReg ? CheapReg : PhysReg; } //===----------------------------------------------------------------------===// // Interference eviction //===----------------------------------------------------------------------===// /// shouldEvict - determine if A should evict the assigned live range B. The /// eviction policy defined by this function together with the allocation order /// defined by enqueue() decides which registers ultimately end up being split /// and spilled. /// /// Cascade numbers are used to prevent infinite loops if this function is a /// cyclic relation. /// /// @param A The live range to be assigned. /// @param IsHint True when A is about to be assigned to its preferred /// register. /// @param B The live range to be evicted. /// @param BreaksHint True when B is already assigned to its preferred register. bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, LiveInterval &B, bool BreaksHint) { bool CanSplit = getStage(B) < RS_Spill; // Be fairly aggressive about following hints as long as the evictee can be // split. if (CanSplit && IsHint && !BreaksHint) return true; return A.weight > B.weight; } /// canEvictInterference - Return true if all interferences between VirtReg and /// PhysReg can be evicted. When OnlyCheap is set, don't do anything /// /// @param VirtReg Live range that is about to be assigned. /// @param PhysReg Desired register for assignment. /// @prarm IsHint True when PhysReg is VirtReg's preferred register. /// @param MaxCost Only look for cheaper candidates and update with new cost /// when returning true. /// @returns True when interference can be evicted cheaper than MaxCost. bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, bool IsHint, EvictionCost &MaxCost) { // Find VirtReg's cascade number. This will be unassigned if VirtReg was never // involved in an eviction before. If a cascade number was assigned, deny // evicting anything with the same or a newer cascade number. This prevents // infinite eviction loops. // // This works out so a register without a cascade number is allowed to evict // anything, and it can be evicted by anything. unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; if (!Cascade) Cascade = NextCascade; EvictionCost Cost; for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); // If there is 10 or more interferences, chances are one is heavier. if (Q.collectInterferingVRegs(10) >= 10) return false; // Check if any interfering live range is heavier than MaxWeight. for (unsigned i = Q.interferingVRegs().size(); i; --i) { LiveInterval *Intf = Q.interferingVRegs()[i - 1]; if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) return false; // Never evict spill products. They cannot split or spill. if (getStage(*Intf) == RS_Done) return false; // Once a live range becomes small enough, it is urgent that we find a // register for it. This is indicated by an infinite spill weight. These // urgent live ranges get to evict almost anything. bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); // Only evict older cascades or live ranges without a cascade. unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; if (Cascade <= IntfCascade) { if (!Urgent) return false; // We permit breaking cascades for urgent evictions. It should be the // last resort, though, so make it really expensive. Cost.BrokenHints += 10; } // Would this break a satisfied hint? bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); // Update eviction cost. Cost.BrokenHints += BreaksHint; Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); // Abort if this would be too expensive. if (!(Cost < MaxCost)) return false; // Finally, apply the eviction policy for non-urgent evictions. if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) return false; } } MaxCost = Cost; return true; } /// evictInterference - Evict any interferring registers that prevent VirtReg /// from being assigned to Physreg. This assumes that canEvictInterference /// returned true. void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<LiveInterval*> &NewVRegs) { // Make sure that VirtReg has a cascade number, and assign that cascade // number to every evicted register. These live ranges than then only be // evicted by a newer cascade, preventing infinite loops. unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; if (!Cascade) Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) << " interference: Cascade " << Cascade << '\n'); for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); assert(Q.seenAllInterferences() && "Didn't check all interfererences."); for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { LiveInterval *Intf = Q.interferingVRegs()[i]; unassign(*Intf, VRM->getPhys(Intf->reg)); assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || VirtReg.isSpillable() < Intf->isSpillable()) && "Cannot decrease cascade number, illegal eviction"); ExtraRegInfo[Intf->reg].Cascade = Cascade; ++NumEvicted; NewVRegs.push_back(Intf); } } } /// tryEvict - Try to evict all interferences for a physreg. /// @param VirtReg Currently unassigned virtual register. /// @param Order Physregs to try. /// @return Physreg to assign VirtReg, or 0. unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*> &NewVRegs, unsigned CostPerUseLimit) { NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); // Keep track of the cheapest interference seen so far. EvictionCost BestCost(~0u); unsigned BestPhys = 0; // When we are just looking for a reduced cost per use, don't break any // hints, and only evict smaller spill weights. if (CostPerUseLimit < ~0u) { BestCost.BrokenHints = 0; BestCost.MaxWeight = VirtReg.weight; } Order.rewind(); while (unsigned PhysReg = Order.next()) { if (clobberedByRegMask(PhysReg)) continue; if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) continue; // The first use of a callee-saved register in a function has cost 1. // Don't start using a CSR when the CostPerUseLimit is low. if (CostPerUseLimit == 1) if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) if (!MRI->isPhysRegUsed(CSR)) { DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " << PrintReg(CSR, TRI) << '\n'); continue; } if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) continue; // Best so far. BestPhys = PhysReg; // Stop if the hint can be used. if (Order.isHint(PhysReg)) break; } if (!BestPhys) return 0; evictInterference(VirtReg, BestPhys, NewVRegs); return BestPhys; } //===----------------------------------------------------------------------===// // Region Splitting //===----------------------------------------------------------------------===// /// addSplitConstraints - Fill out the SplitConstraints vector based on the /// interference pattern in Physreg and its aliases. Add the constraints to /// SpillPlacement and return the static cost of this split in Cost, assuming /// that all preferences in SplitConstraints are met. /// Return false if there are no bundles with positive bias. bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, float &Cost) { ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); // Reset interference dependent info. SplitConstraints.resize(UseBlocks.size()); float StaticCost = 0; for (unsigned i = 0; i != UseBlocks.size(); ++i) { const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; BC.Number = BI.MBB->getNumber(); Intf.moveToBlock(BC.Number); BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; BC.ChangesValue = BI.FirstDef; if (!Intf.hasInterference()) continue; // Number of spill code instructions to insert. unsigned Ins = 0; // Interference for the live-in value. if (BI.LiveIn) { if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) BC.Entry = SpillPlacement::MustSpill, ++Ins; else if (Intf.first() < BI.FirstInstr) BC.Entry = SpillPlacement::PrefSpill, ++Ins; else if (Intf.first() < BI.LastInstr) ++Ins; } // Interference for the live-out value. if (BI.LiveOut) { if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) BC.Exit = SpillPlacement::MustSpill, ++Ins; else if (Intf.last() > BI.LastInstr) BC.Exit = SpillPlacement::PrefSpill, ++Ins; else if (Intf.last() > BI.FirstInstr) ++Ins; } // Accumulate the total frequency of inserted spill code. if (Ins) StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); } Cost = StaticCost; // Add constraints for use-blocks. Note that these are the only constraints // that may add a positive bias, it is downhill from here. SpillPlacer->addConstraints(SplitConstraints); return SpillPlacer->scanActiveBundles(); } /// addThroughConstraints - Add constraints and links to SpillPlacer from the /// live-through blocks in Blocks. void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, ArrayRef<unsigned> Blocks) { const unsigned GroupSize = 8; SpillPlacement::BlockConstraint BCS[GroupSize]; unsigned TBS[GroupSize]; unsigned B = 0, T = 0; for (unsigned i = 0; i != Blocks.size(); ++i) { unsigned Number = Blocks[i]; Intf.moveToBlock(Number); if (!Intf.hasInterference()) { assert(T < GroupSize && "Array overflow"); TBS[T] = Number; if (++T == GroupSize) { SpillPlacer->addLinks(makeArrayRef(TBS, T)); T = 0; } continue; } assert(B < GroupSize && "Array overflow"); BCS[B].Number = Number; // Interference for the live-in value. if (Intf.first() <= Indexes->getMBBStartIdx(Number)) BCS[B].Entry = SpillPlacement::MustSpill; else BCS[B].Entry = SpillPlacement::PrefSpill; // Interference for the live-out value. if (Intf.last() >= SA->getLastSplitPoint(Number)) BCS[B].Exit = SpillPlacement::MustSpill; else BCS[B].Exit = SpillPlacement::PrefSpill; if (++B == GroupSize) { ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); SpillPlacer->addConstraints(Array); B = 0; } } ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); SpillPlacer->addConstraints(Array); SpillPlacer->addLinks(makeArrayRef(TBS, T)); } void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { // Keep track of through blocks that have not been added to SpillPlacer. BitVector Todo = SA->getThroughBlocks(); SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; unsigned AddedTo = 0; #ifndef NDEBUG unsigned Visited = 0; #endif for (;;) { ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); // Find new through blocks in the periphery of PrefRegBundles. for (int i = 0, e = NewBundles.size(); i != e; ++i) { unsigned Bundle = NewBundles[i]; // Look at all blocks connected to Bundle in the full graph. ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); I != E; ++I) { unsigned Block = *I; if (!Todo.test(Block)) continue; Todo.reset(Block); // This is a new through block. Add it to SpillPlacer later. ActiveBlocks.push_back(Block); #ifndef NDEBUG ++Visited; #endif } } // Any new blocks to add? if (ActiveBlocks.size() == AddedTo) break; // Compute through constraints from the interference, or assume that all // through blocks prefer spilling when forming compact regions. ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); if (Cand.PhysReg) addThroughConstraints(Cand.Intf, NewBlocks); else // Provide a strong negative bias on through blocks to prevent unwanted // liveness on loop backedges. SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); AddedTo = ActiveBlocks.size(); // Perhaps iterating can enable more bundles? SpillPlacer->iterate(); } DEBUG(dbgs() << ", v=" << Visited); } /// calcCompactRegion - Compute the set of edge bundles that should be live /// when splitting the current live range into compact regions. Compact /// regions can be computed without looking at interference. They are the /// regions formed by removing all the live-through blocks from the live range. /// /// Returns false if the current live range is already compact, or if the /// compact regions would form single block regions anyway. bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { // Without any through blocks, the live range is already compact. if (!SA->getNumThroughBlocks()) return false; // Compact regions don't correspond to any physreg. Cand.reset(IntfCache, 0); DEBUG(dbgs() << "Compact region bundles"); // Use the spill placer to determine the live bundles. GrowRegion pretends // that all the through blocks have interference when PhysReg is unset. SpillPlacer->prepare(Cand.LiveBundles); // The static split cost will be zero since Cand.Intf reports no interference. float Cost; if (!addSplitConstraints(Cand.Intf, Cost)) { DEBUG(dbgs() << ", none.\n"); return false; } growRegion(Cand); SpillPlacer->finish(); if (!Cand.LiveBundles.any()) { DEBUG(dbgs() << ", none.\n"); return false; } DEBUG({ for (int i = Cand.LiveBundles.find_first(); i>=0; i = Cand.LiveBundles.find_next(i)) dbgs() << " EB#" << i; dbgs() << ".\n"; }); return true; } /// calcSpillCost - Compute how expensive it would be to split the live range in /// SA around all use blocks instead of forming bundle regions. float RAGreedy::calcSpillCost() { float Cost = 0; ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); for (unsigned i = 0; i != UseBlocks.size(); ++i) { const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; unsigned Number = BI.MBB->getNumber(); // We normally only need one spill instruction - a load or a store. Cost += SpillPlacer->getBlockFrequency(Number); // Unless the value is redefined in the block. if (BI.LiveIn && BI.LiveOut && BI.FirstDef) Cost += SpillPlacer->getBlockFrequency(Number); } return Cost; } /// calcGlobalSplitCost - Return the global split cost of following the split /// pattern in LiveBundles. This cost should be added to the local cost of the /// interference pattern in SplitConstraints. /// float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { float GlobalCost = 0; const BitVector &LiveBundles = Cand.LiveBundles; ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); for (unsigned i = 0; i != UseBlocks.size(); ++i) { const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; unsigned Ins = 0; if (BI.LiveIn) Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); if (BI.LiveOut) Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); if (Ins) GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); } for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { unsigned Number = Cand.ActiveBlocks[i]; bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; if (!RegIn && !RegOut) continue; if (RegIn && RegOut) { // We need double spill code if this block has interference. Cand.Intf.moveToBlock(Number); if (Cand.Intf.hasInterference()) GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); continue; } // live-in / stack-out or stack-in live-out. GlobalCost += SpillPlacer->getBlockFrequency(Number); } return GlobalCost; } /// splitAroundRegion - Split the current live range around the regions /// determined by BundleCand and GlobalCand. /// /// Before calling this function, GlobalCand and BundleCand must be initialized /// so each bundle is assigned to a valid candidate, or NoCand for the /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor /// objects must be initialized for the current live range, and intervals /// created for the used candidates. /// /// @param LREdit The LiveRangeEdit object handling the current split. /// @param UsedCands List of used GlobalCand entries. Every BundleCand value /// must appear in this list. void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, ArrayRef<unsigned> UsedCands) { // These are the intervals created for new global ranges. We may create more // intervals for local ranges. const unsigned NumGlobalIntvs = LREdit.size(); DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); assert(NumGlobalIntvs && "No global intervals configured"); // Isolate even single instructions when dealing with a proper sub-class. // That guarantees register class inflation for the stack interval because it // is all copies. unsigned Reg = SA->getParent().reg; bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); // First handle all the blocks with uses. ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); for (unsigned i = 0; i != UseBlocks.size(); ++i) { const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; unsigned Number = BI.MBB->getNumber(); unsigned IntvIn = 0, IntvOut = 0; SlotIndex IntfIn, IntfOut; if (BI.LiveIn) { unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; if (CandIn != NoCand) { GlobalSplitCandidate &Cand = GlobalCand[CandIn]; IntvIn = Cand.IntvIdx; Cand.Intf.moveToBlock(Number); IntfIn = Cand.Intf.first(); } } if (BI.LiveOut) { unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; if (CandOut != NoCand) { GlobalSplitCandidate &Cand = GlobalCand[CandOut]; IntvOut = Cand.IntvIdx; Cand.Intf.moveToBlock(Number); IntfOut = Cand.Intf.last(); } } // Create separate intervals for isolated blocks with multiple uses. if (!IntvIn && !IntvOut) { DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) SE->splitSingleBlock(BI); continue; } if (IntvIn && IntvOut) SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); else if (IntvIn) SE->splitRegInBlock(BI, IntvIn, IntfIn); else SE->splitRegOutBlock(BI, IntvOut, IntfOut); } // Handle live-through blocks. The relevant live-through blocks are stored in // the ActiveBlocks list with each candidate. We need to filter out // duplicates. BitVector Todo = SA->getThroughBlocks(); for (unsigned c = 0; c != UsedCands.size(); ++c) { ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { unsigned Number = Blocks[i]; if (!Todo.test(Number)) continue; Todo.reset(Number); unsigned IntvIn = 0, IntvOut = 0; SlotIndex IntfIn, IntfOut; unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; if (CandIn != NoCand) { GlobalSplitCandidate &Cand = GlobalCand[CandIn]; IntvIn = Cand.IntvIdx; Cand.Intf.moveToBlock(Number); IntfIn = Cand.Intf.first(); } unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; if (CandOut != NoCand) { GlobalSplitCandidate &Cand = GlobalCand[CandOut]; IntvOut = Cand.IntvIdx; Cand.Intf.moveToBlock(Number); IntfOut = Cand.Intf.last(); } if (!IntvIn && !IntvOut) continue; SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); } } ++NumGlobalSplits; SmallVector<unsigned, 8> IntvMap; SE->finish(&IntvMap); DebugVars->splitRegister(Reg, LREdit.regs()); ExtraRegInfo.resize(MRI->getNumVirtRegs()); unsigned OrigBlocks = SA->getNumLiveBlocks(); // Sort out the new intervals created by splitting. We get four kinds: // - Remainder intervals should not be split again. // - Candidate intervals can be assigned to Cand.PhysReg. // - Block-local splits are candidates for local splitting. // - DCE leftovers should go back on the queue. for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { LiveInterval &Reg = *LREdit.get(i); // Ignore old intervals from DCE. if (getStage(Reg) != RS_New) continue; // Remainder interval. Don't try splitting again, spill if it doesn't // allocate. if (IntvMap[i] == 0) { setStage(Reg, RS_Spill); continue; } // Global intervals. Allow repeated splitting as long as the number of live // blocks is strictly decreasing. if (IntvMap[i] < NumGlobalIntvs) { if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks << " blocks as original.\n"); // Don't allow repeated splitting as a safe guard against looping. setStage(Reg, RS_Split2); } continue; } // Other intervals are treated as new. This includes local intervals created // for blocks with multiple uses, and anything created by DCE. } if (VerifyEnabled) MF->verify(this, "After splitting live range around region"); } unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*> &NewVRegs) { unsigned NumCands = 0; unsigned BestCand = NoCand; float BestCost; SmallVector<unsigned, 8> UsedCands; // Check if we can split this live range around a compact region. bool HasCompact = calcCompactRegion(GlobalCand.front()); if (HasCompact) { // Yes, keep GlobalCand[0] as the compact region candidate. NumCands = 1; BestCost = HUGE_VALF; } else { // No benefit from the compact region, our fallback will be per-block // splitting. Make sure we find a solution that is cheaper than spilling. BestCost = Hysteresis * calcSpillCost(); DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); } Order.rewind(); while (unsigned PhysReg = Order.next()) { // Discard bad candidates before we run out of interference cache cursors. // This will only affect register classes with a lot of registers (>32). if (NumCands == IntfCache.getMaxCursors()) { unsigned WorstCount = ~0u; unsigned Worst = 0; for (unsigned i = 0; i != NumCands; ++i) { if (i == BestCand || !GlobalCand[i].PhysReg) continue; unsigned Count = GlobalCand[i].LiveBundles.count(); if (Count < WorstCount) Worst = i, WorstCount = Count; } --NumCands; GlobalCand[Worst] = GlobalCand[NumCands]; if (BestCand == NumCands) BestCand = Worst; } if (GlobalCand.size() <= NumCands) GlobalCand.resize(NumCands+1); GlobalSplitCandidate &Cand = GlobalCand[NumCands]; Cand.reset(IntfCache, PhysReg); SpillPlacer->prepare(Cand.LiveBundles); float Cost; if (!addSplitConstraints(Cand.Intf, Cost)) { DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); continue; } DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); if (Cost >= BestCost) { DEBUG({ if (BestCand == NoCand) dbgs() << " worse than no bundles\n"; else dbgs() << " worse than " << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; }); continue; } growRegion(Cand); SpillPlacer->finish(); // No live bundles, defer to splitSingleBlocks(). if (!Cand.LiveBundles.any()) { DEBUG(dbgs() << " no bundles.\n"); continue; } Cost += calcGlobalSplitCost(Cand); DEBUG({ dbgs() << ", total = " << Cost << " with bundles"; for (int i = Cand.LiveBundles.find_first(); i>=0; i = Cand.LiveBundles.find_next(i)) dbgs() << " EB#" << i; dbgs() << ".\n"; }); if (Cost < BestCost) { BestCand = NumCands; BestCost = Hysteresis * Cost; // Prevent rounding effects. } ++NumCands; } // No solutions found, fall back to single block splitting. if (!HasCompact && BestCand == NoCand) return 0; // Prepare split editor. LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); SE->reset(LREdit, SplitSpillMode); // Assign all edge bundles to the preferred candidate, or NoCand. BundleCand.assign(Bundles->getNumBundles(), NoCand); // Assign bundles for the best candidate region. if (BestCand != NoCand) { GlobalSplitCandidate &Cand = GlobalCand[BestCand]; if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { UsedCands.push_back(BestCand); Cand.IntvIdx = SE->openIntv(); DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " << B << " bundles, intv " << Cand.IntvIdx << ".\n"); (void)B; } } // Assign bundles for the compact region. if (HasCompact) { GlobalSplitCandidate &Cand = GlobalCand.front(); assert(!Cand.PhysReg && "Compact region has no physreg"); if (unsigned B = Cand.getBundles(BundleCand, 0)) { UsedCands.push_back(0); Cand.IntvIdx = SE->openIntv(); DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " << Cand.IntvIdx << ".\n"); (void)B; } } splitAroundRegion(LREdit, UsedCands); return 0; } //===----------------------------------------------------------------------===// // Per-Block Splitting //===----------------------------------------------------------------------===// /// tryBlockSplit - Split a global live range around every block with uses. This /// creates a lot of local live ranges, that will be split by tryLocalSplit if /// they don't allocate. unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*> &NewVRegs) { assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); unsigned Reg = VirtReg.reg; bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); SE->reset(LREdit, SplitSpillMode); ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); for (unsigned i = 0; i != UseBlocks.size(); ++i) { const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) SE->splitSingleBlock(BI); } // No blocks were split. if (LREdit.empty()) return 0; // We did split for some blocks. SmallVector<unsigned, 8> IntvMap; SE->finish(&IntvMap); // Tell LiveDebugVariables about the new ranges. DebugVars->splitRegister(Reg, LREdit.regs()); ExtraRegInfo.resize(MRI->getNumVirtRegs()); // Sort out the new intervals created by splitting. The remainder interval // goes straight to spilling, the new local ranges get to stay RS_New. for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { LiveInterval &LI = *LREdit.get(i); if (getStage(LI) == RS_New && IntvMap[i] == 0) setStage(LI, RS_Spill); } if (VerifyEnabled) MF->verify(this, "After splitting live range around basic blocks"); return 0; } //===----------------------------------------------------------------------===// // Local Splitting //===----------------------------------------------------------------------===// /// calcGapWeights - Compute the maximum spill weight that needs to be evicted /// in order to use PhysReg between two entries in SA->UseSlots. /// /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. /// void RAGreedy::calcGapWeights(unsigned PhysReg, SmallVectorImpl<float> &GapWeight) { assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); ArrayRef<SlotIndex> Uses = SA->getUseSlots(); const unsigned NumGaps = Uses.size()-1; // Start and end points for the interference check. SlotIndex StartIdx = BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; SlotIndex StopIdx = BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; GapWeight.assign(NumGaps, 0.0f); // Add interference from each overlapping register. for (const uint16_t *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) .checkInterference()) continue; // We know that VirtReg is a continuous interval from FirstInstr to // LastInstr, so we don't need InterferenceQuery. // // Interference that overlaps an instruction is counted in both gaps // surrounding the instruction. The exception is interference before // StartIdx and after StopIdx. // LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx); for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { // Skip the gaps before IntI. while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) if (++Gap == NumGaps) break; if (Gap == NumGaps) break; // Update the gaps covered by IntI. const float weight = IntI.value()->weight; for (; Gap != NumGaps; ++Gap) { GapWeight[Gap] = std::max(GapWeight[Gap], weight); if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) break; } if (Gap == NumGaps) break; } } } /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only /// basic block. /// unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*> &NewVRegs) { assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); // Note that it is possible to have an interval that is live-in or live-out // while only covering a single block - A phi-def can use undef values from // predecessors, and the block could be a single-block loop. // We don't bother doing anything clever about such a case, we simply assume // that the interval is continuous from FirstInstr to LastInstr. We should // make sure that we don't do anything illegal to such an interval, though. ArrayRef<SlotIndex> Uses = SA->getUseSlots(); if (Uses.size() <= 2) return 0; const unsigned NumGaps = Uses.size()-1; DEBUG({ dbgs() << "tryLocalSplit: "; for (unsigned i = 0, e = Uses.size(); i != e; ++i) dbgs() << ' ' << Uses[i]; dbgs() << '\n'; }); // If VirtReg is live across any register mask operands, compute a list of // gaps with register masks. SmallVector<unsigned, 8> RegMaskGaps; if (!UsableRegs.empty()) { // Get regmask slots for the whole block. ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); DEBUG(dbgs() << RMS.size() << " regmasks in block:"); // Constrain to VirtReg's live range. unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), Uses.front().getRegSlot()) - RMS.begin(); unsigned re = RMS.size(); for (unsigned i = 0; i != NumGaps && ri != re; ++i) { // Look for Uses[i] <= RMS <= Uses[i+1]. assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) continue; // Skip a regmask on the same instruction as the last use. It doesn't // overlap the live range. if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) break; DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); RegMaskGaps.push_back(i); // Advance ri to the next gap. A regmask on one of the uses counts in // both gaps. while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) ++ri; } DEBUG(dbgs() << '\n'); } // Since we allow local split results to be split again, there is a risk of // creating infinite loops. It is tempting to require that the new live // ranges have less instructions than the original. That would guarantee // convergence, but it is too strict. A live range with 3 instructions can be // split 2+3 (including the COPY), and we want to allow that. // // Instead we use these rules: // // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the // noop split, of course). // 2. Require progress be made for ranges with getStage() == RS_Split2. All // the new ranges must have fewer instructions than before the split. // 3. New ranges with the same number of instructions are marked RS_Split2, // smaller ranges are marked RS_New. // // These rules allow a 3 -> 2+3 split once, which we need. They also prevent // excessive splitting and infinite loops. // bool ProgressRequired = getStage(VirtReg) >= RS_Split2; // Best split candidate. unsigned BestBefore = NumGaps; unsigned BestAfter = 0; float BestDiff = 0; const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); SmallVector<float, 8> GapWeight; Order.rewind(); while (unsigned PhysReg = Order.next()) { // Keep track of the largest spill weight that would need to be evicted in // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. calcGapWeights(PhysReg, GapWeight); // Remove any gaps with regmask clobbers. if (clobberedByRegMask(PhysReg)) for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) GapWeight[RegMaskGaps[i]] = HUGE_VALF; // Try to find the best sequence of gaps to close. // The new spill weight must be larger than any gap interference. // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. unsigned SplitBefore = 0, SplitAfter = 1; // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). // It is the spill weight that needs to be evicted. float MaxGap = GapWeight[0]; for (;;) { // Live before/after split? const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] << '-' << Uses[SplitAfter] << " i=" << MaxGap); // Stop before the interval gets so big we wouldn't be making progress. if (!LiveBefore && !LiveAfter) { DEBUG(dbgs() << " all\n"); break; } // Should the interval be extended or shrunk? bool Shrink = true; // How many gaps would the new range have? unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; // Legally, without causing looping? bool Legal = !ProgressRequired || NewGaps < NumGaps; if (Legal && MaxGap < HUGE_VALF) { // Estimate the new spill weight. Each instruction reads or writes the // register. Conservatively assume there are no read-modify-write // instructions. // // Try to guess the size of the new interval. const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), Uses[SplitBefore].distance(Uses[SplitAfter]) + (LiveBefore + LiveAfter)*SlotIndex::InstrDist); // Would this split be possible to allocate? // Never allocate all gaps, we wouldn't be making progress. DEBUG(dbgs() << " w=" << EstWeight); if (EstWeight * Hysteresis >= MaxGap) { Shrink = false; float Diff = EstWeight - MaxGap; if (Diff > BestDiff) { DEBUG(dbgs() << " (best)"); BestDiff = Hysteresis * Diff; BestBefore = SplitBefore; BestAfter = SplitAfter; } } } // Try to shrink. if (Shrink) { if (++SplitBefore < SplitAfter) { DEBUG(dbgs() << " shrink\n"); // Recompute the max when necessary. if (GapWeight[SplitBefore - 1] >= MaxGap) { MaxGap = GapWeight[SplitBefore]; for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) MaxGap = std::max(MaxGap, GapWeight[i]); } continue; } MaxGap = 0; } // Try to extend the interval. if (SplitAfter >= NumGaps) { DEBUG(dbgs() << " end\n"); break; } DEBUG(dbgs() << " extend\n"); MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); } } // Didn't find any candidates? if (BestBefore == NumGaps) return 0; DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' << Uses[BestAfter] << ", " << BestDiff << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); SE->reset(LREdit); SE->openIntv(); SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); SE->useIntv(SegStart, SegStop); SmallVector<unsigned, 8> IntvMap; SE->finish(&IntvMap); DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); // If the new range has the same number of instructions as before, mark it as // RS_Split2 so the next split will be forced to make progress. Otherwise, // leave the new intervals as RS_New so they can compete. bool LiveBefore = BestBefore != 0 || BI.LiveIn; bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; if (NewGaps >= NumGaps) { DEBUG(dbgs() << "Tagging non-progress ranges: "); assert(!ProgressRequired && "Didn't make progress when it was required."); for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) if (IntvMap[i] == 1) { setStage(*LREdit.get(i), RS_Split2); DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); } DEBUG(dbgs() << '\n'); } ++NumLocalSplits; return 0; } //===----------------------------------------------------------------------===// // Live Range Splitting //===----------------------------------------------------------------------===// /// trySplit - Try to split VirtReg or one of its interferences, making it /// assignable. /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<LiveInterval*>&NewVRegs) { // Ranges must be Split2 or less. if (getStage(VirtReg) >= RS_Spill) return 0; // Local intervals are handled separately. if (LIS->intervalIsInOneMBB(VirtReg)) { NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); SA->analyze(&VirtReg); return tryLocalSplit(VirtReg, Order, NewVRegs); } NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); SA->analyze(&VirtReg); // FIXME: SplitAnalysis may repair broken live ranges coming from the // coalescer. That may cause the range to become allocatable which means that // tryRegionSplit won't be making progress. This check should be replaced with // an assertion when the coalescer is fixed. if (SA->didRepairRange()) { // VirtReg has changed, so all cached queries are invalid. invalidateVirtRegs(); if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) return PhysReg; } // First try to split around a region spanning multiple blocks. RS_Split2 // ranges already made dubious progress with region splitting, so they go // straight to single block splitting. if (getStage(VirtReg) < RS_Split2) { unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); if (PhysReg || !NewVRegs.empty()) return PhysReg; } // Then isolate blocks. return tryBlockSplit(VirtReg, Order, NewVRegs); } //===----------------------------------------------------------------------===// // Main Entry Point //===----------------------------------------------------------------------===// unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<LiveInterval*> &NewVRegs) { // Check if VirtReg is live across any calls. UsableRegs.clear(); if (LIS->checkRegMaskInterference(VirtReg, UsableRegs)) DEBUG(dbgs() << "Live across regmasks.\n"); // First try assigning a free register. AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) return PhysReg; LiveRangeStage Stage = getStage(VirtReg); DEBUG(dbgs() << StageName[Stage] << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); // Try to evict a less worthy live range, but only for ranges from the primary // queue. The RS_Split ranges already failed to do this, and they should not // get a second chance until they have been split. if (Stage != RS_Split) if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) return PhysReg; assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); // The first time we see a live range, don't try to split or spill. // Wait until the second time, when all smaller ranges have been allocated. // This gives a better picture of the interference to split around. if (Stage < RS_Split) { setStage(VirtReg, RS_Split); DEBUG(dbgs() << "wait for second round\n"); NewVRegs.push_back(&VirtReg); return 0; } // If we couldn't allocate a register from spilling, there is probably some // invalid inline assembly. The base class wil report it. if (Stage >= RS_Done || !VirtReg.isSpillable()) return ~0u; // Try splitting VirtReg or interferences. unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); if (PhysReg || !NewVRegs.empty()) return PhysReg; // Finally spill VirtReg itself. NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); LiveRangeEdit LRE(VirtReg, NewVRegs, *MF, *LIS, VRM, this); spiller().spill(LRE); setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); if (VerifyEnabled) MF->verify(this, "After spilling"); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; if (VerifyEnabled) MF->verify(this, "Before greedy register allocator"); RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); Indexes = &getAnalysis<SlotIndexes>(); DomTree = &getAnalysis<MachineDominatorTree>(); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); Loops = &getAnalysis<MachineLoopInfo>(); Bundles = &getAnalysis<EdgeBundles>(); SpillPlacer = &getAnalysis<SpillPlacement>(); DebugVars = &getAnalysis<LiveDebugVariables>(); SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); ExtraRegInfo.clear(); ExtraRegInfo.resize(MRI->getNumVirtRegs()); NextCascade = 1; IntfCache.init(MF, &getLiveUnion(0), Indexes, LIS, TRI); GlobalCand.resize(32); // This will grow as needed. allocatePhysRegs(); addMBBLiveIns(MF); LIS->addKillFlags(); // Run rewriter { NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); VRM->rewrite(Indexes); } // Write out new DBG_VALUE instructions. { NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled); DebugVars->emitDebugValues(VRM); } // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers and release all the transient data. VRM->clearAllVirt(); MRI->clearVirtRegs(); releaseMemory(); return true; }